SEMICONDUCTOR MATERIALS

Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity

Xiaodan Zhao1, Yibiao Yang1, 2, , Zhihui Chen1, 2, Yuncai Wang1, 2, Hongming Fei1 and Xiao Deng1

+ Author Affiliations

 Corresponding author: Yibiao Yang,Email:yangyibiao_tyut@sohu.com

PDF

Abstract: By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modulating the thickness of the air cavity, we demonstrate that a single resonant peak can shift from 416.1 to 667.3 nm in the band gap at normal incidence by means of the transfer matrix method. The research also shows that the transmittance of the channel can be maximized when the number of periodic LiF/GaSb layers on one side of the air defect layer is equal to that of the other side. When adding a period to both sides respectively, the full width at half maximum of the defect mode is reduced by one order of magnitude. This structure will provide a promising approach to fabricate practical tunable filters in the visible region with ultra-wide tuning range.

Key words: photonic crystal filterstransfer matrix methodsingle resonant peakultra-wide tuning rangemechanical modulation



[1]
Dwivedi R P, Lee E H. A compact plasmatic tunable filter using elasto-optic effects. Opt Laser Technol, 2012, 7(44):2130
[2]
Li S H, Zhong S L, Xu J, et al. Fabrication and characterization of a thermal tunable bulk-micromachined optical filter. Sensor Actuat A, 2012, 188(12):298 http://cn.bing.com/academic/profile?id=0578790bcd44b049a1314088ebeaad29&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Fuh A Y G, Ho S J, Wu S T. Optical filter with tunable wavelength and bandwidth based on phototunable cholesteric liquid crystals. Appl Opt, 2014, 8(53):1658 http://cn.bing.com/academic/profile?id=bcced5e8c3835657821333be3665a4dc&encoded=0&v=paper_preview&mkt=zh-cn
[4]
Wang H, Zheng J Y, Li W. Widely tunable single-bandpass microwave photonicfilter based on polarization processing of a nonsliced broadband optical source. Opt Lett, 2013, 38(22):4857 doi: 10.1364/OL.38.004857
[5]
Geng Z Q, Wu N J. A low power wide tuning range baseband filter for multistandard transceivers. J Semicond, 2015, 36(4):045006 doi: 10.1088/1674-4926/36/4/045006
[6]
Amin N M, Wang Z G, Li Z Q. An I/Q mixer with an integrated differential quadrature all-pass filter for on-chip quadrature LO signal generation. J Semicond, 2015, 36(5):055001 doi: 10.1088/1674-4926/36/5/055001
[7]
Sabaté N, Rubio R, Calaza C, et al. Mirror electrostatic actuation of a medium-infrared tunable Fabry-Perot interferometer based on a surface micromachining process. Sensor Actuat A, 2005, 123:584
[8]
Liu K, Jing W C, Peng G D, et al. Wavelength sweep of intracavity fiber laser for low concentration gas detection. IEEE Photon Technol Lett, 2008, 20(18):1515 doi: 10.1109/LPT.2008.928526
[9]
Niyazi M, Amirkhani A, Mosavi M R. Investigation and simulation of a two-channel dropfilter with tunable double optical resonators. Superconduct Novel Magn, 2014, 27(3):827 doi: 10.1007/s10948-013-2362-6
[10]
Zhai L Y, Xu J, Wu Y M. Design and fabrication of independentcavity FP tunable filter. Opt Commun, 2013, 297(12):154 http://cn.bing.com/academic/profile?id=780720e645a69672226c920f2f222886&encoded=0&v=paper_preview&mkt=zh-cn
[11]
Wang J, Wen T D, Xu L P, et al. Influence of incident angle on the defect mode of locally doped photonic crystal. J Semicond, 2013, 11(34):112003 http://cn.bing.com/academic/profile?id=686f69de127be35545dbb082a0f56fa2&encoded=0&v=paper_preview&mkt=zh-cn
[12]
John S. Strong localization of photons in certain disordered dielectric superlattice. Phys Rev Lett, 1987, 23(58):2486
[13]
Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett, 1987, 20(58):2059 http://cn.bing.com/academic/profile?id=0eb77c66e81b81c21fbb85b7cd3d630b&encoded=0&v=paper_preview&mkt=zh-cn
[14]
Shramkova O, Schuchinsky A. Harmonic generation and wave mixing in nonlinear metamaterials and photonic crystals. Int J RF Microwave CAE, 2012, 4(22):469
[15]
Tang T T, Liu W L, Gao X Y, et al. Band gaps and nonlinear defect modes in one-dimensional photonic crystals with anisotropic single-negative metamaterials. Opt Laser Technol, 2011, 6(43):1016 http://cn.bing.com/academic/profile?id=e53a9254ae9714770425089a872b148c&encoded=0&v=paper_preview&mkt=zh-cn
[16]
Shen Y, Ye D, Celanovic I, et al. Optical broadband angular selectivity. Science, 2014, 6178(343):1499 http://cn.bing.com/academic/profile?id=091dbc42bdef1b5e797050a74db2ae38&encoded=0&v=paper_preview&mkt=zh-cn
[17]
Wang H, Wang G J, Han Y L, et al. Tunable double-channel filter based on defect mode splitting of one-dimensional magnetic photonic crystal. Opt Commun, 2012, 21(285):4558 http://cn.bing.com/academic/profile?id=de53b636e5c641d79a254f407e6286be&encoded=0&v=paper_preview&mkt=zh-cn
[18]
Yu G J, Pu S L, Wang X, et al. Tunable one-dimensional photonic crystals based on magnetic fluids. Optik, 2013, 17(124):2713 http://cn.bing.com/academic/profile?id=aa05257c651bae56418634e826c4f41b&encoded=0&v=paper_preview&mkt=zh-cn
[19]
Liu C Y, Peng Y T, Wang J Z, et al. Creation of tunable bandgaps in a three-dimensional anisotropic photonic crystal modulated by a nematic liquid crystal. Phys B, 2007, 1(388):124 http://cn.bing.com/academic/profile?id=e74c969394deaffa9fad42a69073b855&encoded=0&v=paper_preview&mkt=zh-cn
[20]
Zhang W T, Han P D, Lan A D, et al. Defect modes tuning of one-dimensional photonic crystals with lithium niobate and silver material defect. Physica E, 2012, 4(44):813 http://cn.bing.com/academic/profile?id=adc6298c75c324030051c2e02de38522&encoded=0&v=paper_preview&mkt=zh-cn
[21]
Fegadolli W S, Vargas G, Wang X, et al. Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control. Opt Express, 2012, 13(20):14722 http://cn.bing.com/academic/profile?id=4dcc06442afb07749bee20468bc8019e&encoded=0&v=paper_preview&mkt=zh-cn
[22]
Chang Y H, Jhu Y Y, Wu C J. Temperature dependence of defect mode in a defective photonic crystal. Opt Commun, 2012, 6(285):1501 http://cn.bing.com/academic/profile?id=a15a019bace26254a5fb98cdcb496baf&encoded=0&v=paper_preview&mkt=zh-cn
[23]
Hu X Y, Liu Z, Gong Q H. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials. Phys Lett A, 2008, 3(372):333 http://cn.bing.com/academic/profile?id=f5babc9e1d94a8c1fc14dfe6782fc0a5&encoded=0&v=paper_preview&mkt=zh-cn
[24]
Yang D, Tian H, Ji Y. High-Q and high-sensitivity widthmodulated photonic crystal single nanobeam air-mode cavity for refractive index sensing. Appl Opt, 2015, 54(1):1 doi: 10.1364/AO.54.000001
[25]
Kuramochi E, Taniyama H, Tanabe T, et al. Ultrahigh-Q onedimensional photonic crystal nanocavities with modulated modegap barriers on SiO2 claddings and on air claddings. Opt Express, 2010, 18(15):15859 doi: 10.1364/OE.18.015859
[26]
Pendry J B, MacKinnon A. Calculation of photon dispersion relations. Phys Rev Lett, 1992, 19(69):2772 http://cn.bing.com/academic/profile?id=aced3af7d3e9fd0c57e6c8cbba359209&encoded=0&v=paper_preview&mkt=zh-cn
[27]
Weber M J. Handbook of optical materials:section 1. CRC Press LLC, American, 2003
[28]
Li H H. Refractive index of alkali halides and its wavelength and temperature derivatives. J Phys Chem Ref Data, 1976, 2(5):329
[29]
Aspnes D E, Studna A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys Rev B, 1983, 2(27):985 http://cn.bing.com/academic/profile?id=20bf165dc96b8b9d7792c99b313b0928&encoded=0&v=paper_preview&mkt=zh-cn
[30]
Bayindir M, Temelkuran B, Ozbay E. Tight-binding description of the coupled defect modes in three-dimensional photonic crystals. Phys Rev Lett, 2000, 10(84):2140 http://cn.bing.com/academic/profile?id=ea775932761e3ed0b753892e1c0d1d6b&encoded=0&v=paper_preview&mkt=zh-cn
[31]
Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic crystals:molding the flow of light. 2nd ed. New Jersey:Princeton University Press, 2008
Fig. 1.  chematic illustration of the tunable one-dimensional photonic crystal (A/B)3C(A/B)3. A is LiF, B is GaSb, C is the air defect layer, d1, d2, d3 refer to the thickness of the corresponding layer.

Fig. 2.  The refractive indices of the constituent materials along with the wavelength (300-830 nm) in the visible region. (a) LiF. (b) GaSb.

Fig. 3.  The transmission spectra of [LiF/GaSb]3Air[LiF/GaSb]3 with different thickness of defect layer d3.

Fig. 4.  The transmission spectra of [LiF/GaSb]3Air[LiF/GaSb]3 when d3 is 1.9a.

Fig. 5.  The comparison of the wavelength of the resonant peak between considering the dispersion of materials, whose refractive indices are set according to the dates from Fig. 2, and without considering the dispersion of materials, whose refractive indices are set to be 1.4 and 4.3 for LiF and GaSb, respectively, with different thickness of defect layer d3.

Fig. 6.  The full width at half maximum of the defect mode changes along with the thickness of defect layer d3 which is from 0.3a to 1.7a.

Fig. 7.  The transmission spectra of photonic crystal [LiF/GaSb]mAir[LiF/GaSb]n corresponding to different values of m and n.

Fig. 8.  The transmission spectra of photonic crystal [LiF/GaSb]6 corresponding to different duty-cycle.

[1]
Dwivedi R P, Lee E H. A compact plasmatic tunable filter using elasto-optic effects. Opt Laser Technol, 2012, 7(44):2130
[2]
Li S H, Zhong S L, Xu J, et al. Fabrication and characterization of a thermal tunable bulk-micromachined optical filter. Sensor Actuat A, 2012, 188(12):298 http://cn.bing.com/academic/profile?id=0578790bcd44b049a1314088ebeaad29&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Fuh A Y G, Ho S J, Wu S T. Optical filter with tunable wavelength and bandwidth based on phototunable cholesteric liquid crystals. Appl Opt, 2014, 8(53):1658 http://cn.bing.com/academic/profile?id=bcced5e8c3835657821333be3665a4dc&encoded=0&v=paper_preview&mkt=zh-cn
[4]
Wang H, Zheng J Y, Li W. Widely tunable single-bandpass microwave photonicfilter based on polarization processing of a nonsliced broadband optical source. Opt Lett, 2013, 38(22):4857 doi: 10.1364/OL.38.004857
[5]
Geng Z Q, Wu N J. A low power wide tuning range baseband filter for multistandard transceivers. J Semicond, 2015, 36(4):045006 doi: 10.1088/1674-4926/36/4/045006
[6]
Amin N M, Wang Z G, Li Z Q. An I/Q mixer with an integrated differential quadrature all-pass filter for on-chip quadrature LO signal generation. J Semicond, 2015, 36(5):055001 doi: 10.1088/1674-4926/36/5/055001
[7]
Sabaté N, Rubio R, Calaza C, et al. Mirror electrostatic actuation of a medium-infrared tunable Fabry-Perot interferometer based on a surface micromachining process. Sensor Actuat A, 2005, 123:584
[8]
Liu K, Jing W C, Peng G D, et al. Wavelength sweep of intracavity fiber laser for low concentration gas detection. IEEE Photon Technol Lett, 2008, 20(18):1515 doi: 10.1109/LPT.2008.928526
[9]
Niyazi M, Amirkhani A, Mosavi M R. Investigation and simulation of a two-channel dropfilter with tunable double optical resonators. Superconduct Novel Magn, 2014, 27(3):827 doi: 10.1007/s10948-013-2362-6
[10]
Zhai L Y, Xu J, Wu Y M. Design and fabrication of independentcavity FP tunable filter. Opt Commun, 2013, 297(12):154 http://cn.bing.com/academic/profile?id=780720e645a69672226c920f2f222886&encoded=0&v=paper_preview&mkt=zh-cn
[11]
Wang J, Wen T D, Xu L P, et al. Influence of incident angle on the defect mode of locally doped photonic crystal. J Semicond, 2013, 11(34):112003 http://cn.bing.com/academic/profile?id=686f69de127be35545dbb082a0f56fa2&encoded=0&v=paper_preview&mkt=zh-cn
[12]
John S. Strong localization of photons in certain disordered dielectric superlattice. Phys Rev Lett, 1987, 23(58):2486
[13]
Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett, 1987, 20(58):2059 http://cn.bing.com/academic/profile?id=0eb77c66e81b81c21fbb85b7cd3d630b&encoded=0&v=paper_preview&mkt=zh-cn
[14]
Shramkova O, Schuchinsky A. Harmonic generation and wave mixing in nonlinear metamaterials and photonic crystals. Int J RF Microwave CAE, 2012, 4(22):469
[15]
Tang T T, Liu W L, Gao X Y, et al. Band gaps and nonlinear defect modes in one-dimensional photonic crystals with anisotropic single-negative metamaterials. Opt Laser Technol, 2011, 6(43):1016 http://cn.bing.com/academic/profile?id=e53a9254ae9714770425089a872b148c&encoded=0&v=paper_preview&mkt=zh-cn
[16]
Shen Y, Ye D, Celanovic I, et al. Optical broadband angular selectivity. Science, 2014, 6178(343):1499 http://cn.bing.com/academic/profile?id=091dbc42bdef1b5e797050a74db2ae38&encoded=0&v=paper_preview&mkt=zh-cn
[17]
Wang H, Wang G J, Han Y L, et al. Tunable double-channel filter based on defect mode splitting of one-dimensional magnetic photonic crystal. Opt Commun, 2012, 21(285):4558 http://cn.bing.com/academic/profile?id=de53b636e5c641d79a254f407e6286be&encoded=0&v=paper_preview&mkt=zh-cn
[18]
Yu G J, Pu S L, Wang X, et al. Tunable one-dimensional photonic crystals based on magnetic fluids. Optik, 2013, 17(124):2713 http://cn.bing.com/academic/profile?id=aa05257c651bae56418634e826c4f41b&encoded=0&v=paper_preview&mkt=zh-cn
[19]
Liu C Y, Peng Y T, Wang J Z, et al. Creation of tunable bandgaps in a three-dimensional anisotropic photonic crystal modulated by a nematic liquid crystal. Phys B, 2007, 1(388):124 http://cn.bing.com/academic/profile?id=e74c969394deaffa9fad42a69073b855&encoded=0&v=paper_preview&mkt=zh-cn
[20]
Zhang W T, Han P D, Lan A D, et al. Defect modes tuning of one-dimensional photonic crystals with lithium niobate and silver material defect. Physica E, 2012, 4(44):813 http://cn.bing.com/academic/profile?id=adc6298c75c324030051c2e02de38522&encoded=0&v=paper_preview&mkt=zh-cn
[21]
Fegadolli W S, Vargas G, Wang X, et al. Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control. Opt Express, 2012, 13(20):14722 http://cn.bing.com/academic/profile?id=4dcc06442afb07749bee20468bc8019e&encoded=0&v=paper_preview&mkt=zh-cn
[22]
Chang Y H, Jhu Y Y, Wu C J. Temperature dependence of defect mode in a defective photonic crystal. Opt Commun, 2012, 6(285):1501 http://cn.bing.com/academic/profile?id=a15a019bace26254a5fb98cdcb496baf&encoded=0&v=paper_preview&mkt=zh-cn
[23]
Hu X Y, Liu Z, Gong Q H. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials. Phys Lett A, 2008, 3(372):333 http://cn.bing.com/academic/profile?id=f5babc9e1d94a8c1fc14dfe6782fc0a5&encoded=0&v=paper_preview&mkt=zh-cn
[24]
Yang D, Tian H, Ji Y. High-Q and high-sensitivity widthmodulated photonic crystal single nanobeam air-mode cavity for refractive index sensing. Appl Opt, 2015, 54(1):1 doi: 10.1364/AO.54.000001
[25]
Kuramochi E, Taniyama H, Tanabe T, et al. Ultrahigh-Q onedimensional photonic crystal nanocavities with modulated modegap barriers on SiO2 claddings and on air claddings. Opt Express, 2010, 18(15):15859 doi: 10.1364/OE.18.015859
[26]
Pendry J B, MacKinnon A. Calculation of photon dispersion relations. Phys Rev Lett, 1992, 19(69):2772 http://cn.bing.com/academic/profile?id=aced3af7d3e9fd0c57e6c8cbba359209&encoded=0&v=paper_preview&mkt=zh-cn
[27]
Weber M J. Handbook of optical materials:section 1. CRC Press LLC, American, 2003
[28]
Li H H. Refractive index of alkali halides and its wavelength and temperature derivatives. J Phys Chem Ref Data, 1976, 2(5):329
[29]
Aspnes D E, Studna A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys Rev B, 1983, 2(27):985 http://cn.bing.com/academic/profile?id=20bf165dc96b8b9d7792c99b313b0928&encoded=0&v=paper_preview&mkt=zh-cn
[30]
Bayindir M, Temelkuran B, Ozbay E. Tight-binding description of the coupled defect modes in three-dimensional photonic crystals. Phys Rev Lett, 2000, 10(84):2140 http://cn.bing.com/academic/profile?id=ea775932761e3ed0b753892e1c0d1d6b&encoded=0&v=paper_preview&mkt=zh-cn
[31]
Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic crystals:molding the flow of light. 2nd ed. New Jersey:Princeton University Press, 2008
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2981 Times PDF downloads: 29 Times Cited by: 0 Times

    History

    Received: 04 March 2016 Revised: 02 September 2016 Online: Published: 01 February 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaodan Zhao, Yibiao Yang, Zhihui Chen, Yuncai Wang, Hongming Fei, Xiao Deng. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity[J]. Journal of Semiconductors, 2017, 38(2): 023004. doi: 10.1088/1674-4926/38/2/023004 X D Zhao, Y B Yang, Z H Chen, Y C Wang, H M Fei, X Deng. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity[J]. J. Semicond., 2017, 38(2): 023004. doi: 10.1088/1674-4926/38/2/023004.Export: BibTex EndNote
      Citation:
      Xiaodan Zhao, Yibiao Yang, Zhihui Chen, Yuncai Wang, Hongming Fei, Xiao Deng. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity[J]. Journal of Semiconductors, 2017, 38(2): 023004. doi: 10.1088/1674-4926/38/2/023004

      X D Zhao, Y B Yang, Z H Chen, Y C Wang, H M Fei, X Deng. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity[J]. J. Semicond., 2017, 38(2): 023004. doi: 10.1088/1674-4926/38/2/023004.
      Export: BibTex EndNote

      Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity

      doi: 10.1088/1674-4926/38/2/023004
      Funds:

      Project supported by the National Natural Science Foundation of China 61307069

      the Top Young Academic Leaders and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi 

      Project supported by the National Natural Science Foundation of China 61575138

      Project supported by the National Natural Science Foundation of China 51205273

      Project supported by the National Natural Science Foundation of China(Nos.61575138, 61307069, 51205273), and the Top Young Academic Leaders and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.

      More Information
      • Corresponding author: Yibiao Yang,Email:yangyibiao_tyut@sohu.com
      • Received Date: 2016-03-04
      • Revised Date: 2016-09-02
      • Published Date: 2017-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return