SEMICONDUCTOR INTEGRATED CIRCUITS

Novel design techniques for noise-tolerant power-gated CMOS circuits

Rumi Rastogi and Sujata Pandey

+ Author Affiliations

 Corresponding author: Sujata Pandey,Email:rumi.ravi@gmail.com,spandey@amity.edu

PDF

Abstract: In this paper we have investigated the single phase sleep signal modulation technique, step-wise Vgs technique and the three-phase reactivation technique to evaluate the noise characteristics of multi-threshold CMOS circuits used in communication systems. The stacking technique is also implemented in this paper for the sleep transistor. The stacking approach helps to minimize leakage power. The mode transition noise minimization techniques have been applied to 32-bit dynamic TSPC adder with stacked sleep transistors in a standard 45-nm CMOS process. The reactivation noise, delay and energy consumption of all the three techniques have been evaluated. It has been shown that the three phase modulation technique significantly minimizes the reactivation delay when the peak noise level is maintained the same for all three techniques. The three phase modulation technique shows 67.3% and 35% reduction in delay compared to the single phase and step-wise Vgs modulation techniques respectively. The reactivation energy is also suppressed by 49.3% and 39.14% with respect to the single-phase and stepwise Vgs techniques.

Key words: MTCMOSnoise tolerantlow power



[1]
Chowdhury M A J, Rizwan M S, Islam M S. An efficient VLSI design approach to reduce static power using variable body biasing. Int J Electron Comput Energ Electron Commun Eng, 2012, 6(4): 2012 http://waset.org/publications/8289/an-efficient-vlsi-design-approach-to-reduce-static-power-using-variable-body-biasing
[2]
Jiao H, Kursun V. Reactivation noise suppression with sleep signal slew rate modulation in MTCMOS circuits. IEEE Trans VLSI Syst, 2013, 21(3): 533 doi: 10.1109/TVLSI.2012.2190116
[3]
Calhoun B H, Honoré F A, Chandrakasan A P. A leakage reduction methodology for distributed MTCMOS. IEEE J Solid-State Circuits, 2004, 39(5): 818 doi: 10.1109/JSSC.2004.826335
[4]
Jiao H, Kursun V. Ground-bouncing-noise-aware combinational MTCMOS circuits. IEEE Trans Circuits Syst I, 2011, 57(8): 2053 http://cn.bing.com/academic/profile?id=57f49ececdbe3958af46a6c3e5a3d99a&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Jiao H, Kursun V. Threshold voltage tuning for faster activation with lower noise in tri-mode MTCMOS circuits. IEEE Trans VLSI Syst, 2012, 20(4): 741 doi: 10.1109/TVLSI.2011.2110663
[6]
Heydari P, Pedram M. Ground bounce in digital VLSI circuits. IEEE Trans VLSI Syst, 2003, 11(2): 180 doi: 10.1109/TVLSI.2003.810785
[7]
Kurd N, Bhamidipati S, Mozak C, et al. A family of 32 nm IA processors. IEEE J Solid-State Circuits, 2011, 46(1): 119 doi: 10.1109/JSSC.2010.2079430
[8]
Kim S, Kosonocky V, Knebel D R, et al. Minimizing inductive noise in system-on-a-chip with multiple power gating structures. IEEE Eur Solid-State Circuits Conf, 2003: 635 http://cn.bing.com/academic/profile?id=fb44445d9bedd4cbda6bf85e228b5e37&encoded=0&v=paper_preview&mkt=zh-cn
[9]
Rastogi R, Pandey S. Implementing low power dynamic adders in MTCMOS technology. IEEE International Conference on Electronics and Communication Systems, 2015: 782 http://cn.bing.com/academic/profile?id=a764f91386b17d54e0f0c214904b63ba&encoded=0&v=paper_preview&mkt=zh-cn
[10]
Rastogi R, Pandey S. Leakage power reduction in MTCMOS based high speed adders. IEEE International Conference on Computer, Communication and Control, 2015: 1 http://cn.bing.com/academic/profile?id=6ab53740be3e91a2a7e4048225295fd9&encoded=0&v=paper_preview&mkt=zh-cn
[11]
DeepakSubramanyan B S, Nuñez A. Analysis of subthreshold leakage reduction in CMOS digital circuits. Proceedings of the 13th NASA VLSI Symposium, 2007: 1400 https://www.researchgate.net/publication/224310148_Analysis_of_subthreshold_leakage_reduction_in_CMOS_digital_circuits
[12]
Mukhopadhyay S, Neau C, Cakici R T, et al. Gate leakage reduction for scaled devices using transistor stacking. IEEE Trans VLSI Syst, 2003, 11(4): 716 doi: 10.1109/TVLSI.2003.816145
[13]
Kim S, Kosonocky S V, Knebele D R, et al. A multi-mode power gating structure for low-voltage deep-submicron CMOS ICs. IEEE Trans Circuits Syst II, 2007, 54(7): 586 doi: 10.1109/TCSII.2007.894428
Fig. 1.  (a) Representation of conventional MTCMOS power-gating structure. (b) MTCMOS with stacked sleep transistor.

Fig. 2.  Schematic of the sleep signal modulator for stepwise Vgs technique [8].

Fig. 3.  Step-wise Vgs Modulation technique. Modulated$\_$sleep is the stepwise modulated signal applied to the MTCMOS circuit block.

Fig. 4.  Three-phase sleep signal modulator [2].

Fig. 5.  Three-phase modulation technique. Modulated\textunderscore sleep is the three-phase modulated signal.

Fig. 6.  Voltage waveforms on (a) the sleep signal, (b) the virtual ground and (c) real ground lines when the circuit transits from SLEEP to ACTIVE mode.

Fig. 7.  Variation of peak amplitude of ground bouncing noise with sleep signal rise time delay for MTCMOS TSPC adder.

Fig. 8.  Reactivation delay and reactivation energy of stepwise-Vgs modulation techniques plotted against VI.

Fig. 9.  Reactivation energy delay product for step-wise Vgs modulation.

Fig. 10.  Reactivation energy delay product for the first two phases (T1$+$T2) of the three-phase sleep signal modulation technique.

Fig. 11.  Reactivation energy and delay for the first two phases (T1$+$T2) of the three-phase sleep signal modulation technique.

Fig. 12.  (Color online) Variation of peak ground bouncing noise versus total reactivation delay for all three techniques.

Table 1.   Evaluation of different sleep signal modulation techniques.

Reactivation technique Single-phase Step-wise Vgs Three-phase
Peak reactivation noise (μV) 200 228 197
Reactivation delay (ns) 35.38 17.63 11.56
Reactivation energy (pJ) 0.785 0.654 0.398
Leakage power (nW) 56.4967.54 67.02
DownLoad: CSV

Table 2.   Comparison of the proposed techniques with other existing techniques for noise minimization.

Circuit technique Peak reactivationpar noise (μV) Reactivation delaypar (ns) Reactivationpar energy (pJ) Leakage powerpar (nW)
Standard gated ground [4] 3268.52.1160.1
Standard tri-mode [13]22021.240.85467.3
Tri-mode with low-Vth Parker (TML) [5] 21520.650.77468
Tri-mode with forward body-biased Parker [5] 20318.330.55365.45
Simple stacking without modulation [11]258160.88666.34
Proposed (three phase clock with stack)19711.560.39867.02
DownLoad: CSV
[1]
Chowdhury M A J, Rizwan M S, Islam M S. An efficient VLSI design approach to reduce static power using variable body biasing. Int J Electron Comput Energ Electron Commun Eng, 2012, 6(4): 2012 http://waset.org/publications/8289/an-efficient-vlsi-design-approach-to-reduce-static-power-using-variable-body-biasing
[2]
Jiao H, Kursun V. Reactivation noise suppression with sleep signal slew rate modulation in MTCMOS circuits. IEEE Trans VLSI Syst, 2013, 21(3): 533 doi: 10.1109/TVLSI.2012.2190116
[3]
Calhoun B H, Honoré F A, Chandrakasan A P. A leakage reduction methodology for distributed MTCMOS. IEEE J Solid-State Circuits, 2004, 39(5): 818 doi: 10.1109/JSSC.2004.826335
[4]
Jiao H, Kursun V. Ground-bouncing-noise-aware combinational MTCMOS circuits. IEEE Trans Circuits Syst I, 2011, 57(8): 2053 http://cn.bing.com/academic/profile?id=57f49ececdbe3958af46a6c3e5a3d99a&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Jiao H, Kursun V. Threshold voltage tuning for faster activation with lower noise in tri-mode MTCMOS circuits. IEEE Trans VLSI Syst, 2012, 20(4): 741 doi: 10.1109/TVLSI.2011.2110663
[6]
Heydari P, Pedram M. Ground bounce in digital VLSI circuits. IEEE Trans VLSI Syst, 2003, 11(2): 180 doi: 10.1109/TVLSI.2003.810785
[7]
Kurd N, Bhamidipati S, Mozak C, et al. A family of 32 nm IA processors. IEEE J Solid-State Circuits, 2011, 46(1): 119 doi: 10.1109/JSSC.2010.2079430
[8]
Kim S, Kosonocky V, Knebel D R, et al. Minimizing inductive noise in system-on-a-chip with multiple power gating structures. IEEE Eur Solid-State Circuits Conf, 2003: 635 http://cn.bing.com/academic/profile?id=fb44445d9bedd4cbda6bf85e228b5e37&encoded=0&v=paper_preview&mkt=zh-cn
[9]
Rastogi R, Pandey S. Implementing low power dynamic adders in MTCMOS technology. IEEE International Conference on Electronics and Communication Systems, 2015: 782 http://cn.bing.com/academic/profile?id=a764f91386b17d54e0f0c214904b63ba&encoded=0&v=paper_preview&mkt=zh-cn
[10]
Rastogi R, Pandey S. Leakage power reduction in MTCMOS based high speed adders. IEEE International Conference on Computer, Communication and Control, 2015: 1 http://cn.bing.com/academic/profile?id=6ab53740be3e91a2a7e4048225295fd9&encoded=0&v=paper_preview&mkt=zh-cn
[11]
DeepakSubramanyan B S, Nuñez A. Analysis of subthreshold leakage reduction in CMOS digital circuits. Proceedings of the 13th NASA VLSI Symposium, 2007: 1400 https://www.researchgate.net/publication/224310148_Analysis_of_subthreshold_leakage_reduction_in_CMOS_digital_circuits
[12]
Mukhopadhyay S, Neau C, Cakici R T, et al. Gate leakage reduction for scaled devices using transistor stacking. IEEE Trans VLSI Syst, 2003, 11(4): 716 doi: 10.1109/TVLSI.2003.816145
[13]
Kim S, Kosonocky S V, Knebele D R, et al. A multi-mode power gating structure for low-voltage deep-submicron CMOS ICs. IEEE Trans Circuits Syst II, 2007, 54(7): 586 doi: 10.1109/TCSII.2007.894428
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2860 Times PDF downloads: 21 Times Cited by: 0 Times

    History

    Received: 17 March 2016 Revised: 19 July 2016 Online: Published: 01 January 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Rumi Rastogi, Sujata Pandey. Novel design techniques for noise-tolerant power-gated CMOS circuits[J]. Journal of Semiconductors, 2017, 38(1): 015001. doi: 10.1088/1674-4926/38/1/015001 R Rastogi, S Pandey. Novel design techniques for noise-tolerant power-gated CMOS circuits[J]. J. Semicond., 2017, 38(1): 015001. doi:  10.1088/1674-4926/38/1/015001.Export: BibTex EndNote
      Citation:
      Rumi Rastogi, Sujata Pandey. Novel design techniques for noise-tolerant power-gated CMOS circuits[J]. Journal of Semiconductors, 2017, 38(1): 015001. doi: 10.1088/1674-4926/38/1/015001

      R Rastogi, S Pandey. Novel design techniques for noise-tolerant power-gated CMOS circuits[J]. J. Semicond., 2017, 38(1): 015001. doi:  10.1088/1674-4926/38/1/015001.
      Export: BibTex EndNote

      Novel design techniques for noise-tolerant power-gated CMOS circuits

      doi: 10.1088/1674-4926/38/1/015001
      More Information
      • Corresponding author: Sujata Pandey,Email:rumi.ravi@gmail.com,spandey@amity.edu
      • Received Date: 2016-03-17
      • Revised Date: 2016-07-19
      • Published Date: 2017-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return