SEMICONDUCTOR MATERIALS

The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers

Shuo Zhang1, 2, Yun Zhang1, 2, 3, 4, , Xiang Chen1, 2, Yanan Guo1, 2, 3, 4, Jianchang Yan1, 2, 3, 4, Junxi Wang1, 2, 3, 4 and Jinmin Li1, 2, 3, 4

+ Author Affiliations

 Corresponding author: Yun Zhang, E-mail: yzhang34@semi.ac.cn

PDF

Abstract: We investigate the effect of AlN/AlGaN superlattices (SLs) on crystal and optical properties of AlGaN epitaxial layers. The result indicates that the crystal quality of AlGaN layers is consistent within a wide range of SLs thicknesses, while the optical properties are opposite. With SLs thickness decreasing from 20/44 to 17/36 and 15/29 nm, the full-width at half maximum of X-ray rocking curves for (0002)- and ( $10\bar 12$ )-plane of n-AlGaN layers grown on SLs are consistent of around 250 arcsec and 700 arcsec, respectively. Meanwhile, the center of the low optical transmittance band decreases from 326 to 279 nm and less than 266 nm as the SLs thickness decreases. 280 nm deep ultraviolet light-emitting diodes (DUV-LEDs) structures are further regrown on the n-AlGaN layers. The electroluminescent intensities of samples are 30% higher than that of the sample whose low optical transmittance band appears around 279 nm. Optical simulations reveal that the SLs acts as distributed Bragg reflectors, thus less photons of the corresponding wavelength escape from the sapphire backside.

Key words: AlNAlGaNsuperlatticescrystal qualitytransmittancelight-emitting diodes



[1]
Omnes F, Marenco N, Beaumont B, et al. Metalorganic vapor-phase epitaxy-grown AlGaN materials for visible-blind ultraviolet photodetector applications. J Appl Phys, 1999, 86: 5286 doi: 10.1063/1.371512
[2]
Li J M, Liu Z, Liu Z Q, et al. Advances and prospects in nitrides based light-emitting-diodes. J Semicond, 2016, 36: 061001
[3]
Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Appl Phys Lett, 2008, 93: 3
[4]
Kneissl T K M, Chua C. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol, 2011, 26: 014036 doi: 10.1088/0268-1242/26/1/014036
[5]
Hideki H, Noritoshi M, Sachie F, et al. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn J Appl Phys, 2014, 53: 100209 doi: 10.7567/JJAP.53.100209
[6]
Dong P, Yan J, Zhang Y, et al. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J Cryst Growth, 2014, 395: 9 doi: 10.1016/j.jcrysgro.2014.02.039
[7]
Khan M A, Kuznia J N, Skogman R A, et al. Low-pressure metalorganic chemical vapor-deposition of AlN over sapphire substrates. Appl Phys Lett, 1992, 61: 2539 doi: 10.1063/1.108144
[8]
Zhang J P, Wang H M, Gaevski M E, et al. Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl Phys Lett, 2002, 80: 3542 doi: 10.1063/1.1477620
[9]
Sun W H, Zhang J P, Yang J W, et al. Fine structure of AlN/AlGaN superlattice grown by pulsed atomic-layer epitaxy for dislocation filtering. Appl Phys Lett, 2005, 87: 3
[10]
Wang H M, Zhang J P, Chen C Q, et al. AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl Phys Lett, 2002, 81: 604 doi: 10.1063/1.1494858
[11]
Peng M Z, Guo L W, Zhang J, et al. Reducing dislocations of Al-rich AlGaN by combining AlN buffer and AlN/Al0.8Ga0.2N superlattices. J Cryst Growth, 2008, 310: 1088 doi: 10.1016/j.jcrysgro.2008.01.006
[12]
Tsukihara M, Sumiyoshi K, Okimoto T, et al. Effect of middle temperature intermediate layer on crystal quality of AlGaN grown on sapphire substrates by metalorganic chemical vapor deposition. J Cryst Growth, 2007, 300: 190 doi: 10.1016/j.jcrysgro.2006.11.011
[13]
Liu H, Zhao H, Hou J, et al. Enhanced light extraction in AlInGaN UV light-emitting diodes by an embedded AlN/AlGaN distributed bragg reflector. Chin Phys Lett, 2012, 29: 4
[14]
Yang Y, Lin Y, Xiang P, et al. Vertical-Conducting InGaN/GaN multiple quantum wells LEDs with AlN/GaN distributed bragg reflectors on Si(111) substrate. Appl Phys Express, 2014, 7: 4
[15]
Dion J, Fareed Q, Zhang B, et al. Structural characterization of highly conducting AlGaN (x > 50%) for deep-ultraviolet light-emitting diode. J Electron Mater, 2011, 40: 377 doi: 10.1007/s11664-010-1493-9
[16]
Coldern S W C L A, Mashanovitch M L. Diode lasers and photonic integrated circuits. John Wiley & Sons, 2012: 218
[17]
Phillios J C. Bonds and bands in semiconductors in tenth international conference on solid state lighting. Ferguson I, et al. ed. New York: Academic, 1973
[18]
Peng T, Piprek J. Refractive index of AlGaInN alloys. Electron Lett, 1996, 32: 2285 doi: 10.1049/el:19961546
[19]
Brunner D, Angerer H, Bustarret E, et al. Optical constants of epitaxial AlGaN films and their temperature dependence. J Appl Phys, 1997, 82: 5090 doi: 10.1063/1.366309
[20]
iang L F, Shen W Z, Ogawa H, et al. Temperature dependence of the optical properties in hexagonal AlN. J Appl Phys, 2003, 94: 5704 doi: 10.1063/1.1616988
Fig. 1.  (Color online) XRD rocking curves of (a) (0002) of samples and (b) their corresponding ( $10\overline 12$ ) rocking curves.

Fig. 2.  (Color online) AFM images of n-Al0.56Ga0.44N for (a) sample A, (b) sample B, and (c) sample C over 2 × 2 μm2 scan. RMS roughness value is shown on the image.

Fig. 3.  (Color online) Cross-section TEM image of sample C with 20-period AlN/AlGaN SLs.

Fig. 4.  (Color online) Experimental transmission spectra for sample A, B, and C.

Fig. 5.  (Color online) EL value of samples under the injection current of 20 mA.

Fig. 6.  (Color online) Comparison between simulated and experimental transmission spectra for sample B.

[1]
Omnes F, Marenco N, Beaumont B, et al. Metalorganic vapor-phase epitaxy-grown AlGaN materials for visible-blind ultraviolet photodetector applications. J Appl Phys, 1999, 86: 5286 doi: 10.1063/1.371512
[2]
Li J M, Liu Z, Liu Z Q, et al. Advances and prospects in nitrides based light-emitting-diodes. J Semicond, 2016, 36: 061001
[3]
Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Appl Phys Lett, 2008, 93: 3
[4]
Kneissl T K M, Chua C. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol, 2011, 26: 014036 doi: 10.1088/0268-1242/26/1/014036
[5]
Hideki H, Noritoshi M, Sachie F, et al. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn J Appl Phys, 2014, 53: 100209 doi: 10.7567/JJAP.53.100209
[6]
Dong P, Yan J, Zhang Y, et al. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J Cryst Growth, 2014, 395: 9 doi: 10.1016/j.jcrysgro.2014.02.039
[7]
Khan M A, Kuznia J N, Skogman R A, et al. Low-pressure metalorganic chemical vapor-deposition of AlN over sapphire substrates. Appl Phys Lett, 1992, 61: 2539 doi: 10.1063/1.108144
[8]
Zhang J P, Wang H M, Gaevski M E, et al. Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl Phys Lett, 2002, 80: 3542 doi: 10.1063/1.1477620
[9]
Sun W H, Zhang J P, Yang J W, et al. Fine structure of AlN/AlGaN superlattice grown by pulsed atomic-layer epitaxy for dislocation filtering. Appl Phys Lett, 2005, 87: 3
[10]
Wang H M, Zhang J P, Chen C Q, et al. AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl Phys Lett, 2002, 81: 604 doi: 10.1063/1.1494858
[11]
Peng M Z, Guo L W, Zhang J, et al. Reducing dislocations of Al-rich AlGaN by combining AlN buffer and AlN/Al0.8Ga0.2N superlattices. J Cryst Growth, 2008, 310: 1088 doi: 10.1016/j.jcrysgro.2008.01.006
[12]
Tsukihara M, Sumiyoshi K, Okimoto T, et al. Effect of middle temperature intermediate layer on crystal quality of AlGaN grown on sapphire substrates by metalorganic chemical vapor deposition. J Cryst Growth, 2007, 300: 190 doi: 10.1016/j.jcrysgro.2006.11.011
[13]
Liu H, Zhao H, Hou J, et al. Enhanced light extraction in AlInGaN UV light-emitting diodes by an embedded AlN/AlGaN distributed bragg reflector. Chin Phys Lett, 2012, 29: 4
[14]
Yang Y, Lin Y, Xiang P, et al. Vertical-Conducting InGaN/GaN multiple quantum wells LEDs with AlN/GaN distributed bragg reflectors on Si(111) substrate. Appl Phys Express, 2014, 7: 4
[15]
Dion J, Fareed Q, Zhang B, et al. Structural characterization of highly conducting AlGaN (x > 50%) for deep-ultraviolet light-emitting diode. J Electron Mater, 2011, 40: 377 doi: 10.1007/s11664-010-1493-9
[16]
Coldern S W C L A, Mashanovitch M L. Diode lasers and photonic integrated circuits. John Wiley & Sons, 2012: 218
[17]
Phillios J C. Bonds and bands in semiconductors in tenth international conference on solid state lighting. Ferguson I, et al. ed. New York: Academic, 1973
[18]
Peng T, Piprek J. Refractive index of AlGaInN alloys. Electron Lett, 1996, 32: 2285 doi: 10.1049/el:19961546
[19]
Brunner D, Angerer H, Bustarret E, et al. Optical constants of epitaxial AlGaN films and their temperature dependence. J Appl Phys, 1997, 82: 5090 doi: 10.1063/1.366309
[20]
iang L F, Shen W Z, Ogawa H, et al. Temperature dependence of the optical properties in hexagonal AlN. J Appl Phys, 2003, 94: 5704 doi: 10.1063/1.1616988
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3820 Times PDF downloads: 72 Times Cited by: 0 Times

    History

    Received: 17 April 2017 Revised: 12 May 2017 Online: Uncorrected proof: 30 October 2017Accepted Manuscript: 13 November 2017Published: 01 November 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shuo Zhang, Yun Zhang, Xiang Chen, Yanan Guo, Jianchang Yan, Junxi Wang, Jinmin Li. The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers[J]. Journal of Semiconductors, 2017, 38(11): 113002. doi: 10.1088/1674-4926/38/11/113002 S Zhang, Y Zhang, X Chen, Y N Guo, J C Yan, J X Wang, J M Li. The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers[J]. J. Semicond., 2017, 38(11): 113002. doi: 10.1088/1674-4926/38/11/113002.Export: BibTex EndNote
      Citation:
      Shuo Zhang, Yun Zhang, Xiang Chen, Yanan Guo, Jianchang Yan, Junxi Wang, Jinmin Li. The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers[J]. Journal of Semiconductors, 2017, 38(11): 113002. doi: 10.1088/1674-4926/38/11/113002

      S Zhang, Y Zhang, X Chen, Y N Guo, J C Yan, J X Wang, J M Li. The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers[J]. J. Semicond., 2017, 38(11): 113002. doi: 10.1088/1674-4926/38/11/113002.
      Export: BibTex EndNote

      The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers

      doi: 10.1088/1674-4926/38/11/113002
      Funds:

      Project supported in part by the National High Technology Program of China (No. 2014AA032608), the National Key R&D Program of China (Nos. 2016YFB0400800, 2016YFB0400083, 2016YFB0400082), in part by the National Natural Sciences Foundation of China (Nos. 6136047, 61206090, 61527814, 61674147, 61204053), the Beijing Municipal Science and Technology Project (No. D161100002516002), the National 1000 Young Talents Program, and the Youth Innovation Promotion Association, CAS.

      More Information
      • Corresponding author: E-mail: yzhang34@semi.ac.cn
      • Received Date: 2017-04-17
      • Revised Date: 2017-05-12
      • Published Date: 2017-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return