SEMICONDUCTOR DEVICES

Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells

Shihua Huang, Qiannan Li, Dan Chi, Xiuqing Meng and Lü He

+ Author Affiliations

 Corresponding author: Shihua Huang, Email: huangshihua@zjnu.cn

PDF

Abstract: Taking into account defect density in WSe2, interface recombination between ZnO and WSe2, we presented a simulation study of ZnO/crystalline WSe2 heterojunction (HJ) solar cell using wxAMPS simulation software. The optimal conversion efficiency 39.07% for n-ZnO/p-c-WSe2 HJ solar cell can be realized without considering the impact of defects. High defect density (> 1.0 × 1011 cm-2) in c-WSe2 and large trap cross-section (> 1.0 × 10-10 cm2) have serious impact on solar cell efficiency. A thin p-WSe2 layer is intentionally inserted between ZnO layer and c-WSe2 to investigate the effect of the interface recombination. The interface properties are very crucial to the performance of ZnO/c-WSe2HJ solar cell. The affinity of ZnO value range between 3.7-4.5 eV gives the best conversion efficiency.

Key words: simulationheterojunction solar cellstransport properties



[1]
Hossain M I, Alharbi F H. Recent advances in alternative material photovoltaics. Mater Technol, 2013, 28: 88 doi: 10.1179/1753555712Y.0000000039
[2]
Jaegermann W, Tributsch H. Interfacial properties of semiconducting transition metal chalcogenides. Progr Surf Sci, 1988, 29: 1 doi: 10.1016/0079-6816(88)90015-9
[3]
Tsirlina T, Cohen S, Cohen H, et al. Growth of crystalline WSe2 and WS2 films on amorphous substrate by reactive (Van der Waals) rheotaxy. Sol Energ Mat Sol C, 1996, 44: 457 doi: 10.1016/S0927-0248(96)00048-7
[4]
Davey B, Evans B L. The optical properties of MoTe2 and WSe2. Phys Status Solidi A, 1972, 483: 491
[5]
Bernede J C, Pouzet J, Gourmelon E, et al. Recent studies on photoconductive thin films of binary compounds. Synthetic Met, 1999, 99: 45 doi: 10.1016/S0379-6779(98)00199-4
[6]
Vogt M. Solid-state photovoltaic cells based on selenium-grown p-WSe2. PhD Thesis, University of Konstanz, 1992
[7]
Tenne R, Wold A. Passivation of recombination centers in n-WSe2 yields high efficiency ( > 14%) photo-electrochemical cell. Appl Phys Lett, 1985, 47: 707 doi: 10.1063/1.96066
[8]
Prasad G, Srivastava O N. The high-efficiency (17.1%) WSe2 photo-electrochemical solar cell. J Phys D, 1988, 21: 1028 doi: 10.1088/0022-3727/21/6/029
[9]
Joseph B, Manoj P K, Vajdyan V K. Studies on preparation and characterization of indium doped zinc oxide films by chemical spray deposition. Bull Mater Science, 2005, 28: 487 doi: 10.1007/BF02711242
[10]
Yusta F J, Hitchman M L, Shamlian S H. CVD preparation and characterization of tin dioxide films for electrochemical applications. J Mater Chem, 1997, 7: 1421 doi: 10.1039/a608525c
[11]
Vogt M, Lux-Steiner M, Dolatzoglou P, et al. Improvement of WSe2 solar cells by doping. Photovoltaic Specialists Conference, 1990
[12]
Zhu H, Kalkan A K, Hou J. Applications of AMPS-1D for solar cell simulation. Proceedings of the National Center for Photovoltaics (NCPV) 15th Program Review Meeting, 1999
[13]
Liu Y, Sun Y, Rockett A. A new simulation software of solar cells-wxAMPS. Sol Energ Mat Sol C, 2012, 98: 124 doi: 10.1016/j.solmat.2011.10.010
[14]
[15]
Ma Q, Kyureghian H, Banninga J D, et al. Thin film WSe2 for use as a photovoltaic absorber material. MRS Proceedings, 2014
[16]
[17]
Lang Q, Tomm Y, Schlaf R, et al. Single crystalline GaSe/WSe2 heterointerfaces grown by van der waals epitaxy. â…¡. junction characterization. J Appl Phys, 1994, 75: 7814 doi: 10.1063/1.356563
[18]
Kim M S, Yim K G, Son J S, et al. Effects of Al concentration on structural and optical properties of Al-doped ZnO thin films. Chem Soc, 2012, 33: 1235 https://www.researchgate.net/publication/276013425_Effects_of_Al_Concentration_on_Structural_and_Optical_Properties_of_Al-doped_ZnO_Thin_Films
[19]
Kim W H, Maen W J, Kim M K, et al. Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes. J Electrochem Soc, 2011, 158: D495 doi: 10.1149/1.3599055
[20]
Madelung O. Semiconductors: data handbook. 3rd ed. Springer, 2014
[21]
Huang B, Yoon M, Sumpter B G, et al. Alloy engineering of defect properties in semiconductors: suppression of deep levels in transition-metal dichalcogenides. Phys Rev Lett, 2015, 115: 126806 doi: 10.1103/PhysRevLett.115.126806
[22]
Aruchamy A. Photo-electrochemistry and photovoltaics of layered semiconductors. Kluwer Academic Publishers, Dordrecht, 1992
[23]
Klein A. Energy band alignment at interfaces of semiconducting oxides: a review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion. Thin Solid Films, 2012, 520: 3721 doi: 10.1016/j.tsf.2011.10.055
Fig. 1.  Energy band diagram for n-ZnO/p-c-WSe2 HJ structure.

Fig. 2.  Current density as a function of voltage for n-WSe2/p-c-WSe2 homojunction and n-ZnO/p-c-WSe2 HJ solar cells without considering the impact of defects.

Fig. 3.  Conversion efficiency as a function of (a) defect density and (b) trap cross-section of n-ZnO/p-c-WSe2 HJ solar cell.

Fig. 4.  Conversion efficiency as a function of (a) recombination layer thickness and (b) trap cross-section of n-ZnO/p-WSe2 (recombination layer) /p-c-WSe2 HJ solar cell.

Fig. 5.  Efficiency as a function of affinity of the ZnO of n-ZnO/p-c-WSe2 HJ solar cell.

Table 1.   Main parameters for simulation.

[1]
Hossain M I, Alharbi F H. Recent advances in alternative material photovoltaics. Mater Technol, 2013, 28: 88 doi: 10.1179/1753555712Y.0000000039
[2]
Jaegermann W, Tributsch H. Interfacial properties of semiconducting transition metal chalcogenides. Progr Surf Sci, 1988, 29: 1 doi: 10.1016/0079-6816(88)90015-9
[3]
Tsirlina T, Cohen S, Cohen H, et al. Growth of crystalline WSe2 and WS2 films on amorphous substrate by reactive (Van der Waals) rheotaxy. Sol Energ Mat Sol C, 1996, 44: 457 doi: 10.1016/S0927-0248(96)00048-7
[4]
Davey B, Evans B L. The optical properties of MoTe2 and WSe2. Phys Status Solidi A, 1972, 483: 491
[5]
Bernede J C, Pouzet J, Gourmelon E, et al. Recent studies on photoconductive thin films of binary compounds. Synthetic Met, 1999, 99: 45 doi: 10.1016/S0379-6779(98)00199-4
[6]
Vogt M. Solid-state photovoltaic cells based on selenium-grown p-WSe2. PhD Thesis, University of Konstanz, 1992
[7]
Tenne R, Wold A. Passivation of recombination centers in n-WSe2 yields high efficiency ( > 14%) photo-electrochemical cell. Appl Phys Lett, 1985, 47: 707 doi: 10.1063/1.96066
[8]
Prasad G, Srivastava O N. The high-efficiency (17.1%) WSe2 photo-electrochemical solar cell. J Phys D, 1988, 21: 1028 doi: 10.1088/0022-3727/21/6/029
[9]
Joseph B, Manoj P K, Vajdyan V K. Studies on preparation and characterization of indium doped zinc oxide films by chemical spray deposition. Bull Mater Science, 2005, 28: 487 doi: 10.1007/BF02711242
[10]
Yusta F J, Hitchman M L, Shamlian S H. CVD preparation and characterization of tin dioxide films for electrochemical applications. J Mater Chem, 1997, 7: 1421 doi: 10.1039/a608525c
[11]
Vogt M, Lux-Steiner M, Dolatzoglou P, et al. Improvement of WSe2 solar cells by doping. Photovoltaic Specialists Conference, 1990
[12]
Zhu H, Kalkan A K, Hou J. Applications of AMPS-1D for solar cell simulation. Proceedings of the National Center for Photovoltaics (NCPV) 15th Program Review Meeting, 1999
[13]
Liu Y, Sun Y, Rockett A. A new simulation software of solar cells-wxAMPS. Sol Energ Mat Sol C, 2012, 98: 124 doi: 10.1016/j.solmat.2011.10.010
[14]
[15]
Ma Q, Kyureghian H, Banninga J D, et al. Thin film WSe2 for use as a photovoltaic absorber material. MRS Proceedings, 2014
[16]
[17]
Lang Q, Tomm Y, Schlaf R, et al. Single crystalline GaSe/WSe2 heterointerfaces grown by van der waals epitaxy. â…¡. junction characterization. J Appl Phys, 1994, 75: 7814 doi: 10.1063/1.356563
[18]
Kim M S, Yim K G, Son J S, et al. Effects of Al concentration on structural and optical properties of Al-doped ZnO thin films. Chem Soc, 2012, 33: 1235 https://www.researchgate.net/publication/276013425_Effects_of_Al_Concentration_on_Structural_and_Optical_Properties_of_Al-doped_ZnO_Thin_Films
[19]
Kim W H, Maen W J, Kim M K, et al. Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes. J Electrochem Soc, 2011, 158: D495 doi: 10.1149/1.3599055
[20]
Madelung O. Semiconductors: data handbook. 3rd ed. Springer, 2014
[21]
Huang B, Yoon M, Sumpter B G, et al. Alloy engineering of defect properties in semiconductors: suppression of deep levels in transition-metal dichalcogenides. Phys Rev Lett, 2015, 115: 126806 doi: 10.1103/PhysRevLett.115.126806
[22]
Aruchamy A. Photo-electrochemistry and photovoltaics of layered semiconductors. Kluwer Academic Publishers, Dordrecht, 1992
[23]
Klein A. Energy band alignment at interfaces of semiconducting oxides: a review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion. Thin Solid Films, 2012, 520: 3721 doi: 10.1016/j.tsf.2011.10.055
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3301 Times PDF downloads: 30 Times Cited by: 0 Times

    History

    Received: 10 September 2016 Revised: 28 October 2016 Online: Published: 01 April 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shihua Huang, Qiannan Li, Dan Chi, Xiuqing Meng, Lü He. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells[J]. Journal of Semiconductors, 2017, 38(4): 044008. doi: 10.1088/1674-4926/38/4/044008 S H Huang, Q N Li, D Chi, X Q Meng, L He. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells[J]. J. Semicond., 2017, 38(4): 044008. doi: 10.1088/1674-4926/38/4/044008.Export: BibTex EndNote
      Citation:
      Shihua Huang, Qiannan Li, Dan Chi, Xiuqing Meng, Lü He. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells[J]. Journal of Semiconductors, 2017, 38(4): 044008. doi: 10.1088/1674-4926/38/4/044008

      S H Huang, Q N Li, D Chi, X Q Meng, L He. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells[J]. J. Semicond., 2017, 38(4): 044008. doi: 10.1088/1674-4926/38/4/044008.
      Export: BibTex EndNote

      Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells

      doi: 10.1088/1674-4926/38/4/044008
      Funds:

      the Natural Science Foundation of Zhejiang Province LY17F040001

      the Zhejiang Provincial Key Laboratory 2013E10022

      the Zhejiang Provincial Science and Technology Key Innovation Team 2011R50012

      Project supported by the Natural Science Foundation of Zhejiang Province (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022)

      the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences M201503

      the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University KF2015_02

      More Information
      • Corresponding author: Shihua Huang, Email: huangshihua@zjnu.cn
      • Received Date: 2016-09-10
      • Revised Date: 2016-10-28
      • Published Date: 2017-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return