SEMICONDUCTOR DEVICES

Multistage second-order microring-resonator filters with box-like spectral responses and relaxed fabrication tolerances

Haiyang Zhao, Lei Zhang, Sizhu Shao, Jianfeng Ding, Xin Fu and Lin Yang

+ Author Affiliations

 Corresponding author: Lin Yang, Email: oip@semi.ac.cn

PDF

Abstract: We demonstrate an optical filter based on multistage second-order microring resonators (MRs) with box-like spectral responses. Compared with single-stage high-order optical filters with the same number of MRs, the demonstrated structure has comparable performances in the aspects of passband flatness, rolling-off slope and insertion loss. Moreover, the architecture relaxes the fabrication tolerance, electrical wiring and tuning difficulty since there are only two MRs in each stage. We experimentally demonstrate this kind of optical filter with five stages, which shows a 3-dB bandwidth of ~17 GHz, a rolling-off slope of ~5 dB/GHz and an on-chip insertion loss of ~6 dB.

Key words: wavelength division multiplexingoptical filtermicroring resonator



[1]
Park S J, Lee C H, Jeong K T, et al. Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. J Lightw Technol, 2004, 22(11): 2582 doi: 10.1109/JLT.2004.834504
[2]
Luo Y Q, Zhou X P, Effenberger F, et al. Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2). J Lightw Technol, 2013, 31(4): 587 doi: 10.1109/JLT.2012.2215841
[3]
Brackett C A. Dense wavelength division multiplexing networks: principles and applications. IEEE J Sel Areas Commun, 1990, 8(6): 948 doi: 10.1109/49.57798
[4]
Kuznetsov M. Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems. J Lightw Technol, 1994, 12(2): 226 doi: 10.1109/50.350600
[5]
Kewitsch A S, Rakuljic G A, Willems P A, et al. All-fiber zero-insertion-loss add–drop filter for wavelength-division multiplexing. Opt Lett, 1998, 23(2): 106 doi: 10.1364/OL.23.000106
[6]
Sadot D, Boimovich E. Tunable optical filters for dense WDM networks. IEEE Commun Mag, 1998, 36(12): 50 doi: 10.1109/35.735877
[7]
Grover R, Van V, Ibrahim T A, et al. Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters. J Lightw Technol, 2002, 20(5): 872
[8]
Melloni A, Costa R, Monguzzi P, et al. Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems. Opt Lett, 2003, 28(17): 1567 doi: 10.1364/OL.28.001567
[9]
Little B E, Chu S T, Haus H A, et al. Microring resonator channel dropping filters. J Lightw Technol, 1997, 15(6): 872
[10]
Hryniewicz J V, Absil P P, Little B E, et al. Higher order filter response in coupled microring resonators. IEEE Photon Technol Lett, 2000, 12(3): 320 doi: 10.1109/68.826927
[11]
Popovic M A, Barwicz T, Watts M R, et al. Multistage high-order microring-resonator add–drop filters. Opt Lett, 2006, 31(17): 2571 doi: 10.1364/OL.31.002571
[12]
Xia F N, Rooks M, Sekaric L, et al. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for onchip optical interconnects. Opt Express, 2007, 15(19): 11934 doi: 10.1364/OE.15.011934
[13]
Chen L, Sherwood-Droz N, Lipson M. Compact bandwidth-tunable microring resonators. Opt Lett, 2007, 32(22): 3361 doi: 10.1364/OL.32.003361
[14]
Ong J R, Kumar R, Mookherjea S. Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters. IEEE Photon Technol Lett, 2013, 25(16): 320
[15]
Headley W R, Reed G T, Howe S. Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator. Appl Phys Lett, 2004, 85(23): 5523 doi: 10.1063/1.1827337
[16]
Chen P X, Chen S T, Guan X W, et al. High-order microring resonators with bent couplers for a box-like filter response. Opt Lett, 2014, 39(21): 6304 doi: 10.1364/OL.39.006304
[17]
Zhang Z, Huang B J, Zhang Z Y, et al. Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator. Opt Eng, 2013, 52(12): 127102 doi: 10.1117/1.OE.52.12.127102
[18]
Ding Y H, Pu M H, Liu L, et al. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure. Opt Express, 2011, 19(7): 6462 doi: 10.1364/OE.19.006462
[19]
Huang C J, Zuo Y H, Cheng B W, et al. Si-based thermal-optical resonant-cavity tunable filter. Chin J Semicond, 2003, 24(12): 1312
[20]
Hu T, Wang W J, Qiu C, et al. Thermally tunable filters based on third-order microring resonators for WDM applications. IEEE Photon Technol Lett, 2012, 24(6): 524 doi: 10.1109/LPT.2012.2182988
[21]
Wheeler J A. On the mathematical description of light nuclei by the method of resonating group structure. Phys Rev, 1937, 52(11): 1107 doi: 10.1103/PhysRev.52.1107
Fig. 1.  (Color online) Schematic of optical filter based on multistage second-order MRs.

Fig. 2.  (Color online) Simulation results of 4-, 6- and 8-MR structures with 3-dB bandwidth of ~ 30 GHz. (a) 4-MR structure. (b) 6-MR structure. (c) 8-MR structure.

Fig. 3.  (Color online) Micrograph of 10th-stage 2nd-order filter. The red arrow on the left refers to the input port, and the yellow arrow on the right indicates the through port, followed by the green arrows which represent the 1st- to 10th-stage drop port from top to bottom, respectively.

Fig. 4.  (Color online) Response spectra of 1st to 5th stage.

Fig. 5.  (Color online) Comparisons between the experimental results (dotted lines) of each stage and the fitting results (solid lines) based on 1st-stage filter response. (a) 2nd stage. (b) 3rd stage. (c) 4th stage. (d) 5th stage.

Table 1.   Characteristics of optical filters based on multistage second-order structures and traditional high-order structures with the same number of MRs.

Total number of MRs Structure 3dB-bandwidth (GHz) Rolling-off slope (dB/GHz) Normalized transmission (dB)
4 2-stage 2nd-order 30.18 0.93 −4.40
1-stage 4th-order 29.55 0.88 −4.30
6 3-stage 2nd-order 30.86 1.31 −5.53
1-stage 6th-order 31.05 1.29 −5.58
8 4-stage 2nd-order 30.87 1.68 −6.79
1-stage 8th-order 31.49 1.71 −6.63
DownLoad: CSV

Table 2.   Characteristics of 1st- to 5th-stage filter response.

Stage number Normalized transmission (dB) 3-dB bandwidth (GHz) Rolling-off slope (dB/GHz)
1 −1.02 24.61 1.01
2 −2.01 20.60 2.07
3 −3.03 18.91 3.09
4 −4.07 17.10 3.96
5 −5.07 16.63 4.98
DownLoad: CSV
[1]
Park S J, Lee C H, Jeong K T, et al. Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. J Lightw Technol, 2004, 22(11): 2582 doi: 10.1109/JLT.2004.834504
[2]
Luo Y Q, Zhou X P, Effenberger F, et al. Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2). J Lightw Technol, 2013, 31(4): 587 doi: 10.1109/JLT.2012.2215841
[3]
Brackett C A. Dense wavelength division multiplexing networks: principles and applications. IEEE J Sel Areas Commun, 1990, 8(6): 948 doi: 10.1109/49.57798
[4]
Kuznetsov M. Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems. J Lightw Technol, 1994, 12(2): 226 doi: 10.1109/50.350600
[5]
Kewitsch A S, Rakuljic G A, Willems P A, et al. All-fiber zero-insertion-loss add–drop filter for wavelength-division multiplexing. Opt Lett, 1998, 23(2): 106 doi: 10.1364/OL.23.000106
[6]
Sadot D, Boimovich E. Tunable optical filters for dense WDM networks. IEEE Commun Mag, 1998, 36(12): 50 doi: 10.1109/35.735877
[7]
Grover R, Van V, Ibrahim T A, et al. Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters. J Lightw Technol, 2002, 20(5): 872
[8]
Melloni A, Costa R, Monguzzi P, et al. Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems. Opt Lett, 2003, 28(17): 1567 doi: 10.1364/OL.28.001567
[9]
Little B E, Chu S T, Haus H A, et al. Microring resonator channel dropping filters. J Lightw Technol, 1997, 15(6): 872
[10]
Hryniewicz J V, Absil P P, Little B E, et al. Higher order filter response in coupled microring resonators. IEEE Photon Technol Lett, 2000, 12(3): 320 doi: 10.1109/68.826927
[11]
Popovic M A, Barwicz T, Watts M R, et al. Multistage high-order microring-resonator add–drop filters. Opt Lett, 2006, 31(17): 2571 doi: 10.1364/OL.31.002571
[12]
Xia F N, Rooks M, Sekaric L, et al. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for onchip optical interconnects. Opt Express, 2007, 15(19): 11934 doi: 10.1364/OE.15.011934
[13]
Chen L, Sherwood-Droz N, Lipson M. Compact bandwidth-tunable microring resonators. Opt Lett, 2007, 32(22): 3361 doi: 10.1364/OL.32.003361
[14]
Ong J R, Kumar R, Mookherjea S. Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters. IEEE Photon Technol Lett, 2013, 25(16): 320
[15]
Headley W R, Reed G T, Howe S. Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator. Appl Phys Lett, 2004, 85(23): 5523 doi: 10.1063/1.1827337
[16]
Chen P X, Chen S T, Guan X W, et al. High-order microring resonators with bent couplers for a box-like filter response. Opt Lett, 2014, 39(21): 6304 doi: 10.1364/OL.39.006304
[17]
Zhang Z, Huang B J, Zhang Z Y, et al. Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator. Opt Eng, 2013, 52(12): 127102 doi: 10.1117/1.OE.52.12.127102
[18]
Ding Y H, Pu M H, Liu L, et al. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure. Opt Express, 2011, 19(7): 6462 doi: 10.1364/OE.19.006462
[19]
Huang C J, Zuo Y H, Cheng B W, et al. Si-based thermal-optical resonant-cavity tunable filter. Chin J Semicond, 2003, 24(12): 1312
[20]
Hu T, Wang W J, Qiu C, et al. Thermally tunable filters based on third-order microring resonators for WDM applications. IEEE Photon Technol Lett, 2012, 24(6): 524 doi: 10.1109/LPT.2012.2182988
[21]
Wheeler J A. On the mathematical description of light nuclei by the method of resonating group structure. Phys Rev, 1937, 52(11): 1107 doi: 10.1103/PhysRev.52.1107
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3055 Times PDF downloads: 24 Times Cited by: 0 Times

    History

    Received: 29 March 2017 Revised: 28 April 2017 Online: Uncorrected proof: 30 October 2017Accepted Manuscript: 13 November 2017Published: 01 November 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Haiyang Zhao, Lei Zhang, Sizhu Shao, Jianfeng Ding, Xin Fu, Lin Yang. Multistage second-order microring-resonator filters with box-like spectral responses and relaxed fabrication tolerances[J]. Journal of Semiconductors, 2017, 38(11): 114009. doi: 10.1088/1674-4926/38/11/114009 H Y Zhao, L Zhang, S Z Shao, J F Ding, X Fu, L Yang. Multistage second-order microring-resonator filters with box-like spectral responses and relaxed fabrication tolerances[J]. J. Semicond., 2017, 38(11): 114009. doi: 10.1088/1674-4926/38/11/114009.Export: BibTex EndNote
      Citation:
      Haiyang Zhao, Lei Zhang, Sizhu Shao, Jianfeng Ding, Xin Fu, Lin Yang. Multistage second-order microring-resonator filters with box-like spectral responses and relaxed fabrication tolerances[J]. Journal of Semiconductors, 2017, 38(11): 114009. doi: 10.1088/1674-4926/38/11/114009

      H Y Zhao, L Zhang, S Z Shao, J F Ding, X Fu, L Yang. Multistage second-order microring-resonator filters with box-like spectral responses and relaxed fabrication tolerances[J]. J. Semicond., 2017, 38(11): 114009. doi: 10.1088/1674-4926/38/11/114009.
      Export: BibTex EndNote

      Multistage second-order microring-resonator filters with box-like spectral responses and relaxed fabrication tolerances

      doi: 10.1088/1674-4926/38/11/114009
      Funds:

      Project supported by the National High Technology Research and Development Program of China (Nos. 2015AA017001, 2015AA010103) and the Natural National Science Foundation of China (NSFC) (Nos. 61235001, 61575187, 61535002, 61204061, 6157031748, 61377067).

      More Information
      • Corresponding author: Email: oip@semi.ac.cn
      • Received Date: 2017-03-29
      • Revised Date: 2017-04-28
      • Published Date: 2017-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return