SEMICONDUCTOR INTEGRATED CIRCUITS

A novel interface circuit for triboelectric nanogenerator

Wuqi Yu1, 2, , Jiahao Ma2, Zhaohua Zhang2 and Tianling Ren3

+ Author Affiliations

 Corresponding author: Wuqi Yu, Email: valoraction@163.com

PDF

Abstract: For most triboelectric nanogenerators (TENGs), the electric output should be a short AC pulse, which has the common characteristic of high voltage but low current. Thus it is necessary to convert the AC to DC and store the electric energy before driving conventional electronics. The traditional AC voltage regulator circuit which commonly consists of transformer, rectifier bridge, filter capacitor, and voltage regulator diode is not suitable for the TENG because the transformer’s consumption of power is appreciable if the TENG output is small. This article describes an innovative design of an interface circuit for a triboelectric nanogenerator that is transformerless and easily integrated. The circuit consists of large-capacity electrolytic capacitors that can realize to intermittently charge lithium-ion batteries and the control section contains the charging chip, the rectifying circuit, a comparator chip and switch chip. More important, the whole interface circuit is completely self-powered and self-controlled. Meanwhile, the chip is widely used in the circuit, so it is convenient to integrate into PCB. In short, this work presents a novel interface circuit for TENGs and makes progress to the practical application and industrialization of nanogenerators.

Key words: energy harvestingtriboelectric nanogenerator (TENG)self-poweredlithium-ion battery



[1]
Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for microsystems applications. Meas Sci Technol, 2006, 17: R175 doi: 10.1088/0957-0233/17/12/R01
[2]
Roundy S, Steingart D, Frechette L, et al. Power sources for wireless sensor networks. Lect Notes Comput Sci, 2004, 2920: 1 doi: 10.1007/b94854
[3]
Lee M, Bae J, Lee J, et al. Self-powered environmental sensor system driven by nanogenerators. Energy Environ Sci, 2011, 4: 3359 doi: 10.1039/c1ee01558c
[4]
Li Z, Zhu G, Yang R S, et al. Muscle-driven in vivo nanogenerator. Adv Mater, 2010, 22: 2534 doi: 10.1002/adma.v22:23
[5]
Zhu G, Wang A C, Liu Y, et al. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett, 2012, 12: 3086 doi: 10.1021/nl300972f
[6]
Paradiso J A, Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput, 2005, 4: 18 doi: Bookmark:http://doi.ieeecomputersociety.org/10.1109/MPRV.2005.9
[7]
Zhu G, Yang R S, Wang S. et al. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett, 2010, 10: 3151 doi: 10.1021/nl101973h
[8]
Wu W Z, Wei Y G, Wang Z L. Strain-gated piezotronic logic nanodevices. Adv Mater, 2010, 22(42): 4711 doi: 10.1002/adma.v22:42
[9]
Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312: 242 doi: 10.1126/science.1124005
[10]
Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008, 451: 809 doi: 10.1038/nature06601
[11]
Chang C, Tran V H, Wang J B, et al. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett, 2010, 10: 726 doi: 10.1021/nl9040719
[12]
Chen X, Xu S Y, Yao N, et al. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett, 2010, 10: 2133 doi: 10.1021/nl100812k
[13]
Hu Y F, Xu C, Zhang Y, et al. A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Adv Mater, 2011, 23(35): 4068 doi: 10.1002/adma.v23.35
[14]
Gu L, Cui N Y, Cheng L, et al. Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett, 2013, 13(1): 91 doi: 10.1021/nl303539c
[15]
Park K I, Jeong C K, Ryu J. Flexible and large-area nanocomposite generator based on lead zirconate titanate particles and carbon nanotubes. Adv Energy Mater, 2013, 3: 1539 doi: 10.1002/aenm.v3.12
[16]
Williams C B, Shearwood C, Harradine M A, et al. Development of an electromagnetic micro-generator. IEEE Proc-Circuits Devices Syst, 2002, 148(6): 337 doi: 10.1049/ip-cds:20010525
[17]
Beeby S P, Torah R N, Tudor M J, et al. A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng, 2007, 17(7): 1257 doi: 10.1088/0960-1317/17/7/007
[18]
Mitcheson P D, Miao P, Stark B H, et al. MEMS electrostatic micropower generator low frequency operation. Sens Actuators A, 2004, 115: 523 doi: 10.1016/j.sna.2004.04.026
[19]
Naruse Y, Matsubara N, Mabuchi K, et al. Electrostatic micro power generation from low-frequency vibration such as human motion. J Micromechan Microeng, 2009, 19: 094002 doi: 10.1088/0960-1317/19/9/094002
[20]
Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator. Nano Energy, 2012, 1: 328 doi: 10.1016/j.nanoen.2012.01.004
[21]
Fan F R, Lin L, Zhu G, et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett, 2012, 12: 3109 doi: 10.1021/nl300988z
[22]
Zhu G, Pan C F, Guo W X, et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett, 2012, 12: 4960 doi: 10.1021/nl302560k
[23]
Zhang X S, Han M D, Wang R X, et al. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett, 2013, 13: 1168 doi: 10.1021/nl3045684
[24]
Yang Y, Lin L, Zhang Y, et al. Self-powered magnetic sensor based on a triboelectric nanogenerator. ACS Nano, 2012, 6(11): 10378 doi: 10.1021/nn304374m
[25]
Xue X Y, Deng P, He B, et al. Flexible self-charging power cell for one-step energy conversion and storage. Adv Energy Mater, 2014, 4(5): 332 doi: 10.1002/aenm.201301329
[26]
Wang Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 2013, 7(11): 9533 doi: 10.1021/nn404614z
[27]
Wang S H, Lin L, Wang Z L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett, 2012, 12(12): 6339 doi: 10.1021/nl303573d
[28]
Zhu G, Lin Z H, Jing Q S, et al. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett, 2013, 13(2): 847 doi: 10.1021/nl4001053
[29]
Wang S H, Lin L, Xie Y N, et al. Sliding-triboelectric nanogenerator based on in-plane charge-separation mechanism. Nano Lett, 2013, 13: 2226 doi: 10.1021/nl400738p
[30]
Zhu G, Chen J, Liu Y, et al. Linear-grating triboelectric generator based on sliding electrification. Nano Lett, 2013, 13: 2282 doi: 10.1021/nl4008985
[31]
Zhang C, Zhou T, Tang W, et al. Rotating-disk-based direct-current triboelectric nanogenerator. Adv Energy Mater, 2014, 4: 1301798 doi: 10.1002/aenm.201301798
[32]
Zhu G, Chen J, Zhang T J, et al. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat Commun, 2014, 5: 3426 doi: 10.1038/ncomms4426
[33]
Song Y, Cheng X L, Chen H T, et al. Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator. J Mater Chem A, 2016, 4: 14298 doi: 10.1039/C6TA05816G
Fig. 1.  (Color online) The schematic circuit block of the complete power management system.

Fig. 2.  (Color online) (a) The photograph of the segmentally structured disk TENG. (b) The lateral view of the schematic structure of the segmentally structured disk TENG. (c) The sectional drawing of the schematic structure of the segmentally structured disk TENG.

Fig. 3.  (Color online) (a) The basic mechanism of electronic current generation process in a complete cycle. (b) The open-circuit voltage of the segmentally structured disk TENG. (c) The short-circuit current of the segmentally structured disk TENG.

Fig. 4.  (Color online) The complete interface circuit schematic for triboelectric nanogenerator.

Fig. 5.  (Color online) (a) A photograph of the real experimental circuit. (b) The contrastive charging curves of the electrolytic capacitor with and without charging circuit. (c) The red indicator light of the charging chip CN3063 was lit up.

[1]
Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for microsystems applications. Meas Sci Technol, 2006, 17: R175 doi: 10.1088/0957-0233/17/12/R01
[2]
Roundy S, Steingart D, Frechette L, et al. Power sources for wireless sensor networks. Lect Notes Comput Sci, 2004, 2920: 1 doi: 10.1007/b94854
[3]
Lee M, Bae J, Lee J, et al. Self-powered environmental sensor system driven by nanogenerators. Energy Environ Sci, 2011, 4: 3359 doi: 10.1039/c1ee01558c
[4]
Li Z, Zhu G, Yang R S, et al. Muscle-driven in vivo nanogenerator. Adv Mater, 2010, 22: 2534 doi: 10.1002/adma.v22:23
[5]
Zhu G, Wang A C, Liu Y, et al. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett, 2012, 12: 3086 doi: 10.1021/nl300972f
[6]
Paradiso J A, Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput, 2005, 4: 18 doi: Bookmark:http://doi.ieeecomputersociety.org/10.1109/MPRV.2005.9
[7]
Zhu G, Yang R S, Wang S. et al. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett, 2010, 10: 3151 doi: 10.1021/nl101973h
[8]
Wu W Z, Wei Y G, Wang Z L. Strain-gated piezotronic logic nanodevices. Adv Mater, 2010, 22(42): 4711 doi: 10.1002/adma.v22:42
[9]
Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312: 242 doi: 10.1126/science.1124005
[10]
Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008, 451: 809 doi: 10.1038/nature06601
[11]
Chang C, Tran V H, Wang J B, et al. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett, 2010, 10: 726 doi: 10.1021/nl9040719
[12]
Chen X, Xu S Y, Yao N, et al. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett, 2010, 10: 2133 doi: 10.1021/nl100812k
[13]
Hu Y F, Xu C, Zhang Y, et al. A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Adv Mater, 2011, 23(35): 4068 doi: 10.1002/adma.v23.35
[14]
Gu L, Cui N Y, Cheng L, et al. Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett, 2013, 13(1): 91 doi: 10.1021/nl303539c
[15]
Park K I, Jeong C K, Ryu J. Flexible and large-area nanocomposite generator based on lead zirconate titanate particles and carbon nanotubes. Adv Energy Mater, 2013, 3: 1539 doi: 10.1002/aenm.v3.12
[16]
Williams C B, Shearwood C, Harradine M A, et al. Development of an electromagnetic micro-generator. IEEE Proc-Circuits Devices Syst, 2002, 148(6): 337 doi: 10.1049/ip-cds:20010525
[17]
Beeby S P, Torah R N, Tudor M J, et al. A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng, 2007, 17(7): 1257 doi: 10.1088/0960-1317/17/7/007
[18]
Mitcheson P D, Miao P, Stark B H, et al. MEMS electrostatic micropower generator low frequency operation. Sens Actuators A, 2004, 115: 523 doi: 10.1016/j.sna.2004.04.026
[19]
Naruse Y, Matsubara N, Mabuchi K, et al. Electrostatic micro power generation from low-frequency vibration such as human motion. J Micromechan Microeng, 2009, 19: 094002 doi: 10.1088/0960-1317/19/9/094002
[20]
Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator. Nano Energy, 2012, 1: 328 doi: 10.1016/j.nanoen.2012.01.004
[21]
Fan F R, Lin L, Zhu G, et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett, 2012, 12: 3109 doi: 10.1021/nl300988z
[22]
Zhu G, Pan C F, Guo W X, et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett, 2012, 12: 4960 doi: 10.1021/nl302560k
[23]
Zhang X S, Han M D, Wang R X, et al. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett, 2013, 13: 1168 doi: 10.1021/nl3045684
[24]
Yang Y, Lin L, Zhang Y, et al. Self-powered magnetic sensor based on a triboelectric nanogenerator. ACS Nano, 2012, 6(11): 10378 doi: 10.1021/nn304374m
[25]
Xue X Y, Deng P, He B, et al. Flexible self-charging power cell for one-step energy conversion and storage. Adv Energy Mater, 2014, 4(5): 332 doi: 10.1002/aenm.201301329
[26]
Wang Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 2013, 7(11): 9533 doi: 10.1021/nn404614z
[27]
Wang S H, Lin L, Wang Z L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett, 2012, 12(12): 6339 doi: 10.1021/nl303573d
[28]
Zhu G, Lin Z H, Jing Q S, et al. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett, 2013, 13(2): 847 doi: 10.1021/nl4001053
[29]
Wang S H, Lin L, Xie Y N, et al. Sliding-triboelectric nanogenerator based on in-plane charge-separation mechanism. Nano Lett, 2013, 13: 2226 doi: 10.1021/nl400738p
[30]
Zhu G, Chen J, Liu Y, et al. Linear-grating triboelectric generator based on sliding electrification. Nano Lett, 2013, 13: 2282 doi: 10.1021/nl4008985
[31]
Zhang C, Zhou T, Tang W, et al. Rotating-disk-based direct-current triboelectric nanogenerator. Adv Energy Mater, 2014, 4: 1301798 doi: 10.1002/aenm.201301798
[32]
Zhu G, Chen J, Zhang T J, et al. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat Commun, 2014, 5: 3426 doi: 10.1038/ncomms4426
[33]
Song Y, Cheng X L, Chen H T, et al. Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator. J Mater Chem A, 2016, 4: 14298 doi: 10.1039/C6TA05816G
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3717 Times PDF downloads: 73 Times Cited by: 0 Times

    History

    Received: 22 February 2017 Revised: 28 May 2017 Online: Accepted Manuscript: 13 November 2017Published: 01 October 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wuqi Yu, Jiahao Ma, Zhaohua Zhang, Tianling Ren. A novel interface circuit for triboelectric nanogenerator[J]. Journal of Semiconductors, 2017, 38(10): 105009. doi: 10.1088/1674-4926/38/10/105009 W Q Yu, J H Ma, Z H Zhang, T L Ren. A novel interface circuit for triboelectric nanogenerator[J]. J. Semicond., 2017, 38(10): 105009. doi: 10.1088/1674-4926/38/10/105009.Export: BibTex EndNote
      Citation:
      Wuqi Yu, Jiahao Ma, Zhaohua Zhang, Tianling Ren. A novel interface circuit for triboelectric nanogenerator[J]. Journal of Semiconductors, 2017, 38(10): 105009. doi: 10.1088/1674-4926/38/10/105009

      W Q Yu, J H Ma, Z H Zhang, T L Ren. A novel interface circuit for triboelectric nanogenerator[J]. J. Semicond., 2017, 38(10): 105009. doi: 10.1088/1674-4926/38/10/105009.
      Export: BibTex EndNote

      A novel interface circuit for triboelectric nanogenerator

      doi: 10.1088/1674-4926/38/10/105009
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 61434001) and the ‘Thousands Talents’ Program for Pioneer Researchers and Its Innovation Team, China.

      More Information
      • Corresponding author: Email: valoraction@163.com
      • Received Date: 2017-02-22
      • Revised Date: 2017-05-28
      • Published Date: 2017-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return