SEMICONDUCTOR INTEGRATED CIRCUITS

An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer

Xiuju He, Xian Gu, Weitao Li, Hanjun Jiang, Fule Li and Zhihua Wang

+ Author Affiliations

 Corresponding author: Fule Li, Email: lifule@mail.tsinghua.edu.cn

PDF

Abstract: This paper presents an 11-bit 200 MS/s subrange SAR ADC with an integrated reference buffer in 65 nm CMOS. The proposed ADC employs a 3.5-bit flash ADC for coarse conversion, and a compact timing scheme at the flash/SAR boundary to speed up the conversion. The flash decision is used to control charge compensating for the reference voltage to reduce its input-dependent fluctuation. Measurement results show that the fabricated ADC has achieved significant improvement by applying the reference charge compensation. In addition, the ADC achieves a maximum signal-to-noise-and-distortion ratio of 59.3 dB at 200 MS/s. It consumes 3.91 mW from a 1.2 V supply, including the reference buffer.

Key words: subrange SAR ADCcharge compensation unit (CCU)reference buffer



[1]
Ding M, Harpe P, Liu Y H, et al. A 46μW 13 b 6.4 MS/s SAR ADC with background mismatch and offset calibration. IEEE J Solid-State Circuits, 2016, 52:423 https://www.narcis.nl/publication/RecordID/oai%3Alibrary.tue.nl%3A863979
[2]
Delgado-Restituto M, Carrasco-Robles M, Fiorelli R, et al. A 76 nW, 4 kS/s 10-bit SAR ADC with offset cancellation for biomedical applications. IEEE Asia Pacific Conference on Circuits and Systems, 2016:421 doi: 10.1007/s10470-015-0591-2
[3]
Liu C C, Huang M C, Tu Y H. A 12 bit 100 MS/s SAR-assisted digital-slope ADC. IEEE J Solid-State Circuits, 2016, 51(12):2941 doi: 10.1109/JSSC.2016.2591822
[4]
Muratore D G, Bonizzoni E, Maloberti F. A pipeline ADC for very high conversion rates. IEEE International Symposium on Circuits and Systems, 2016:1446 http://ieeexplore.ieee.org/document/7527529/
[5]
Chen H W, Liu Y H, Lin Y H, et al. A 3 mW 12 b 10 MS/s subrange SAR ADC. IEEE Asian Solid-State Circuits Conference, 2009:153 doi: 10.1088/1674-4926/37/7/075005
[6]
Lee C H, Hou C H, Huang C P, et al. A 2.5-bit/cycle 10-bit 160-MS/s SAR ADC in 90-nm CMOS process. International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2016:1 http://www.doc88.com/p-0791363464543.html
[7]
Gao J, Li G, Huang L, et al. An amplifier-free pipeline-SAR ADC architecture with enhanced speed and energy efficiency. IEEE Trans Circuits Syst Ⅱ, 2016, 63(4):341 doi: 10.1109/TCSII.2015.2503705
[8]
Daly D C, Chandrakasan A P. A 6-bit, 0.2 V to 0.9 V highly digital flash ADC with comparator redundancy. IEEE J Solid-State Circuits, 2009, 44(11):3030 doi: 10.1109/JSSC.2009.2032699
[9]
Lin Y Z, Liu C C, Huang G Y, et al. A 9-bit 150-MS/s subrange ADC based on SAR architecture in 90-nm CMOS. IEEE Trans Circuits Syst I, 2013, 60(3):570 doi: 10.1109/TCSI.2012.2215756
[10]
Wei S S, Ju Y, Li F L, et al. An 11-bit 200 MS/s subrange SAR ADC with charge-compensation-based reference buffer. IEEE International New Circuits and Systems Conference, 2016:1 doi: 10.1088/1674-4926/37/7/075005/meta
[11]
Li W T, Li F L, Yang C Y, et al. A power efficient reference buffer with wide swing for switched-capacitor ADC. Microelectron J, 2015, 46:410 doi: 10.1016/j.mejo.2015.03.005
[12]
Li W, Li F, Yang C, et al. An 85 mW 14-bit 150 MS/s pipelined ADC with a merged first and second MDAC. Chin Commun, 2015, 12(5):14 doi: 10.1109/CC.2015.7112040
[13]
van Elzakker M, van Tuijl E, Geraedts P, et al. A 10-bit charge-redistribution ADC consuming 1.9μW at 1 MS/s. IEEE J SolidState Circuits, 2010, 45(5):1007 doi: 10.1109/JSSC.2010.2043893
[14]
Wang Y, Li F, Xue C, et al. Charge-compensation-based reference technique for switched-capacitor ADCs. IEEE International Symposium on Circuits and Systems, 2015:2257 http://ieeexplore.ieee.org/document/7169132/
[15]
Wei H, Chan C H, Chio U F, et al. A 0.024 mm2 8 b 400 MS/s SAR ADC with 2b/cycle and resistive DAC in 65 nm CMOS. IEEE International Solid-State Circuits Conference, 2011:188 http://www.fst.umac.mo/en/staff/fstsws.html
Fig. 1.  Architecture of subrange SAR ADC

Fig. 2.  (a) Circuit of high-speed low-power subrange SAR ADC. (b) Compact timing design

Fig. 3.  Design for Narrow band reference buffer

Fig. 4.  The reference voltage charge loss versus the input signal

Fig. 5.  (a) Charge compensation circuit. (b) Timing design

Fig. 6.  (Color online) Die microphotograph

Fig. 7.  (Color online) Measured INL

Fig. 8.  ADC output spectrum at the sampling rate of 200 MS/s and the input frequency of 2.4 and 70 MHz with CCU and without CCU

Fig. 9.  Measured SFDR and SNDR versus the input frequency and the sampling rate with CCU and without CCU, when the reference buffer output is not bonded out

Fig. 10.  Measured SFDR and SNDR versus the input frequency and the sampling rate with CCU and without CCU, when the reference buffer output is boned out

Table 1.   Comparison and specification summary

[1]
Ding M, Harpe P, Liu Y H, et al. A 46μW 13 b 6.4 MS/s SAR ADC with background mismatch and offset calibration. IEEE J Solid-State Circuits, 2016, 52:423 https://www.narcis.nl/publication/RecordID/oai%3Alibrary.tue.nl%3A863979
[2]
Delgado-Restituto M, Carrasco-Robles M, Fiorelli R, et al. A 76 nW, 4 kS/s 10-bit SAR ADC with offset cancellation for biomedical applications. IEEE Asia Pacific Conference on Circuits and Systems, 2016:421 doi: 10.1007/s10470-015-0591-2
[3]
Liu C C, Huang M C, Tu Y H. A 12 bit 100 MS/s SAR-assisted digital-slope ADC. IEEE J Solid-State Circuits, 2016, 51(12):2941 doi: 10.1109/JSSC.2016.2591822
[4]
Muratore D G, Bonizzoni E, Maloberti F. A pipeline ADC for very high conversion rates. IEEE International Symposium on Circuits and Systems, 2016:1446 http://ieeexplore.ieee.org/document/7527529/
[5]
Chen H W, Liu Y H, Lin Y H, et al. A 3 mW 12 b 10 MS/s subrange SAR ADC. IEEE Asian Solid-State Circuits Conference, 2009:153 doi: 10.1088/1674-4926/37/7/075005
[6]
Lee C H, Hou C H, Huang C P, et al. A 2.5-bit/cycle 10-bit 160-MS/s SAR ADC in 90-nm CMOS process. International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2016:1 http://www.doc88.com/p-0791363464543.html
[7]
Gao J, Li G, Huang L, et al. An amplifier-free pipeline-SAR ADC architecture with enhanced speed and energy efficiency. IEEE Trans Circuits Syst Ⅱ, 2016, 63(4):341 doi: 10.1109/TCSII.2015.2503705
[8]
Daly D C, Chandrakasan A P. A 6-bit, 0.2 V to 0.9 V highly digital flash ADC with comparator redundancy. IEEE J Solid-State Circuits, 2009, 44(11):3030 doi: 10.1109/JSSC.2009.2032699
[9]
Lin Y Z, Liu C C, Huang G Y, et al. A 9-bit 150-MS/s subrange ADC based on SAR architecture in 90-nm CMOS. IEEE Trans Circuits Syst I, 2013, 60(3):570 doi: 10.1109/TCSI.2012.2215756
[10]
Wei S S, Ju Y, Li F L, et al. An 11-bit 200 MS/s subrange SAR ADC with charge-compensation-based reference buffer. IEEE International New Circuits and Systems Conference, 2016:1 doi: 10.1088/1674-4926/37/7/075005/meta
[11]
Li W T, Li F L, Yang C Y, et al. A power efficient reference buffer with wide swing for switched-capacitor ADC. Microelectron J, 2015, 46:410 doi: 10.1016/j.mejo.2015.03.005
[12]
Li W, Li F, Yang C, et al. An 85 mW 14-bit 150 MS/s pipelined ADC with a merged first and second MDAC. Chin Commun, 2015, 12(5):14 doi: 10.1109/CC.2015.7112040
[13]
van Elzakker M, van Tuijl E, Geraedts P, et al. A 10-bit charge-redistribution ADC consuming 1.9μW at 1 MS/s. IEEE J SolidState Circuits, 2010, 45(5):1007 doi: 10.1109/JSSC.2010.2043893
[14]
Wang Y, Li F, Xue C, et al. Charge-compensation-based reference technique for switched-capacitor ADCs. IEEE International Symposium on Circuits and Systems, 2015:2257 http://ieeexplore.ieee.org/document/7169132/
[15]
Wei H, Chan C H, Chio U F, et al. A 0.024 mm2 8 b 400 MS/s SAR ADC with 2b/cycle and resistive DAC in 65 nm CMOS. IEEE International Solid-State Circuits Conference, 2011:188 http://www.fst.umac.mo/en/staff/fstsws.html
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3862 Times PDF downloads: 90 Times Cited by: 0 Times

    History

    Received: 17 January 2017 Revised: 07 April 2017 Online: Published: 01 October 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiuju He, Xian Gu, Weitao Li, Hanjun Jiang, Fule Li, Zhihua Wang. An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer[J]. Journal of Semiconductors, 2017, 38(10): 105007. doi: 10.1088/1674-4926/38/10/105007 X J He, X Gu, W T Li, H J Jiang, F L Li, Z H Wang. An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer[J]. J. Semicond., 2017, 38(10): 105007. doi: 10.1088/1674-4926/38/10/105007.Export: BibTex EndNote
      Citation:
      Xiuju He, Xian Gu, Weitao Li, Hanjun Jiang, Fule Li, Zhihua Wang. An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer[J]. Journal of Semiconductors, 2017, 38(10): 105007. doi: 10.1088/1674-4926/38/10/105007

      X J He, X Gu, W T Li, H J Jiang, F L Li, Z H Wang. An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer[J]. J. Semicond., 2017, 38(10): 105007. doi: 10.1088/1674-4926/38/10/105007.
      Export: BibTex EndNote

      An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer

      doi: 10.1088/1674-4926/38/10/105007
      More Information
      • Corresponding author: Fule Li, Email: lifule@mail.tsinghua.edu.cn
      • Received Date: 2017-01-17
      • Revised Date: 2017-04-07
      • Published Date: 2017-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return