SEMICONDUCTOR DEVICES

High gain-bandwidth product Ge/Si tunneling avalanche photodiode with high-frequency tunneling effect

Wenzhou Wu1, 2, Buwen Cheng1, 2, , Jun Zheng1, 2, Zhi Liu1, 2, Chuanbo Li1, 2, Yuhua Zuo1, 2 and Chunlai Xue1, 2

+ Author Affiliations

 Corresponding author: Buwen Cheng. Email: cbw@semi.ac.cn

PDF

Abstract: This study presents a theoretical investigation of a novel Ge/Si tunneling avalanche photodiode (TAPD) with an ultra-thin barrier layer between the absorption and p+ contact layer. A high-frequency tunneling effect is introduced into the structure of the barrier layer to increase the high-frequency response when frequency is larger than 0.1 GHz, and the −3 dB bandwidth of the device increases evidently. The results demonstrate that the avalanche gain and −3 dB bandwidth of the TAPD can be influenced by the thickness and bandgap of the barrier layer. When the barrier thickness is 2 nm and the bandgap is 4.5 eV, the avalanche gain loss is negligible and the gain-bandwidth product of the TAPD is 286 GHz, which is 18% higher than that of an avalanche photodiode without a barrier layer. The total noise in the TAPD was an order of magnitude smaller than that in APD without barrier layer.

Key words: avalanche photodiodehigh-frequency tunneling effecthigh gain-bandwidth productfiber optic communication



[1]
Xu J, Chen X S, Wang W J, et al. Extracting dark current components and characteristics parameters for InGaAs/InP avalanche photodiodes. Infrared Phys Technol, 2016, 76: 468 doi: 10.1016/j.infrared.2016.04.004
[2]
Dong Y, Wang W, Lee S Y. Avalanche photodiode featuring germanium–tin multiple quantum wells on silicon: extending photodetection to wavelengths of 2 μm and beyond. 2015 IEEE International Electron Devices Meeting (IEDM), 2015: 787
[3]
Zhu S Y, Ang K W, Rustagi S C, et al. Waveguided Ge/Si avalanche photodiode with separate vertical SEG-Ge absorption, lateral Si charge, and multiplication configuration. IEEE Electron Device Lett, 2009, 30(9): 934 doi: 10.1109/LED.2009.2025782
[4]
Huang Z H, Liang D, Santori C, et al. Low-voltage Si–Ge avalanche photodiode. 2015 IEEE 12th International Conference on Group IV Photonics (GFP), 2015: 41
[5]
Liu H D, Pan H P, Hu C, et al. Avalanche photodiode punch-through gain determination through excess. J Appl Phys, 2009, 106: 064507 doi: 10.1063/1.3226659
[6]
Kang Y M, Liu H D, Morse M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat Photonics, 2009, 3(1): 59 doi: 10.1038/nphoton.2008.247
[7]
Emmons R B. Avalanche-photodiode frequency response. J Appl Phys, 1967 38(9): 3705 doi: 10.1063/1.1710199
[8]
Kaneda T, Takanashi H, Matsumoto H, et al. Avalanche buildup time of silicon reach-through photodiodes. J Appl Phys, 1976, 47(11):4960 doi: 10.1063/1.322502
[9]
Sze S M, Gibbons G. Avalanche Breakdown Voltages of Abrupt and Linearly Graded p–n Junctions in Ge, Si, GaAs, AND GaP. Appl Phys Lett, 1966, 8(5): 111 doi: 10.1063/1.1754511
[10]
Abou F M E, Hamada I M. Impact ionization coefficients of electron and hole at very high fields in semiconductors. Modern Trends in Physics Research, 2005 American Institute of Physics (AIP) Conference Proceedings, 2004: 110
[11]
Duan Ning, Liow T Y, Lim A E J, et al. 310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection. Opt Express, 2012, 20(10): 11031 doi: 10.1364/OE.20.011031
[12]
Ke S Y, Lin S M, Li X, et al. Voltage sharing effect and interface state calculation of a wafer-bonding Ge/Si avalanche photodiode with an interfacial GeO2 insulator layer. Opt Express, 2016, 24(3): 1943 doi: 10.1364/OE.24.001943
[13]
Byun K Y, Ferain I, Fleming P, et al. Low temperature germanium to silicon direct wafer bonding using free radical exposure. Appl Phys Lett, 2010, 96(10): 102110 doi: 10.1063/1.3360201
[14]
Ganichev S D, Ziemann E, Gleim T, et al. Carrier Tunneling in High-Frequency Electric Fields. Phys Rev Lett, 1998, 80(11): 2409 doi: 10.1103/PhysRevLett.80.2409
[15]
Kagawa T, Kawamura Y, Asai H, et al. InGaAs/InAlAs superlattice avalanche photodiode with a separated photoabsorption layer. Appl Phys Lett, 1990, 57: 1895 doi: 10.1063/1.104004
[16]
Hawkins A R, Wu W S, Abraham P, et al. High gain-bandwidth-product silicon heterointerface photodetector. Appl Phys Lett, 1997, 70: 303 doi: 10.1063/1.118399
[17]
Costina I, Franchy R. Band gap of amorphous and well-ordered Al2O3 on Ni3Al(100). Appl Phys Lett, 2001, 78: 4139 doi: 10.1063/1.1380403
[18]
Yokoyama M, Kim S H, Zhang R, et al. CMOS integration of InGaAs nMOSFETs and Ge pMOSFETs with self-align Ni-based metal S/D using direct wafer bonding. 2011 Symposium on VLSI Technology, 2011: 60
[19]
Slonczewski J C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys Rev B, 1989, 39: 6995 doi: 10.1103/PhysRevB.39.6995
[20]
Selberherr S. Analysis and simulation of semiconductor devices. New York: Springer-Verlag, 1984
[21]
Virginia Semiconductor. General properties of Si, Ge, SiGe, SiO2 and Si3N4. www.virginiasemi.com/pdf/generalpropertiesSi62002.pdf, 2006
[22]
Li Q L, Xie Q, Jiang Y L, et al. Annealing induced hysteresis suppression for TiN/HfO2/GeON/p-Ge capacitor. Semicond Sci Technol, 2011, 26(12): 125003 doi: 10.1088/0268-1242/26/12/125003
[23]
Kim H U, Rhee S W. Electrical properties of bulk silicon dioxide and SiO2/Si interface formed by tetraethylorthosilicate-ozone chemical vapor deposition. J Electrochem Soc, 1999, 147(4): 147376
[24]
Price P J, Radcliffe J M. Esaki tunneling. IBM J Res Dev, 1959: 364
[25]
Bowers H C. Space-charge-induced negative resistance in avalanche diodes. IEEE Trans Electron Devices, 1968, 15(6): 343 doi: 10.1109/T-ED.1968.16189
Fig. 1.  (Color online) Schematic of the Ge/Si tunneling avalanche photodiode (TAPD).

Fig. 2.  (Color online) IV curves of APDs with barrier layer thickness Tb changing from 0 to 3 nm under dark and −22.2 dBm light power.

Fig. 3.  (Color online) Gain distribution of APDs with barrier layer thickness Tb varied from 0 to 3 nm. The inset is the peak gain of APDs with different Tb.

Fig. 4.  (Color online) Electric field distribution at −24.7 V of APDs with Tb changing from 0 to 3 nm. The upper and lower inset is the local electric field distribution in the barrier layer and Ge absorption region, respectively.

Fig. 5.  (Color online) Hole tunneling rate at different working frequencies in the TAPD with Tb = 2 nm at −25 V. The inset is the local enlarged figure of the tunneling rate at the barrier layer.

Fig. 6.  (Color online) Normalized frequency response of the TAPD with Tb = 2 nm, under −22.2 dBm light power at various reverse biases. The inset shows the normalized frequency response TAPD with changing Tb.

Fig. 7.  (Color online) GBP of TAPD with different Tb at bias from −23.5 to −25.5 V under −22.2 dBm light.

Fig. 8.  (Color online) GBP of TAPD with different bandgap energies in the barrier layer at biases from −23.5 to −25.5 V under −22.2 dBm light.

Fig. 9.  (Color online) High-frequency noise of APD with Tb = 2 and 0 nm at peak gain voltage.

[1]
Xu J, Chen X S, Wang W J, et al. Extracting dark current components and characteristics parameters for InGaAs/InP avalanche photodiodes. Infrared Phys Technol, 2016, 76: 468 doi: 10.1016/j.infrared.2016.04.004
[2]
Dong Y, Wang W, Lee S Y. Avalanche photodiode featuring germanium–tin multiple quantum wells on silicon: extending photodetection to wavelengths of 2 μm and beyond. 2015 IEEE International Electron Devices Meeting (IEDM), 2015: 787
[3]
Zhu S Y, Ang K W, Rustagi S C, et al. Waveguided Ge/Si avalanche photodiode with separate vertical SEG-Ge absorption, lateral Si charge, and multiplication configuration. IEEE Electron Device Lett, 2009, 30(9): 934 doi: 10.1109/LED.2009.2025782
[4]
Huang Z H, Liang D, Santori C, et al. Low-voltage Si–Ge avalanche photodiode. 2015 IEEE 12th International Conference on Group IV Photonics (GFP), 2015: 41
[5]
Liu H D, Pan H P, Hu C, et al. Avalanche photodiode punch-through gain determination through excess. J Appl Phys, 2009, 106: 064507 doi: 10.1063/1.3226659
[6]
Kang Y M, Liu H D, Morse M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat Photonics, 2009, 3(1): 59 doi: 10.1038/nphoton.2008.247
[7]
Emmons R B. Avalanche-photodiode frequency response. J Appl Phys, 1967 38(9): 3705 doi: 10.1063/1.1710199
[8]
Kaneda T, Takanashi H, Matsumoto H, et al. Avalanche buildup time of silicon reach-through photodiodes. J Appl Phys, 1976, 47(11):4960 doi: 10.1063/1.322502
[9]
Sze S M, Gibbons G. Avalanche Breakdown Voltages of Abrupt and Linearly Graded p–n Junctions in Ge, Si, GaAs, AND GaP. Appl Phys Lett, 1966, 8(5): 111 doi: 10.1063/1.1754511
[10]
Abou F M E, Hamada I M. Impact ionization coefficients of electron and hole at very high fields in semiconductors. Modern Trends in Physics Research, 2005 American Institute of Physics (AIP) Conference Proceedings, 2004: 110
[11]
Duan Ning, Liow T Y, Lim A E J, et al. 310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection. Opt Express, 2012, 20(10): 11031 doi: 10.1364/OE.20.011031
[12]
Ke S Y, Lin S M, Li X, et al. Voltage sharing effect and interface state calculation of a wafer-bonding Ge/Si avalanche photodiode with an interfacial GeO2 insulator layer. Opt Express, 2016, 24(3): 1943 doi: 10.1364/OE.24.001943
[13]
Byun K Y, Ferain I, Fleming P, et al. Low temperature germanium to silicon direct wafer bonding using free radical exposure. Appl Phys Lett, 2010, 96(10): 102110 doi: 10.1063/1.3360201
[14]
Ganichev S D, Ziemann E, Gleim T, et al. Carrier Tunneling in High-Frequency Electric Fields. Phys Rev Lett, 1998, 80(11): 2409 doi: 10.1103/PhysRevLett.80.2409
[15]
Kagawa T, Kawamura Y, Asai H, et al. InGaAs/InAlAs superlattice avalanche photodiode with a separated photoabsorption layer. Appl Phys Lett, 1990, 57: 1895 doi: 10.1063/1.104004
[16]
Hawkins A R, Wu W S, Abraham P, et al. High gain-bandwidth-product silicon heterointerface photodetector. Appl Phys Lett, 1997, 70: 303 doi: 10.1063/1.118399
[17]
Costina I, Franchy R. Band gap of amorphous and well-ordered Al2O3 on Ni3Al(100). Appl Phys Lett, 2001, 78: 4139 doi: 10.1063/1.1380403
[18]
Yokoyama M, Kim S H, Zhang R, et al. CMOS integration of InGaAs nMOSFETs and Ge pMOSFETs with self-align Ni-based metal S/D using direct wafer bonding. 2011 Symposium on VLSI Technology, 2011: 60
[19]
Slonczewski J C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys Rev B, 1989, 39: 6995 doi: 10.1103/PhysRevB.39.6995
[20]
Selberherr S. Analysis and simulation of semiconductor devices. New York: Springer-Verlag, 1984
[21]
Virginia Semiconductor. General properties of Si, Ge, SiGe, SiO2 and Si3N4. www.virginiasemi.com/pdf/generalpropertiesSi62002.pdf, 2006
[22]
Li Q L, Xie Q, Jiang Y L, et al. Annealing induced hysteresis suppression for TiN/HfO2/GeON/p-Ge capacitor. Semicond Sci Technol, 2011, 26(12): 125003 doi: 10.1088/0268-1242/26/12/125003
[23]
Kim H U, Rhee S W. Electrical properties of bulk silicon dioxide and SiO2/Si interface formed by tetraethylorthosilicate-ozone chemical vapor deposition. J Electrochem Soc, 1999, 147(4): 147376
[24]
Price P J, Radcliffe J M. Esaki tunneling. IBM J Res Dev, 1959: 364
[25]
Bowers H C. Space-charge-induced negative resistance in avalanche diodes. IEEE Trans Electron Devices, 1968, 15(6): 343 doi: 10.1109/T-ED.1968.16189
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3330 Times PDF downloads: 48 Times Cited by: 0 Times

    History

    Received: 25 April 2017 Revised: 21 May 2017 Online: Uncorrected proof: 30 October 2017Accepted Manuscript: 13 November 2017Published: 01 November 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wenzhou Wu, Buwen Cheng, Jun Zheng, Zhi Liu, Chuanbo Li, Yuhua Zuo, Chunlai Xue. High gain-bandwidth product Ge/Si tunneling avalanche photodiode with high-frequency tunneling effect[J]. Journal of Semiconductors, 2017, 38(11): 114003. doi: 10.1088/1674-4926/38/11/114003 W Z Wu, B W Cheng, J Zheng, Z Liu, C B Li, Y H Zuo, C L Xue. High gain-bandwidth product Ge/Si tunneling avalanche photodiode with high-frequency tunneling effect[J]. J. Semicond., 2017, 38(11): 114003. doi: 10.1088/1674-4926/38/11/114003.Export: BibTex EndNote
      Citation:
      Wenzhou Wu, Buwen Cheng, Jun Zheng, Zhi Liu, Chuanbo Li, Yuhua Zuo, Chunlai Xue. High gain-bandwidth product Ge/Si tunneling avalanche photodiode with high-frequency tunneling effect[J]. Journal of Semiconductors, 2017, 38(11): 114003. doi: 10.1088/1674-4926/38/11/114003

      W Z Wu, B W Cheng, J Zheng, Z Liu, C B Li, Y H Zuo, C L Xue. High gain-bandwidth product Ge/Si tunneling avalanche photodiode with high-frequency tunneling effect[J]. J. Semicond., 2017, 38(11): 114003. doi: 10.1088/1674-4926/38/11/114003.
      Export: BibTex EndNote

      High gain-bandwidth product Ge/Si tunneling avalanche photodiode with high-frequency tunneling effect

      doi: 10.1088/1674-4926/38/11/114003
      Funds:

      Project supported by in part by the National Natural Science Foundation of China (Nos. 61534005, 61675195), the Beijing Science and Technology Commission (No. Z151100003315019), and the Natural Science Foundation of Beijing Municipality (No. 4162063).

      More Information
      • Corresponding author: Buwen Cheng. Email: cbw@semi.ac.cn
      • Received Date: 2017-04-25
      • Revised Date: 2017-05-21
      • Published Date: 2017-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return