SEMICONDUCTOR MATERIALS

Photodeposited FeOOH vs electrodeposited Co-Pi to enhance nanoporous BiVO4 for photoelectrochemical water splitting

Aihua Jia, Miao Kan, Jinping Jia and Yixin Zhao

+ Author Affiliations

 Corresponding author: Yixin Zhao, Email: yixin.zhao@sjtu.edu.cn

PDF

Abstract: Co-Pi and FeOOH cocatalysts were in-situ deposited on the surface of nanoporous BiVO4 photoelectrodes. The FeOOH cocatalyst has little effect on the BiVO4 samples'morphologies, while the electrodeposited Co-Pi cocatalyst seems to affect the surface of BiVO4.The impedance intensity modulated photocurrent spectroscopy (IMPS), Mott-Schottky (M-S) techniques characterize BiVO4 samples photoelectrochemical performance with the deposition of Co-Pi and FeOOH.The Co-Pi/BiVO4 shows better photoelectrochemical performance than the FeOOH/BiVO4, but the FeOOH/BiVO4 exhibited the better stabilities.The flat band potential and slope of M-S plotof FeOOH/BiVO4 have little variations compared with BiVO4.In contrast, Co-Pi/BiVO4 exhibited the down shifted flat band potential, which is beneficial for the photoelectrochemical water oxidation.The electron transfer measurements revealed that the deposition of FeOOH and Co-Pi onto BiVO4 significantly enhanced the photoelectrochemical performance via reducing the interface resistance and promoting the electron transport.Furthermore, Co-Pi cocatalysts can further pin the transport-limiting traps and significantly facilitate the electron transport.

Key words: BiVO4FeOOHCo-Piwater splitting



[1]
Walter M G, Warren E L, Mckone J R, et al. Solar water splitting cells. Chem Rev, 2010, 110(11): 6646 https://core.ac.uk/display/4887222
[2]
Bak T, Nowotny J, Rekas M, et al. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrogen Energy, 2002, 27(10): 991 doi: 10.1016/S0360-3199(02)00022-8
[3]
Li J, Li L, Zheng L, et al. Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcination method. Electrochim Acta, 2006, 51(23): 4942 doi: 10.1016/j.electacta.2006.01.037
[4]
Zhu N K K, Neale N R, Van De Lagemaat J, et al. Influence of surface area on charge transport and recombination in dye-sensitized TiO2 solar cells. J Phys Chem B, 2006, 110(50): 25174 doi: 10.1021/jp065284+
[5]
Halverson A F, Zhu K, Erslev P T, et al. Perturbation of the electron transport mechanism by proton intercalation in nanoporous TiO2 films. Nano Lett, 2012, 12(4): 2112 doi: 10.1021/nl300399w
[6]
Macak J M, Tsuchiya H, Ghicov A, et al. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci, 2007, 11(1/2): 3 http://www.sciencedirect.com/science/article/pii/S1359028607000496
[7]
Hwang Y J, Hahn C, Liu B, et al. Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano, 2012, 6(6): 5060 doi: 10.1021/nn300679d
[8]
Sang L, Zhao Y, Burda C. TiO2 nanoparticles as functional building blocks. Chem Rev, 2014, 114(19): 9283 doi: 10.1021/cr400629p
[9]
Ai G J, Li H X, Liu S P, et al. Solar water splitting by TiO2/CdS/Co-Pi nanowire array photoanode enhanced with Co-Pi as hole transfer relay and CdS as light absorber. Adv Funct Mater, 2015, 25(35): 5706 doi: 10.1002/adfm.201502461
[10]
Nguyen N T, Altomare M, Yoo J E, et al. Noble metals on anodic TiO2 nanotube mouths: thermal dewetting of minimal Pt Co-catalyst loading leads to significantly enhanced photocatalytic H2 generation. Adv Energy Mater, 2016, 6(2): 1501926 doi: 10.1002/aenm.201501926
[11]
Galembeck A, Alves O. BiVO4 thin film preparation by metal organic decomposition. Thin Solid Films, 2000, 365(1): 90 doi: 10.1016/S0040-6090(99)01079-2
[12]
Ke D, Peng T, Ma L, et al. Photocatalytic water splitting for O2 production under visible-light irradiation on BiVO4 nanoparticles in different sacrificial reagent solutions. Appl Catal A, 2008, 350(1): 111 doi: 10.1016/j.apcata.2008.08.003
[13]
Chemseddine A, Ullrich K, Mete T, et al. Solution-processed multilayered BiVO4 photoanodes: influence of intermediate heat treatments on the photoactivity. J Mater Chem A, 2016, 4(5): 1723 doi: 10.1039/C5TA08472E
[14]
Su J Z, Guo L J, Bao N Z, et al. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett, 2011, 11(5): 1928 doi: 10.1021/nl2000743
[15]
Rossmeisl J, Qu Z W, Zhu H, et al. Electrolysis of water on oxide surfaces. J Electroanal Chem, 2007, 607(1/2): 83 https://www.researchgate.net/publication/229310161_Electrolysis_of_Water_on_Oxide_Surfaces
[16]
Lai Y H, Palm D W, Reisner E. Multifunctional coatings from scalable single source precursor chemistry in tandem photoelectrochemical water splitting. Adv Energy Mater, 2015, 5(24): 1501668 doi: 10.1002/aenm.201501668
[17]
Park Y, Mcdonald K J, Choi K S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev, 2013, 42(6): 2321 doi: 10.1039/C2CS35260E
[18]
Lettenmeier P, Wang L, Golla-Schindler U, et al. Nanosized IrO-Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew Chem Int Ed, 2015, 128(2): 752 https://www.researchgate.net/publication/284786466_Nanosized_IrO_x_-Ir_Catalyst_with_Relevant_Activity_for_Anodes_of_Proton_Exchange_Membrane_Electrolysis_Produced_by_a_Cost-Effective_Procedure
[19]
Zhao Y, Vargas-Barbosa N M, Strayer M E, et al. Understanding the effect of monomeric iridium (Ⅲ/Ⅳ) aquo complexes on the photoelectrochemistry of IrOx-nH2O-catalyzed water-splitting systems. J Am Chem Soc, 2015, 137(27): 8749 doi: 10.1021/jacs.5b03470
[20]
Lee Y, Suntivich J, May K J, et al. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett, 2012, 3(3): 399 doi: 10.1021/jz2016507?src=recsys&journalCode=jpclcd
[21]
Ye H, Park H S, Bard A J. Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J Phys Chem C, 2011, 115(25): 12464 doi: 10.1021/jp200852c
[22]
Choi T W, Ka K S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science, 2014, 343(6174): 990 doi: 10.1126/science.1246913
[23]
Seabold J A, Zhu K, Neale N R. Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport. Phys Chem Chem Phys, 2014, 16(3): 1121 doi: 10.1039/C3CP54356K
[24]
Pilli S K, Furtak T E, Brown L D, et al. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ Sci, 2011, 4(12): 5028 doi: 10.1039/c1ee02444b
[25]
Matthew W, Kanan D G N. In situ formation of an oxygen evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008, 321(5892): 1072 doi: 10.1126/science.1162018
[26]
Abdi F F, Firet N, VanDeKrol R. Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. Chem Cat Chem, 2013, 5(2): 490 https://www.researchgate.net/publication/259295156_Efficient_BiVO4_Thin_Film_Photoanodes_Modified_with_Cobalt_Phosphate_Catalyst_and_W-doping
[27]
Kuang Y, Jia Q, Nishiyama H, et al. A front-illuminated nanostructured transparent BiVO4 photoanode for > 2% efficient water splitting. Adv Energy Mater, 2016, 6(2): 1501645 doi: 10.1002/aenm.201501645
[28]
Mcdonald K J, Choi K S. A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ Sci, 2012, 5(9): 8553 doi: 10.1039/c2ee22608a
[29]
Zhong D K, Choi S, Gamelin D R. Near-complete suppression of surface recombination in solar photoelectrolysis by Co-Pi catalyst-modified W: BiVO4. J Am Chem Soc, 2011, 133(45): 18370 doi: 10.1021/ja207348x
[30]
Pilli S K, Deutsch T G, Furtak T E, et al. Light induced water oxidation on cobalt-phosphate (Co-Pi) catalyst modified semi-transparent, porous SiO2-BiVO4 electrodes. Phys Chem Chem Phys, 2012, 14(19): 7032 doi: 10.1039/c2cp40673j
[31]
Seabold J A, Neale N R. All first row transition metal oxide photoanode for water splitting based on Cu3V2O8. Chem Mater, 2015, 27(3): 1005 doi: 10.1021/cm504327f
[32]
Abdi F F, Van De Krol R. Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4. photoanodes. J Phys Chem C, 2012, 116(17): 9398 doi: 10.1021/jp3007552
[33]
Nair V, Perkins C L, Lin Q, et al. Textured nanoporous Mo:BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution. Energy Env-iron Sci, 2016, 9(4): 1412 doi: 10.1039/C6EE00129G
[34]
Berglund S P, Flaherty D W, Hahn N T, et al. Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J Phys Chem C, 2011, 115(9): 3794 doi: 10.1021/jp1109459
[35]
Hong S J, Lee S, Jang J S, et al. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci, 2011, 4(5): 1781 doi: 10.1039/c0ee00743a
[36]
Li W, He D, Sheehan S W, et al. Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation. Energy Environ Sci, 2016, 9(5): 1794 doi: 10.1039/C5EE03871E
Fig. 1.  XRD patterns of BiVO4, FeOOH/BiVO4, Co-Pi/BiVO4 and the star is indexed for the XRD peaks of FTO substrate. The SEM images and EDS elemental mapping of (b) BiVO4, (c) FeOOH/BiVO4 and (d) Co-Pi/BiVO4.

Fig. 2.  (Color online) (a) J-V light and (b) CV dark, (c) IPCE and (d) I-T curves of BiVO4, FeOOH/BiVO4, Co-Pi/BiVO4 in 0.5 M Na2SO4 with 0.2 M phosphate buffer at pH 7. The light source of J-V is AM 1.5, IPCE is white light accessory in Zahner work station.

Fig. 3.  (Color online) (a) Mott-Schottky plots of BiVO4, FeOOH/BiVO4 and Co-Pi/BiVO4 with 0.5 M Na2SO4 solutions in the darkroom. (b) Nyquist curves of projected electrodes with 100 mW/cm2, 0 V vs Ag/AgCl, 0.5M Na2SO4 with 0.2 M phosphate buffer at pH 7.

Fig. 4.  (Color online) IMPS data showing time constant versus photocurrent density of BiVO4, FeOOH/BiVO4 and Co-Pi/BiVO4 with front illuminated under various intensities of a white light in 0.1 M Na2SO3, 0.1 M NaH2PO4, and pH 7 electrolyte at 0.6 V vs Ag/AgCl.

Table 1.   Parameters of Rs-R|C model for semiconductor/electrolyte system.

[1]
Walter M G, Warren E L, Mckone J R, et al. Solar water splitting cells. Chem Rev, 2010, 110(11): 6646 https://core.ac.uk/display/4887222
[2]
Bak T, Nowotny J, Rekas M, et al. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrogen Energy, 2002, 27(10): 991 doi: 10.1016/S0360-3199(02)00022-8
[3]
Li J, Li L, Zheng L, et al. Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcination method. Electrochim Acta, 2006, 51(23): 4942 doi: 10.1016/j.electacta.2006.01.037
[4]
Zhu N K K, Neale N R, Van De Lagemaat J, et al. Influence of surface area on charge transport and recombination in dye-sensitized TiO2 solar cells. J Phys Chem B, 2006, 110(50): 25174 doi: 10.1021/jp065284+
[5]
Halverson A F, Zhu K, Erslev P T, et al. Perturbation of the electron transport mechanism by proton intercalation in nanoporous TiO2 films. Nano Lett, 2012, 12(4): 2112 doi: 10.1021/nl300399w
[6]
Macak J M, Tsuchiya H, Ghicov A, et al. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci, 2007, 11(1/2): 3 http://www.sciencedirect.com/science/article/pii/S1359028607000496
[7]
Hwang Y J, Hahn C, Liu B, et al. Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano, 2012, 6(6): 5060 doi: 10.1021/nn300679d
[8]
Sang L, Zhao Y, Burda C. TiO2 nanoparticles as functional building blocks. Chem Rev, 2014, 114(19): 9283 doi: 10.1021/cr400629p
[9]
Ai G J, Li H X, Liu S P, et al. Solar water splitting by TiO2/CdS/Co-Pi nanowire array photoanode enhanced with Co-Pi as hole transfer relay and CdS as light absorber. Adv Funct Mater, 2015, 25(35): 5706 doi: 10.1002/adfm.201502461
[10]
Nguyen N T, Altomare M, Yoo J E, et al. Noble metals on anodic TiO2 nanotube mouths: thermal dewetting of minimal Pt Co-catalyst loading leads to significantly enhanced photocatalytic H2 generation. Adv Energy Mater, 2016, 6(2): 1501926 doi: 10.1002/aenm.201501926
[11]
Galembeck A, Alves O. BiVO4 thin film preparation by metal organic decomposition. Thin Solid Films, 2000, 365(1): 90 doi: 10.1016/S0040-6090(99)01079-2
[12]
Ke D, Peng T, Ma L, et al. Photocatalytic water splitting for O2 production under visible-light irradiation on BiVO4 nanoparticles in different sacrificial reagent solutions. Appl Catal A, 2008, 350(1): 111 doi: 10.1016/j.apcata.2008.08.003
[13]
Chemseddine A, Ullrich K, Mete T, et al. Solution-processed multilayered BiVO4 photoanodes: influence of intermediate heat treatments on the photoactivity. J Mater Chem A, 2016, 4(5): 1723 doi: 10.1039/C5TA08472E
[14]
Su J Z, Guo L J, Bao N Z, et al. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett, 2011, 11(5): 1928 doi: 10.1021/nl2000743
[15]
Rossmeisl J, Qu Z W, Zhu H, et al. Electrolysis of water on oxide surfaces. J Electroanal Chem, 2007, 607(1/2): 83 https://www.researchgate.net/publication/229310161_Electrolysis_of_Water_on_Oxide_Surfaces
[16]
Lai Y H, Palm D W, Reisner E. Multifunctional coatings from scalable single source precursor chemistry in tandem photoelectrochemical water splitting. Adv Energy Mater, 2015, 5(24): 1501668 doi: 10.1002/aenm.201501668
[17]
Park Y, Mcdonald K J, Choi K S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev, 2013, 42(6): 2321 doi: 10.1039/C2CS35260E
[18]
Lettenmeier P, Wang L, Golla-Schindler U, et al. Nanosized IrO-Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew Chem Int Ed, 2015, 128(2): 752 https://www.researchgate.net/publication/284786466_Nanosized_IrO_x_-Ir_Catalyst_with_Relevant_Activity_for_Anodes_of_Proton_Exchange_Membrane_Electrolysis_Produced_by_a_Cost-Effective_Procedure
[19]
Zhao Y, Vargas-Barbosa N M, Strayer M E, et al. Understanding the effect of monomeric iridium (Ⅲ/Ⅳ) aquo complexes on the photoelectrochemistry of IrOx-nH2O-catalyzed water-splitting systems. J Am Chem Soc, 2015, 137(27): 8749 doi: 10.1021/jacs.5b03470
[20]
Lee Y, Suntivich J, May K J, et al. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett, 2012, 3(3): 399 doi: 10.1021/jz2016507?src=recsys&journalCode=jpclcd
[21]
Ye H, Park H S, Bard A J. Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J Phys Chem C, 2011, 115(25): 12464 doi: 10.1021/jp200852c
[22]
Choi T W, Ka K S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science, 2014, 343(6174): 990 doi: 10.1126/science.1246913
[23]
Seabold J A, Zhu K, Neale N R. Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport. Phys Chem Chem Phys, 2014, 16(3): 1121 doi: 10.1039/C3CP54356K
[24]
Pilli S K, Furtak T E, Brown L D, et al. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ Sci, 2011, 4(12): 5028 doi: 10.1039/c1ee02444b
[25]
Matthew W, Kanan D G N. In situ formation of an oxygen evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008, 321(5892): 1072 doi: 10.1126/science.1162018
[26]
Abdi F F, Firet N, VanDeKrol R. Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. Chem Cat Chem, 2013, 5(2): 490 https://www.researchgate.net/publication/259295156_Efficient_BiVO4_Thin_Film_Photoanodes_Modified_with_Cobalt_Phosphate_Catalyst_and_W-doping
[27]
Kuang Y, Jia Q, Nishiyama H, et al. A front-illuminated nanostructured transparent BiVO4 photoanode for > 2% efficient water splitting. Adv Energy Mater, 2016, 6(2): 1501645 doi: 10.1002/aenm.201501645
[28]
Mcdonald K J, Choi K S. A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ Sci, 2012, 5(9): 8553 doi: 10.1039/c2ee22608a
[29]
Zhong D K, Choi S, Gamelin D R. Near-complete suppression of surface recombination in solar photoelectrolysis by Co-Pi catalyst-modified W: BiVO4. J Am Chem Soc, 2011, 133(45): 18370 doi: 10.1021/ja207348x
[30]
Pilli S K, Deutsch T G, Furtak T E, et al. Light induced water oxidation on cobalt-phosphate (Co-Pi) catalyst modified semi-transparent, porous SiO2-BiVO4 electrodes. Phys Chem Chem Phys, 2012, 14(19): 7032 doi: 10.1039/c2cp40673j
[31]
Seabold J A, Neale N R. All first row transition metal oxide photoanode for water splitting based on Cu3V2O8. Chem Mater, 2015, 27(3): 1005 doi: 10.1021/cm504327f
[32]
Abdi F F, Van De Krol R. Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4. photoanodes. J Phys Chem C, 2012, 116(17): 9398 doi: 10.1021/jp3007552
[33]
Nair V, Perkins C L, Lin Q, et al. Textured nanoporous Mo:BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution. Energy Env-iron Sci, 2016, 9(4): 1412 doi: 10.1039/C6EE00129G
[34]
Berglund S P, Flaherty D W, Hahn N T, et al. Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J Phys Chem C, 2011, 115(9): 3794 doi: 10.1021/jp1109459
[35]
Hong S J, Lee S, Jang J S, et al. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci, 2011, 4(5): 1781 doi: 10.1039/c0ee00743a
[36]
Li W, He D, Sheehan S W, et al. Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation. Energy Environ Sci, 2016, 9(5): 1794 doi: 10.1039/C5EE03871E
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3364 Times PDF downloads: 30 Times Cited by: 0 Times

    History

    Received: 09 October 2016 Revised: 10 November 2016 Online: Published: 01 May 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Aihua Jia, Miao Kan, Jinping Jia, Yixin Zhao. Photodeposited FeOOH vs electrodeposited Co-Pi to enhance nanoporous BiVO4 for photoelectrochemical water splitting[J]. Journal of Semiconductors, 2017, 38(5): 053004. doi: 10.1088/1674-4926/38/5/053004 A H Jia, M Kan, J P Jia, Y X Zhao. Photodeposited FeOOH vs electrodeposited Co-Pi to enhance nanoporous BiVO4 for photoelectrochemical water splitting[J]. J. Semicond., 2017, 38(5): 053004. doi: 10.1088/1674-4926/38/5/053004.Export: BibTex EndNote
      Citation:
      Aihua Jia, Miao Kan, Jinping Jia, Yixin Zhao. Photodeposited FeOOH vs electrodeposited Co-Pi to enhance nanoporous BiVO4 for photoelectrochemical water splitting[J]. Journal of Semiconductors, 2017, 38(5): 053004. doi: 10.1088/1674-4926/38/5/053004

      A H Jia, M Kan, J P Jia, Y X Zhao. Photodeposited FeOOH vs electrodeposited Co-Pi to enhance nanoporous BiVO4 for photoelectrochemical water splitting[J]. J. Semicond., 2017, 38(5): 053004. doi: 10.1088/1674-4926/38/5/053004.
      Export: BibTex EndNote

      Photodeposited FeOOH vs electrodeposited Co-Pi to enhance nanoporous BiVO4 for photoelectrochemical water splitting

      doi: 10.1088/1674-4926/38/5/053004
      Funds:

      the National Natural Science Foundation of China 21303103

      Project supported by the National Natural Science Foundation of China (Nos. 51372151, 21303103)

      the National Natural Science Foundation of China 51372151

      More Information
      • Corresponding author: Yixin Zhao, Email: yixin.zhao@sjtu.edu.cn
      • Received Date: 2016-10-09
      • Revised Date: 2016-11-10
      • Published Date: 2017-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return