SPECIAL TOPIC ON 2D MATERIALS AND DEVICES

Optoelectronics based on 2D TMDs and heterostructures

Nengjie Huo1, §, Yujue Yang1, § and Jingbo Li1, 2,

+ Author Affiliations

 Corresponding author:

Email: jbli@semi.ac.cn

PDF

Abstract: 2D materials including graphene and TMDs have proven interesting physical properties and promising optoelectronic applications. We reviewed the growth, characterization and optoelectronics based on 2D TMDs and their heterostructures, and demonstrated their unique and high quality of performances. For example, we observed the large mobility, fast response and high photo-responsivity in MoS2, WS2 and WSe2 phototransistors, as well as the novel performances in vdW heterostructures such as the strong interlayer coupling, am-bipolar and rectifying behaviour, and the obvious photovoltaic effect. It is being possible that 2D family materials could play an increasingly important role in the future nano- and opto-electronics, more even than traditional semiconductors such as silicon.

Key words: 2D TMDsheterostructuresoptoelectronicsphototransistors



[1]
Elias D C, Gorbachev R V, Mayorov A S, et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat Phys, 2011, 7:701 doi: 10.1038/nphys2049
[2]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6:183 doi: 10.1038/nmat1849
[3]
Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications. Nat Photonics, 2010, 4:297 doi: 10.1038/nphoton.2010.40
[4]
Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320:1308 doi: 10.1126/science.1156965
[5]
Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotechnol, 2012, 7:363 doi: 10.1038/nnano.2012.60
[6]
Tsai D S, Liu K, Lien D H, et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano, 2013, 7:3905 doi: 10.1021/nn305301b
[7]
Tongay S, Zhou J, Ataca C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett, 2013, 13:2831 doi: 10.1021/nl4011172
[8]
Hu P A, Wang L, Yoon M, et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett, 2013, 13:1649 doi: 10.1021/nl400107k
[9]
Hu P A, Wen Z, Wang L, et al. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 2013, 6:5988 http://www.chemeurope.com/en/publications/406955/synthesis-of-few-layer-gase-nanosheets-for-high-performance-photodetectors.html
[10]
Liu W, Kang J, Sarkar D, et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett, 2013, 13:1983 doi: 10.1021/nl304777e
[11]
Mak K, He K, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol, 2012, 7:494 doi: 10.1038/nnano.2012.96
[12]
Podzorov V, Gershenson M E, Kloc C, et al. High-mobility fieldeffect transistors based on transition metal dichalcogenides. Appl Phys Lett, 2004, 84:3301 doi: 10.1063/1.1723695
[13]
Ayari A, Cobas E, Ogundadegbe O, et al. Realization and electrical characterization of ultrathin crystals of layered transitionmetal dichalcogenides. J Appl Phys, 2007, 101:014507 doi: 10.1063/1.2407388
[14]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6:147 doi: 10.1038/nnano.2010.279
[15]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8:497 doi: 10.1038/nnano.2013.100
[16]
Britnell L, Gorbachev R V, Jalil R, et al. Field-effect tunnelling transistor based on vertical graphene heterostructures. Science, 2012, 335:947 doi: 10.1126/science.1218461
[17]
Yu W J, Li Z, Zhou H L, et al. Vertically stacked multiheterostructures of layered materials for logic transistors and complementary inverters. Nat Mater, 2013, 12:246 https://www.researchgate.net/profile/Y_Huang9/publication/233930032_Vertically_stacked_multi-heterostructures_of_layered_materials_for_logic_transistors_and_complementary_inverters/links/53df79fe0cf2aede4b49001c.pdf?origin=publication_detail
[18]
Gong C, Zhang H, Wang W, et al. Band alignment of twodimensional transition metal dichalcogenides:application in tunnel field effect transistors. Appl Phys Lett, 2013, 103:053513 doi: 10.1063/1.4817409
[19]
Kang J, Tongay S, Zhou J, et al. Band offsets and heterostructures of two-dimensional semiconductors. Appl Phys Lett, 2013, 102:012111 doi: 10.1063/1.4774090
[20]
Komsa H, Krasheninnikov A. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys Rev B, 2013, 88:085318 doi: 10.1103/PhysRevB.88.085318
[21]
Huo N J, Kang J, Wei Z M, et al. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv Funct Mater, 2014, 24:7025 doi: 10.1002/adfm.201401504
[22]
Hao N J, Tangay S, Guo W L, et al. Novel optical and electrical transport properties in atomically thin WSe2/MoS2 p-n heterostructures. Adv Electron Mater, 2015, 1:1400066 doi: 10.1002/aelm.201400066
[23]
Huo N J, Yang J H, Huang L, et al. Tunable polarity behavior and self-driven photoswitching in p-WSe2/n-WS2 heterojunctions. Small, 2015, 11:5430 doi: 10.1002/smll.v11.40
[24]
Wang Y, Ni Z H, Shen Z X. Interference enhancement of Raman signal of graphene. Appl Phys Lett, 2008, 92:043121 doi: 10.1063/1.2838745
[25]
Zhao Y, Luo X, Li H, et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett, 2013, 13:1007 doi: 10.1021/nl304169w
[26]
Li H, Lu G, Wang Y, et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small, 2013, 9:1974 doi: 10.1002/smll.v9.11
[27]
Huo N J, Yang S X, Wei Z M, et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci Rep, 2014, 4:5209 https://www.researchgate.net/publication/262941838_Photoresponsive_and_Gas_Sensing_Field-Effect_Transistors_based_on_Multilayer_WS2_Nanoflakes
[28]
Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetector. Adv Mater, 2015, 27:176 doi: 10.1002/adma.v27.1
[29]
Huo N J, Wei Z M, Meng X Q, et al. Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2. J Mater Chem C, 2015, 3:5467
Fig. 1.  (Color online) (a, b) Schematic diagram of graphene and TMDs (MoS2 or WS2), respectively. (c, d) Optical microscopy images of exfoliated WSe2 and CVD grown MoS2, respectively. The scale bar is 10 μm.

Fig. 2.  Color online) (a) Raman spectra of MoS2 layers with different layers. (b) PL spectrum of monolayer and bilayer WS2. (c, d) PL and Raman spectrum of WSe2 with different layers.

Fig. 3.  (Color online) (a) Transfer curves of WS2 based transistors. (b) Output curves of WS2. (c, d) Dynamic response of WS2 phototransistors. (e) Schematic diagram of the device with different gas molecules. (f) Photoresponse under different gas atmosphere [27].

Fig. 4.  (Color online) (a) Transfer and (b) output characteristics of pure atomically thin MoS2 layers, the $I_{\mathrm{sd}}$ can increase with increasing gate voltage and the on/off ratio can reach higher than 106, indicating the well n-type behaviour of MoS2 layers. (c) Transfer and (d) output characteristics of pure atomically thin WSe2 layers, indicating the well p-type behavior of WSe2 layers with on/off ratio of about 104. (e) I-V curves of WSe2 transistors under dark and light. (f) Dynamic response of WSe2 devices.

Fig. 5.  (Color online) (a) Raman and (b) PL spectra of monolayer WS2 and the bilayer graphene/WS2 heterostructure. The inset of (a) is an optical image of graphene/WS2 bilayer. (c) Transfer curves of graphene, WS2 and Gr/WS2 devices [29].

Fig. 6.  (Color online) (a, b) Raman and PL spectrum of MoS2/WSe2 heterostructures, respectively. (c) I-V curves of MoS2/WS2 heterojunctions under light illumination with different light power. (d) Dynamic response under zero bias [21, 22].

Fig. 7.  (Color online) (a) I-V curves of WS2-WSe2 PN heterojunctions under light with different light power density. (b) Schematic diagram of photo-generated electron-hole separation in this junction. (c) Time dependences of $I_{\mathrm{sd}}$ during the incident light switched on/off. (d) Photocurrent as function of light power density with Vsd of 0 V [23].

[1]
Elias D C, Gorbachev R V, Mayorov A S, et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat Phys, 2011, 7:701 doi: 10.1038/nphys2049
[2]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6:183 doi: 10.1038/nmat1849
[3]
Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications. Nat Photonics, 2010, 4:297 doi: 10.1038/nphoton.2010.40
[4]
Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320:1308 doi: 10.1126/science.1156965
[5]
Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotechnol, 2012, 7:363 doi: 10.1038/nnano.2012.60
[6]
Tsai D S, Liu K, Lien D H, et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano, 2013, 7:3905 doi: 10.1021/nn305301b
[7]
Tongay S, Zhou J, Ataca C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett, 2013, 13:2831 doi: 10.1021/nl4011172
[8]
Hu P A, Wang L, Yoon M, et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett, 2013, 13:1649 doi: 10.1021/nl400107k
[9]
Hu P A, Wen Z, Wang L, et al. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 2013, 6:5988 http://www.chemeurope.com/en/publications/406955/synthesis-of-few-layer-gase-nanosheets-for-high-performance-photodetectors.html
[10]
Liu W, Kang J, Sarkar D, et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett, 2013, 13:1983 doi: 10.1021/nl304777e
[11]
Mak K, He K, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol, 2012, 7:494 doi: 10.1038/nnano.2012.96
[12]
Podzorov V, Gershenson M E, Kloc C, et al. High-mobility fieldeffect transistors based on transition metal dichalcogenides. Appl Phys Lett, 2004, 84:3301 doi: 10.1063/1.1723695
[13]
Ayari A, Cobas E, Ogundadegbe O, et al. Realization and electrical characterization of ultrathin crystals of layered transitionmetal dichalcogenides. J Appl Phys, 2007, 101:014507 doi: 10.1063/1.2407388
[14]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6:147 doi: 10.1038/nnano.2010.279
[15]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8:497 doi: 10.1038/nnano.2013.100
[16]
Britnell L, Gorbachev R V, Jalil R, et al. Field-effect tunnelling transistor based on vertical graphene heterostructures. Science, 2012, 335:947 doi: 10.1126/science.1218461
[17]
Yu W J, Li Z, Zhou H L, et al. Vertically stacked multiheterostructures of layered materials for logic transistors and complementary inverters. Nat Mater, 2013, 12:246 https://www.researchgate.net/profile/Y_Huang9/publication/233930032_Vertically_stacked_multi-heterostructures_of_layered_materials_for_logic_transistors_and_complementary_inverters/links/53df79fe0cf2aede4b49001c.pdf?origin=publication_detail
[18]
Gong C, Zhang H, Wang W, et al. Band alignment of twodimensional transition metal dichalcogenides:application in tunnel field effect transistors. Appl Phys Lett, 2013, 103:053513 doi: 10.1063/1.4817409
[19]
Kang J, Tongay S, Zhou J, et al. Band offsets and heterostructures of two-dimensional semiconductors. Appl Phys Lett, 2013, 102:012111 doi: 10.1063/1.4774090
[20]
Komsa H, Krasheninnikov A. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys Rev B, 2013, 88:085318 doi: 10.1103/PhysRevB.88.085318
[21]
Huo N J, Kang J, Wei Z M, et al. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv Funct Mater, 2014, 24:7025 doi: 10.1002/adfm.201401504
[22]
Hao N J, Tangay S, Guo W L, et al. Novel optical and electrical transport properties in atomically thin WSe2/MoS2 p-n heterostructures. Adv Electron Mater, 2015, 1:1400066 doi: 10.1002/aelm.201400066
[23]
Huo N J, Yang J H, Huang L, et al. Tunable polarity behavior and self-driven photoswitching in p-WSe2/n-WS2 heterojunctions. Small, 2015, 11:5430 doi: 10.1002/smll.v11.40
[24]
Wang Y, Ni Z H, Shen Z X. Interference enhancement of Raman signal of graphene. Appl Phys Lett, 2008, 92:043121 doi: 10.1063/1.2838745
[25]
Zhao Y, Luo X, Li H, et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett, 2013, 13:1007 doi: 10.1021/nl304169w
[26]
Li H, Lu G, Wang Y, et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small, 2013, 9:1974 doi: 10.1002/smll.v9.11
[27]
Huo N J, Yang S X, Wei Z M, et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci Rep, 2014, 4:5209 https://www.researchgate.net/publication/262941838_Photoresponsive_and_Gas_Sensing_Field-Effect_Transistors_based_on_Multilayer_WS2_Nanoflakes
[28]
Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetector. Adv Mater, 2015, 27:176 doi: 10.1002/adma.v27.1
[29]
Huo N J, Wei Z M, Meng X Q, et al. Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2. J Mater Chem C, 2015, 3:5467
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 7203 Times PDF downloads: 155 Times Cited by: 0 Times

    History

    Received: 27 September 2016 Revised: 13 January 2017 Online: Published: 01 March 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Nengjie Huo, Yujue Yang, Jingbo Li. Optoelectronics based on 2D TMDs and heterostructures[J]. Journal of Semiconductors, 2017, 38(3): 031002. doi: 10.1088/1674-4926/38/3/031002 N J Huo, Y J Yang, J B Li. Optoelectronics based on 2D TMDs and heterostructures[J]. J. Semicond., 2017, 38(3): 031002. doi: 10.1088/1674-4926/38/3/031002.Export: BibTex EndNote
      Citation:
      Nengjie Huo, Yujue Yang, Jingbo Li. Optoelectronics based on 2D TMDs and heterostructures[J]. Journal of Semiconductors, 2017, 38(3): 031002. doi: 10.1088/1674-4926/38/3/031002

      N J Huo, Y J Yang, J B Li. Optoelectronics based on 2D TMDs and heterostructures[J]. J. Semicond., 2017, 38(3): 031002. doi: 10.1088/1674-4926/38/3/031002.
      Export: BibTex EndNote

      Optoelectronics based on 2D TMDs and heterostructures

      doi: 10.1088/1674-4926/38/3/031002
      More Information
      • Corresponding author:

        Email: jbli@semi.ac.cn

      • Received Date: 2016-09-27
      • Revised Date: 2017-01-13
      • Published Date: 2017-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return