SEMICONDUCTOR PHYSICS

Identification of strained black phosphorous by Raman spectroscopy

Jiawei Wan, Junhong Guo and Fangren Hu

+ Author Affiliations

 Corresponding author: Guo Junhong, Email: jhguo@njupt.edu.cn; Hu Fangren, hufr@njupt.edu.cn

PDF

Abstract: Phosphorene has a very high hole mobility and can be a tuned band structure, and has become an ideal material for electronic devices. For this new type of two-dimensional material, in the applied strain, black phosphorus (BP) can be changed into an indirect band gap and metallic materials from the direct band gap semiconductor material, which greatly affect its inherent physical characteristics. How to identify strained microstructure changes becomes an important problem. The calculated Raman spectra disclose that the Ag2 mode and B2g mode will split and the Raman spectra appear, while the Ag1 mode is shifted to low-frequency region. The deformation induced by strain will effectively change the Raman mode position and intensity, this can be used to identify phosphorus changes.

Key words: black phosphorusstrainRaman scatteringDFT



[1]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666 doi: 10.1126/science.1102896
[2]
Liao L, Lin Y C, Bao M Q. High speed graphene transistors with a self-aligned nanowire gate. Nature, 2010, 467: 305 doi: 10.1038/nature09405
[3]
Wu Y Q, Lin Y M, Bol A A. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 7341: 74 https://www.researchgate.net/publication/51034415_High-frequency_scaled_graphene_transistors_on_diamond-like_carbon
[4]
Mak K F, Lee C G, James H. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805 doi: 10.1103/PhysRevLett.105.136805
[5]
Guo J H. Magnetism in alkali-metal-doped wurtzite semiconductor materials controlled by strain engineering. J Appl Phys, 2016, 120: 125101 doi: 10.1063/1.4962857
[6]
Li L K, Yu Y J, Ye G J. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9: 372 doi: 10.1038/nnano.2014.35
[7]
Asahina H, Shindo K, Morita A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J Phys Soc Jpn, 1982, 51: 1193 doi: 10.1143/JPSJ.51.1193
[8]
Reich E S. Phosphorene excites materials scientists. Nature, 2014, 506: 19 doi: 10.1038/506019a
[9]
Rodin A S, Carvalho A, Castro N A H. Strain-induced gap modification in black phosphorus. Phys Rev Lett, 2014, 112: 176801 doi: 10.1103/PhysRevLett.112.176801
[10]
Quereda J, San-Jose P, Parente V, et al. Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett, 2016, 16(5): 2931 doi: 10.1021/acs.nanolett.5b04670
[11]
Fei R X, Li Y. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett, 2014, 14(5): 2884 doi: 10.1021/nl500935z
[12]
Han X Y, Stewart H M, Shevlin S A, et al. Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett, 2014, 14(8): 4607 doi: 10.1021/nl501658d
[13]
[14]
Ling X, Liang L B, Huang S X, et al. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett, 2015, 15: 4080 doi: 10.1021/acs.nanolett.5b01117
[15]
Wu J X, Mao N, Xie L M, et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew Chem Int Ed Engl, 2015, 54: 2366 doi: 10.1002/anie.201410108
Fig. 1.  (Color online) (a) Lattice structure of black phosphorus. (b)--(d) the Raman modes of Ag2, Ag1 and B2g.

Fig. 2.  (Color online) The Raman spectra of black phosphorus without strain.

Fig. 3.  (Color online) The Raman spectra of black phosphorus with strain along x direction.

Fig. 4.  (Color online) The Raman spectra of black phosphorus with strain along y direction.

Fig. 5.  (Color online) The peak position of Raman modes of black phosphorus with strain along (a) x and (b) y direction.

[1]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666 doi: 10.1126/science.1102896
[2]
Liao L, Lin Y C, Bao M Q. High speed graphene transistors with a self-aligned nanowire gate. Nature, 2010, 467: 305 doi: 10.1038/nature09405
[3]
Wu Y Q, Lin Y M, Bol A A. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 7341: 74 https://www.researchgate.net/publication/51034415_High-frequency_scaled_graphene_transistors_on_diamond-like_carbon
[4]
Mak K F, Lee C G, James H. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805 doi: 10.1103/PhysRevLett.105.136805
[5]
Guo J H. Magnetism in alkali-metal-doped wurtzite semiconductor materials controlled by strain engineering. J Appl Phys, 2016, 120: 125101 doi: 10.1063/1.4962857
[6]
Li L K, Yu Y J, Ye G J. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9: 372 doi: 10.1038/nnano.2014.35
[7]
Asahina H, Shindo K, Morita A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J Phys Soc Jpn, 1982, 51: 1193 doi: 10.1143/JPSJ.51.1193
[8]
Reich E S. Phosphorene excites materials scientists. Nature, 2014, 506: 19 doi: 10.1038/506019a
[9]
Rodin A S, Carvalho A, Castro N A H. Strain-induced gap modification in black phosphorus. Phys Rev Lett, 2014, 112: 176801 doi: 10.1103/PhysRevLett.112.176801
[10]
Quereda J, San-Jose P, Parente V, et al. Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett, 2016, 16(5): 2931 doi: 10.1021/acs.nanolett.5b04670
[11]
Fei R X, Li Y. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett, 2014, 14(5): 2884 doi: 10.1021/nl500935z
[12]
Han X Y, Stewart H M, Shevlin S A, et al. Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett, 2014, 14(8): 4607 doi: 10.1021/nl501658d
[13]
[14]
Ling X, Liang L B, Huang S X, et al. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett, 2015, 15: 4080 doi: 10.1021/acs.nanolett.5b01117
[15]
Wu J X, Mao N, Xie L M, et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew Chem Int Ed Engl, 2015, 54: 2366 doi: 10.1002/anie.201410108
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3608 Times PDF downloads: 21 Times Cited by: 0 Times

    History

    Received: 27 July 2016 Revised: 28 August 2016 Online: Published: 01 April 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jiawei Wan, Junhong Guo, Fangren Hu. Identification of strained black phosphorous by Raman spectroscopy[J]. Journal of Semiconductors, 2017, 38(4): 042003. doi: 10.1088/1674-4926/38/4/042003 J W Wan, J H Guo, F R Hu. Identification of strained black phosphorous by Raman spectroscopy[J]. J. Semicond., 2017, 38(4): 042003. doi: 10.1088/1674-4926/38/4/042003.Export: BibTex EndNote
      Citation:
      Jiawei Wan, Junhong Guo, Fangren Hu. Identification of strained black phosphorous by Raman spectroscopy[J]. Journal of Semiconductors, 2017, 38(4): 042003. doi: 10.1088/1674-4926/38/4/042003

      J W Wan, J H Guo, F R Hu. Identification of strained black phosphorous by Raman spectroscopy[J]. J. Semicond., 2017, 38(4): 042003. doi: 10.1088/1674-4926/38/4/042003.
      Export: BibTex EndNote

      Identification of strained black phosphorous by Raman spectroscopy

      doi: 10.1088/1674-4926/38/4/042003
      Funds:

      Project supported by the National Science Foundation of China (Nos. 61505085, 61574080, 61274127) and the Innovation Project of Jiangsu Graduate Student, China (No. SJLX15_0379)

      the National Science Foundation of China 61505085

      the National Science Foundation of China 61274127

      the National Science Foundation of China 61574080

      the Innovation Project of Jiangsu Graduate Student, China SJLX15_0379

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return