SEMICONDUCTOR DEVICES

1.06 μm high-power InGaAs/GaAsP quantum well lasers

Haili Wang, Li Zhong, Jida Hou, Suping Liu and Xiaoyu Ma

+ Author Affiliations

 Corresponding author: Li Zhong, Email: zhongli@semi.ac.cn

PDF

Abstract: The high power and low internal loss 1.06 μm InGaAs/GaAsP quantum well lasers with asymmetric waveguide structure were designed and fabricated. For a 4000 μm cavity length and 100 μm stripe width device, the maximum output power and conversion efficiency of the device are 7.13 W and 56.4%, respectively. The cavity length dependence of the threshold current density and conversion efficiency have been investigated theoretically and experimentally; the laser diode with 4000 μm cavity length shows better characteristics than that with 3000 and 4500 μm cavity length: the threshold current density is 132.5 A/cm2, the slope efficiency of 1.00 W/A and the junction temperature of 15.62 K were achieved.

Key words: semiconductor laserhigh powerasymmetric waveguidecavity length



[1]
Chung H S, Lee M S, Lee D, et al. Low noise, high efficiency L-band EDFA with 980 nm pumping. Electron Lett, 1999, 35: 1099 doi: 10.1049/el:19990750
[2]
Guo W T, Tan M Q, Jiao J. 980 nm fiber grating external cavity semiconductor lasers with high side mode suppression ratio and high stable frequency. J Semicond, 2014, 35: 84007 doi: 10.1088/1674-4926/35/8/084007
[3]
Dong Z, Wang C L, Jing H Q, et al. High power single mode 980 nm AlGaInAs/AlGaAs quantum well lasers with a very low threshold current. J Semicond, 2013, 34: 114011 doi: 10.1088/1674-4926/34/11/114011
[4]
Bettiati M, Laruelle F, Cargemel V, et al. High brightness single-mode 1060-nm diode lasers for demanding industrial applications. The European Conference on Lasers and Electro-Optics, 2007: CB_19
[5]
Yuda M, Temmyo J, Sasaki T, et al. High-power highly reliable 1.06 μm InGaAs strained-quantum-well laser diodes by low-temperature growth of InGaAs well layers. Electron Lett, 2003, 39(8): 1
[6]
Wan C T, Su Y K, Yu H C, et al. Low transparency current density and low internal loss of 1060-nm InGaAs laser with GaAsP–GaAs superlattices as strain-compensated layer. IEEE Photonics Technol Lett, 2009, 21(19): 1474 doi: 10.1109/LPT.2009.2028654
[7]
Nguyen H K, Coleman S, Visovsky N J, et al. Reliable high-power 1060 nm DBR lasers for second-harmonic generation. Electron Lett, 2007, 43(13): 716 doi: 10.1049/el:20070694
[8]
Mohrdiek S, Troger J, Pliska T, et al. Performance and reliability of pulsed 1060 nm laser modules. Lasers and Applications in Science and Engineering, 2008: 687320
[9]
Miah M J, Kettler T, Posilovic K, et al. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area. Appl Phys Lett, 2014, 105(15): 151105 doi: 10.1063/1.4898010
[10]
Ren Y X, Chen H T, Zhang S Z, et al. 1.06 μm high power CW semiconductor lasers. Nanoelectronic Device & Technology, 2009, 46(4): 209
[11]
Li T, Hao E J, Zhang Y. An asymmetric heterostructure waveguide structure for semiconductor lasers. J Infrared Millim Waves, 2015, 34(5): 613
[12]
Tan S Y, Zhai T, Zhang R K, et al. Graded doping low internal loss 1060-nm InGaAs/AlGaAs quantum well semiconductor lasers. Chin Phys B, 2015, 24(6): 064211 doi: 10.1088/1674-1056/24/6/064211
[13]
Li T, Hao E J, Li Z J, et al. Optimization of waveguide structure for high power 1060 nm diode laser. J Infrared Millim Waves, 2012, 31(3): 226 doi: 10.3724/SP.J.1010.2012.00226
[14]
Zhang Y, Yang R X. An influence of cavity length on single emitter semiconductor laser performance. Semicond Device, 2013, 12: 6
[15]
Li Z H, Li M, Wang L, et al. Effect of cavity length on Jth and ηd of InGaAsP/InGaP/GaAs SQW lasers. Semicondr Optoelectron, 2002, 23: 90
[16]
Pikhtin N A, Slipchenko S O, Sokolova Z N, et al. Internal optical loss in semiconductor lasers. Semiconductors, 2004, 38(3): 360 doi: 10.1134/1.1682615
[17]
Nabiev R F, Vail E C, Chang-Hasnain C J. Temperature dependent efficiency and modulation characteristics of Al-free 980-nm laser diodes. IEEE J Sel Topics Quantum Electron, 1995, 1(2): 234 doi: 10.1109/2944.401202
[18]
Fye D. An optimization procedure for the selection of diode laser facet coatings. IEEE J Quantum Electron, 1981, 17(9): 1950 doi: 10.1109/JQE.1981.1071351
[19]
Koren U, Miller B I, Su Y K, et al. Low internal loss separate confinement heterostructure InGaAs/InGaAsP quantum well laser. Appl Phys Lett, 1987, 51(21): 1744 doi: 10.1063/1.98510
Fig. 1.  (Color online) Schematic diagram of 1.06 μm laser with asymmetric waveguide structure.

Fig. 2.  (Color online) Refractive index and wave intensity distribution of asymmetric waveguide structure.

Fig. 3.  The calculated (a) threshold current density, (b) external differential quantum efficiency, and (c) series resistance versus cavity length for laser diode.

Fig. 4.  Reciprocal external differential quantum efficiency versus cavity length.

Fig. 5.  (Color online) Dependence of I–L characteristics on cavity lengths of 3000, 4000, and 4500 μm.

Fig. 6.  (Color online) (a) Lasing spectrum of the laser at current of 3 A. (b) CW output characteristics of semiconductor laser with a 100 μm stripe width and 4000 μm cavity length at room temperature. Insert: Packaging structure of the device.

Table 1.   Output parameters of the devices with different cavity length.

L (μm) Jth (A/cm2) Es (W/A) Ep (%) Rd (Ω)
3000 150.0 1.00 56.8 0.090
4000 132.5 1.00 56.4 0.086
4500 128.9 0.93 52.4 0.082
DownLoad: CSV

Table 2.   Junction temperatures and thermal resistances measured by wavelength-shift methods.

L(μm) λ1 (nm) λ2 (nm) T (K) Rth (K/W)
3000 1057.2 1063.5 19.30 7.31
4000 1059.2 1064.3 15.62 6.13
4500 1059.3 1063.7 13.48 4.94
DownLoad: CSV
[1]
Chung H S, Lee M S, Lee D, et al. Low noise, high efficiency L-band EDFA with 980 nm pumping. Electron Lett, 1999, 35: 1099 doi: 10.1049/el:19990750
[2]
Guo W T, Tan M Q, Jiao J. 980 nm fiber grating external cavity semiconductor lasers with high side mode suppression ratio and high stable frequency. J Semicond, 2014, 35: 84007 doi: 10.1088/1674-4926/35/8/084007
[3]
Dong Z, Wang C L, Jing H Q, et al. High power single mode 980 nm AlGaInAs/AlGaAs quantum well lasers with a very low threshold current. J Semicond, 2013, 34: 114011 doi: 10.1088/1674-4926/34/11/114011
[4]
Bettiati M, Laruelle F, Cargemel V, et al. High brightness single-mode 1060-nm diode lasers for demanding industrial applications. The European Conference on Lasers and Electro-Optics, 2007: CB_19
[5]
Yuda M, Temmyo J, Sasaki T, et al. High-power highly reliable 1.06 μm InGaAs strained-quantum-well laser diodes by low-temperature growth of InGaAs well layers. Electron Lett, 2003, 39(8): 1
[6]
Wan C T, Su Y K, Yu H C, et al. Low transparency current density and low internal loss of 1060-nm InGaAs laser with GaAsP–GaAs superlattices as strain-compensated layer. IEEE Photonics Technol Lett, 2009, 21(19): 1474 doi: 10.1109/LPT.2009.2028654
[7]
Nguyen H K, Coleman S, Visovsky N J, et al. Reliable high-power 1060 nm DBR lasers for second-harmonic generation. Electron Lett, 2007, 43(13): 716 doi: 10.1049/el:20070694
[8]
Mohrdiek S, Troger J, Pliska T, et al. Performance and reliability of pulsed 1060 nm laser modules. Lasers and Applications in Science and Engineering, 2008: 687320
[9]
Miah M J, Kettler T, Posilovic K, et al. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area. Appl Phys Lett, 2014, 105(15): 151105 doi: 10.1063/1.4898010
[10]
Ren Y X, Chen H T, Zhang S Z, et al. 1.06 μm high power CW semiconductor lasers. Nanoelectronic Device & Technology, 2009, 46(4): 209
[11]
Li T, Hao E J, Zhang Y. An asymmetric heterostructure waveguide structure for semiconductor lasers. J Infrared Millim Waves, 2015, 34(5): 613
[12]
Tan S Y, Zhai T, Zhang R K, et al. Graded doping low internal loss 1060-nm InGaAs/AlGaAs quantum well semiconductor lasers. Chin Phys B, 2015, 24(6): 064211 doi: 10.1088/1674-1056/24/6/064211
[13]
Li T, Hao E J, Li Z J, et al. Optimization of waveguide structure for high power 1060 nm diode laser. J Infrared Millim Waves, 2012, 31(3): 226 doi: 10.3724/SP.J.1010.2012.00226
[14]
Zhang Y, Yang R X. An influence of cavity length on single emitter semiconductor laser performance. Semicond Device, 2013, 12: 6
[15]
Li Z H, Li M, Wang L, et al. Effect of cavity length on Jth and ηd of InGaAsP/InGaP/GaAs SQW lasers. Semicondr Optoelectron, 2002, 23: 90
[16]
Pikhtin N A, Slipchenko S O, Sokolova Z N, et al. Internal optical loss in semiconductor lasers. Semiconductors, 2004, 38(3): 360 doi: 10.1134/1.1682615
[17]
Nabiev R F, Vail E C, Chang-Hasnain C J. Temperature dependent efficiency and modulation characteristics of Al-free 980-nm laser diodes. IEEE J Sel Topics Quantum Electron, 1995, 1(2): 234 doi: 10.1109/2944.401202
[18]
Fye D. An optimization procedure for the selection of diode laser facet coatings. IEEE J Quantum Electron, 1981, 17(9): 1950 doi: 10.1109/JQE.1981.1071351
[19]
Koren U, Miller B I, Su Y K, et al. Low internal loss separate confinement heterostructure InGaAs/InGaAsP quantum well laser. Appl Phys Lett, 1987, 51(21): 1744 doi: 10.1063/1.98510
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3944 Times PDF downloads: 92 Times Cited by: 0 Times

    History

    Received: 23 January 2017 Revised: 24 April 2017 Online: Uncorrected proof: 30 October 2017Accepted Manuscript: 13 November 2017Published: 01 November 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Haili Wang, Li Zhong, Jida Hou, Suping Liu, Xiaoyu Ma. 1.06 μm high-power InGaAs/GaAsP quantum well lasers[J]. Journal of Semiconductors, 2017, 38(11): 114005. doi: 10.1088/1674-4926/38/11/114005 H L Wang, L Zhong, J D Hou, S P Liu, X Y Ma. 1.06 μm high-power InGaAs/GaAsP quantum well lasers[J]. J. Semicond., 2017, 38(11): 114005. doi: 10.1088/1674-4926/38/11/114005.Export: BibTex EndNote
      Citation:
      Haili Wang, Li Zhong, Jida Hou, Suping Liu, Xiaoyu Ma. 1.06 μm high-power InGaAs/GaAsP quantum well lasers[J]. Journal of Semiconductors, 2017, 38(11): 114005. doi: 10.1088/1674-4926/38/11/114005

      H L Wang, L Zhong, J D Hou, S P Liu, X Y Ma. 1.06 μm high-power InGaAs/GaAsP quantum well lasers[J]. J. Semicond., 2017, 38(11): 114005. doi: 10.1088/1674-4926/38/11/114005.
      Export: BibTex EndNote

      1.06 μm high-power InGaAs/GaAsP quantum well lasers

      doi: 10.1088/1674-4926/38/11/114005
      More Information
      • Corresponding author: Email: zhongli@semi.ac.cn
      • Received Date: 2017-01-23
      • Revised Date: 2017-04-24
      • Published Date: 2017-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return