SPECIAL TOPIC ON 2D MATERIALS AND DEVICES

Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings

Qing-Hai Tan1, 2, Xin Zhang1, Xiang-Dong Luo1, 3, Jun Zhang1, 2 and Ping-Heng Tan1, 2,

+ Author Affiliations

 Corresponding author: Ping-Heng Tan,Email:phtan@semi.ac.cn

PDF

Abstract: Two-dimensional transition metal dichalcogenides (TMDs) have attracted extensive attention due to their many novel properties. The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds, while van der Waals interactions combine the layers together. This makes its lattice dynamics layer-number dependent. The evolutions of ultralow frequency (<50 cm-1) modes, such as shear and layer-breathing modes have been well-established. Here, we review the layer-number dependent high-frequency (>50 cm-1) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes, known as Davydov splitting. Such Davydov splitting can be well described by a van der Waals model, which directly links the splitting with the interlayer coupling. Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials.

Key words: transition metal dichalcogenidesRaman spectroscopyinterlayer couplingDavydov splittingvan der Waals model



[1]
Splendiani A, Sun L, Zhang Y B, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10(16):1271
[2]
Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2:a new direct-gap semiconductor. Phys Rev Lett, 2010, 105(20):136805
[3]
Cao T, Wang G, Han W P, et al. Alley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun, 2012, 3(8):887
[4]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(10):419
[5]
Dean C, Young A F, Wang L, et al. Graphene based heterostructures. Solid State Commun, 2012, 152(6):1275
[6]
Liang L B, Meunier V. First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale, 2014, 6(4):5394
[7]
Lou Z, Liang Z Z, Shen G Z. Photodetectors based on two dimensional materials. J Semicond, 2016, 37(9):091001 doi: 10.1088/1674-4926/37/9/091001
[8]
Xia C X, Li J B. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J Semicond, 2016, 37(5):051001 doi: 10.1088/1674-4926/37/5/051001
[9]
Lee C G, Yan H G, Brus L E, et al. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano, 2010, 4(9):2695
[10]
Zhang X, Qiao X F, Shi W, et al. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem Soc Rev, 2015, 44(1):2757 http://www.pubfacts.com/detail/25679474/Phonon-and-Raman-scattering-of-two-dimensional-transition-metal-dichalcogenides-from-monolayer-multi
[11]
Puretzky A A, Liang L B, Li X F, et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano, 2015, 9(53):6333 doi: 10.1021/acsnano.5b01884
[12]
WuJB,WangH,LiXL,etal.Ramanspectroscopiccharacterization of stacking configuration and interlayer coupling of twisted multilayer graphene grown by chemical vapor deposition. Carbon, 2016, 110(9):225
[13]
Zhang X, Han W P, Qiao X F, et al. Raman characterization of AB- and ABC-stacked few-layer graphene by interlayer shear modes. Carbon, 2016, 99(10):118 https://www.researchgate.net/publication/285363326_Raman_characterization_of_AB-_and_ABC-stacked_few-layer_graphene_by_interlayer_shear_modes
[14]
Zhang X, Tan Q H, Wu J B, et al. Review on the Raman spectroscopyofdifferenttypesoflayeredmaterials.Nanoscale,2016, 8:6435 doi: 10.1039/C5NR07205K
[15]
Tan P H, Han W P, Zhao W J, et al. The shear mode of multilayer graphene. Nat Mater, 2012, 11(6):294 https://www.researchgate.net/publication/221807338_The_shear_mode_of_multilayer_graphene
[16]
Zhang X, Han W P, Wu J B. et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys Rev B, 2013, 87(1):115413 http://adsabs.harvard.edu/abs/2013PhRvB..87k5413Z
[17]
Zhao Y Y, Luo X, Li H, et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett, 2013, 13(2):1007
[18]
Qiao X F, Li X L, Zhang X, et al. Substrate-free layernumber identification of two-dimensional materials:a case of Mo0.5W0.5S2 alloy. Appl Phys Lett, 2015, 106(22):223102 doi: 10.1063/1.4921911
[19]
Zallen R, Slade M L, Ward A T. Lattice vibrations and interlayer interactions in crystalline As2S3 and As2Se3. Phys Rev B, 1971, 3(17):4257
[20]
Wieting T J, Verble J L. Interlayer bonding and the lattice vibrations of β-GaSe. Phys Rev B, 1972, 5(0):1473
[21]
Song Q J, Tan Q H, Zhang X, et al. Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2. Phys Rev B, 2016, 93(9):115409 https://www.researchgate.net/publication/297659051_Physical_origin_of_Davydov_splitting_and_resonant_Raman_spectroscopy_of_Davydov_components_in_multilayer_MoTe2
[22]
Kim K, Lee J U, Nam D, et al. Davydov splitting and excitonic resonance effects in Raman spectra of few-layer MoSe2. ACS Nano, 2016, 10(8):8113 doi: 10.1021/acsnano.6b04471
[23]
Verble L, Wieting T J. Lattice mode degeneracy in MoS2 and other layer compounds. Phys Rev B, 1970, 25(4):362
[24]
Wieting T J, Verble J L. Infrared and Raman studies of longwavelength optical phonons in hexagonal MoS2. Phys Rev B, 1971, 3(0):4286
[25]
Tonndorf P, Schmidt R, Philipp B, et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt Express, 2013, 21(4):4908 doi: 10.1364/OE.21.004908
[26]
Staiger M, Gillen R, Scheuschner N, et al. Splitting of monolayer out-of-plane A'1 Raman mode in few-layer WS2. Phys Rev B, 2015, 91(8):195419
[27]
Froehlicher G, Lorchat E, Fernique F, et al. Unified description of the optical phonon modes in n-layer MoTe2. Nano Lett, 2015, 15(10):6481 doi: 10.1021/acs.nanolett.5b02683
[28]
Ghosh P N, Maiti C R. Interlayer force and Davydov splitting in 2H-MoS2. Phys Rev B, 1983, 28(3):2237
[29]
Wu J B, Zhang X, Ijaes M, et al. Resonant Raman spectroscopy of twisted multilayer graphene. Nat Commun, 2014, 5(7):5309
[30]
Lin M L, Ran F R, Qiao X F, et al. Ultralow-frequency Raman system down to 10 cm-1 with longpass edge filters and its application to the interface coupling in t(2+2) LGs. Rev Sci Instrum, 2016, 87(5):053122 doi: 10.1063/1.4952384
Fig. 1.  (Color online) (a) The atoms displacements of (a) layer breathing (LB) modes and (b) A1'-like modes in 1-4L MX2. (o) and (i) represent that two X atoms in adjacent layers vibrate out-of-phase and in-phase, respectively.

Fig. 2.  (Color online) Raman spectra of A1'-like modes in 1-6L (a) MoTe2 flakes [21] and (b) MoSe2 flakes [22].

Fig. 3.  (Color online) (a) Atomic displacements of LB and A1'-like modes in 4L MX2 [21]. (b) The experimental (Exp) frequency (solid red circles) and the calculated one based on the vdW model for the A1'-like modes in 1-6L MoTe2 flakes [21]. (c) The experimental (Exp) frequency (solid red circles) and the calculated one based on the vdW model for the A1'-like modes in 1-6L MoSe2 flakes [22]. The solid line is a guide for the eye.

Fig. 4.  (Color online) The calculated (Cal.) frequency of each Davydov component for A1'-like and E''-like modes (blue diamonds) in 1-8L (a) MoTe2, (b) MoSe2 and (c) MoS2 flakes based on the vdW model. The experimental (Exp.) frequency of the Davydov component with the highest frequency (pink circles) in MoTe2, MoSe2 and MoS2 flakes is used as a reference frequency for calculation. The Raman-active (R) and infrared-active modes are shown by solid and open diamonds, respectively.

[1]
Splendiani A, Sun L, Zhang Y B, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10(16):1271
[2]
Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2:a new direct-gap semiconductor. Phys Rev Lett, 2010, 105(20):136805
[3]
Cao T, Wang G, Han W P, et al. Alley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun, 2012, 3(8):887
[4]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(10):419
[5]
Dean C, Young A F, Wang L, et al. Graphene based heterostructures. Solid State Commun, 2012, 152(6):1275
[6]
Liang L B, Meunier V. First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale, 2014, 6(4):5394
[7]
Lou Z, Liang Z Z, Shen G Z. Photodetectors based on two dimensional materials. J Semicond, 2016, 37(9):091001 doi: 10.1088/1674-4926/37/9/091001
[8]
Xia C X, Li J B. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J Semicond, 2016, 37(5):051001 doi: 10.1088/1674-4926/37/5/051001
[9]
Lee C G, Yan H G, Brus L E, et al. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano, 2010, 4(9):2695
[10]
Zhang X, Qiao X F, Shi W, et al. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem Soc Rev, 2015, 44(1):2757 http://www.pubfacts.com/detail/25679474/Phonon-and-Raman-scattering-of-two-dimensional-transition-metal-dichalcogenides-from-monolayer-multi
[11]
Puretzky A A, Liang L B, Li X F, et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano, 2015, 9(53):6333 doi: 10.1021/acsnano.5b01884
[12]
WuJB,WangH,LiXL,etal.Ramanspectroscopiccharacterization of stacking configuration and interlayer coupling of twisted multilayer graphene grown by chemical vapor deposition. Carbon, 2016, 110(9):225
[13]
Zhang X, Han W P, Qiao X F, et al. Raman characterization of AB- and ABC-stacked few-layer graphene by interlayer shear modes. Carbon, 2016, 99(10):118 https://www.researchgate.net/publication/285363326_Raman_characterization_of_AB-_and_ABC-stacked_few-layer_graphene_by_interlayer_shear_modes
[14]
Zhang X, Tan Q H, Wu J B, et al. Review on the Raman spectroscopyofdifferenttypesoflayeredmaterials.Nanoscale,2016, 8:6435 doi: 10.1039/C5NR07205K
[15]
Tan P H, Han W P, Zhao W J, et al. The shear mode of multilayer graphene. Nat Mater, 2012, 11(6):294 https://www.researchgate.net/publication/221807338_The_shear_mode_of_multilayer_graphene
[16]
Zhang X, Han W P, Wu J B. et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys Rev B, 2013, 87(1):115413 http://adsabs.harvard.edu/abs/2013PhRvB..87k5413Z
[17]
Zhao Y Y, Luo X, Li H, et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett, 2013, 13(2):1007
[18]
Qiao X F, Li X L, Zhang X, et al. Substrate-free layernumber identification of two-dimensional materials:a case of Mo0.5W0.5S2 alloy. Appl Phys Lett, 2015, 106(22):223102 doi: 10.1063/1.4921911
[19]
Zallen R, Slade M L, Ward A T. Lattice vibrations and interlayer interactions in crystalline As2S3 and As2Se3. Phys Rev B, 1971, 3(17):4257
[20]
Wieting T J, Verble J L. Interlayer bonding and the lattice vibrations of β-GaSe. Phys Rev B, 1972, 5(0):1473
[21]
Song Q J, Tan Q H, Zhang X, et al. Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2. Phys Rev B, 2016, 93(9):115409 https://www.researchgate.net/publication/297659051_Physical_origin_of_Davydov_splitting_and_resonant_Raman_spectroscopy_of_Davydov_components_in_multilayer_MoTe2
[22]
Kim K, Lee J U, Nam D, et al. Davydov splitting and excitonic resonance effects in Raman spectra of few-layer MoSe2. ACS Nano, 2016, 10(8):8113 doi: 10.1021/acsnano.6b04471
[23]
Verble L, Wieting T J. Lattice mode degeneracy in MoS2 and other layer compounds. Phys Rev B, 1970, 25(4):362
[24]
Wieting T J, Verble J L. Infrared and Raman studies of longwavelength optical phonons in hexagonal MoS2. Phys Rev B, 1971, 3(0):4286
[25]
Tonndorf P, Schmidt R, Philipp B, et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt Express, 2013, 21(4):4908 doi: 10.1364/OE.21.004908
[26]
Staiger M, Gillen R, Scheuschner N, et al. Splitting of monolayer out-of-plane A'1 Raman mode in few-layer WS2. Phys Rev B, 2015, 91(8):195419
[27]
Froehlicher G, Lorchat E, Fernique F, et al. Unified description of the optical phonon modes in n-layer MoTe2. Nano Lett, 2015, 15(10):6481 doi: 10.1021/acs.nanolett.5b02683
[28]
Ghosh P N, Maiti C R. Interlayer force and Davydov splitting in 2H-MoS2. Phys Rev B, 1983, 28(3):2237
[29]
Wu J B, Zhang X, Ijaes M, et al. Resonant Raman spectroscopy of twisted multilayer graphene. Nat Commun, 2014, 5(7):5309
[30]
Lin M L, Ran F R, Qiao X F, et al. Ultralow-frequency Raman system down to 10 cm-1 with longpass edge filters and its application to the interface coupling in t(2+2) LGs. Rev Sci Instrum, 2016, 87(5):053122 doi: 10.1063/1.4952384
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4055 Times PDF downloads: 32 Times Cited by: 0 Times

    History

    Received: 08 November 2016 Revised: 30 December 2016 Online: Published: 01 March 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qing-Hai Tan, Xin Zhang, Xiang-Dong Luo, Jun Zhang, Ping-Heng Tan. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings[J]. Journal of Semiconductors, 2017, 38(3): 031006. doi: 10.1088/1674-4926/38/3/031006 Q H Tan, X Zhang, X D Luo, J Zhang, P H Tan. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings[J]. J. Semicond., 2017, 38(3): 031006. doi:  10.1088/1674-4926/38/3/031006.Export: BibTex EndNote
      Citation:
      Qing-Hai Tan, Xin Zhang, Xiang-Dong Luo, Jun Zhang, Ping-Heng Tan. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings[J]. Journal of Semiconductors, 2017, 38(3): 031006. doi: 10.1088/1674-4926/38/3/031006

      Q H Tan, X Zhang, X D Luo, J Zhang, P H Tan. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings[J]. J. Semicond., 2017, 38(3): 031006. doi:  10.1088/1674-4926/38/3/031006.
      Export: BibTex EndNote

      Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings

      doi: 10.1088/1674-4926/38/3/031006
      Funds:

      Project supported by the National Basic Research Program of China (No.2016YFA0301200),the National Natural Science Foundation of China (Nos.11225421,11474277,11434010,61474067,11604326,11574305 and 51527901),and the National Young 1000 Talent Plan of China

      Project supported by the National Basic Research Program of China No.2016YFA0301200

      the National Natural Science Foundation of China Nos.11225421,11474277,11434010,61474067,11604326,11574305 and 51527901

      and the National Young 1000 Talent Plan of China 

      More Information
      • Corresponding author: Ping-Heng Tan,Email:phtan@semi.ac.cn
      • Received Date: 2016-11-08
      • Revised Date: 2016-12-30
      • Published Date: 2017-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return