SEMICONDUCTOR DEVICES

Strain effect on intersubband transitions in rolled-up quantum well infrared photodetectors

Han Wang2, Shilong Li1, Honglou Zhen1, Xiaofei Nie1, 2, Gaoshan Huang3, Yongfeng Mei3, and Wei Lu1,

+ Author Affiliations

 Corresponding author: Mei Yongfeng Email: yfm@fudan.edu.cn; Lu Wei Email:luwei@mail.sitp.ac.cn

PDF

Abstract: Pre-strained nanomembranes with four embedded quantum wells (QWs) are rolled up into three dimensional (3D) tubular QW infrared photodetectors (QWIPs), which are based on the QW intersubband transition (ISBT).A redshift of~0.42 meV in photocurrent response spectra is observed and attributed to two strain contributions due to the rolling of the pre-strained nanomembranes.One is the overall strain that mainly leads to a redshift of~0.5 meV, and the other is the strain gradient which results in a very tiny variation.The blue shift of the photocurrent response spectra with the external bias are also observed as quantum-confined Stark effect (QCSE) in the ISBT.

Key words: quantum well infrared photodetectorrolled-up microtubestrainStark effect



[1]
Rogers J A, Lagally M G, Nuzzo R G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature, 2011, 477(7362): 45 doi: 10.1038/nature10381
[2]
Huang G S, Mei Y F. Thinning and shaping solid films into functional and integrative nanomembranes. Adv Mater, 2012, 24(19): 2517 doi: 10.1002/adma.v24.19
[3]
Li X L. Self-rolled-up microtube ring resonators: a review of geometrical and resonant properties. Adv Opt Photonics, 2011, 3(4): 366 doi: 10.1364/AOP.3.000366
[4]
Kipp T, Welsch H, Strelow C, et al. Optical modes in semiconductor microtube ring resonators. Phys Rev Lett, 2006, 96(7): 077403 doi: 10.1103/PhysRevLett.96.077403
[5]
Vicknesh S, Li F, Mi Z. Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes. Appl Phys Lett, 2009, 94(8): 081101 doi: 10.1063/1.3086333
[6]
Ma L, Kiravittaya S, Quiñones V A B, et al. Tuning of optical resonances in asymmetric microtube cavities. Opt Lett, 2011, 36(19): 3840 doi: 10.1364/OL.36.003840
[7]
Bianucci P, Mukherjee S, Dastjerdi M H T, et al. Self-organized InAs/InGaAsP quantum dot tube lasers. Appl Phys Lett, 2012, 101(3): 031104 doi: 10.1063/1.4737425
[8]
Dastjerdi M H T, Djavid M, Mi Z. An electrically injected rolledup semiconductor tube laser. Appl Phys Lett, 2015, 106(2): 021114 doi: 10.1063/1.4906238
[9]
Bhowmick S, Heo J, Bhattacharya P. A quantum dot rolled-up microtube directional coupler. Appl Phys Lett, 2012, 101(101): 171111 http://adsabs.harvard.edu/abs/2012ApPhL.101q1111B
[10]
Mei Y F, Kiravittaya S, Benyoucef M. Optical properties of a wrinkled nanomembrane with embedded quantum well. Nano Lett, 2007, 7(6): 1676 doi: 10.1021/nl070653e
[11]
Zhen H L, Huang G S, Kiravittaya S, et al. Light-emitting properties of a strain-tuned microtube containing coupled quantum wells. Appl Phys Lett, 2013, 102(4): 041109 doi: 10.1063/1.4789534
[12]
Dastjerdi M H T, Mi Z. Nanoscale rolled-up InAs quantum dot tube photodetector. Electron Lett, 2014, 50(9): 680 doi: 10.1049/el.2013.4070
[13]
Wang H, Zhen H L, Li S L, et al. Self-rolling and light-trapping in flexible quantum well-embedded nanomembranes for wideangle infrared photodetector. Sci Adv, 2016, 2(8): e1600027 doi: 10.1126/sciadv.1600027
[14]
Kubota K, Vaccaro P O, Ohtani N, et al. Photoluminescence of GaAs/AlGaAs micro-tubes containing uniaxially strained quantum wells. Physica E, 2002, 13(2): 313 https://www.researchgate.net/publication/243244524_Photoluminescence_of_GaAsAlGaAs_micro-tubes_containing_uniaxially_strained_quantum_wells
[15]
Harwit A, Harris J S Jr. Observation of Stark shifts in quantum well intersubband transitions. Appl Phys Lett, 1987, 50(11): 685 doi: 10.1063/1.98066
[16]
Miller D A B, Chemla D S, Damen T C. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys Rev Lett, 1984, 53(22): 2173 doi: 10.1103/PhysRevLett.53.2173
[17]
Rosencher E, Vinter B. Optoelectronics. Cambridge: CambridgeUniversity Press, 2002
[18]
Grundmann M. Nanoscroll formation from strained layer heterostructures. Appl Phys Lett, 2003, 83(12): 2444 doi: 10.1063/1.1613366
[19]
Binder R, Gu B, Kwong N H. Quantum-confined strain gradient effect in semiconductor nanomembranes. Phys Rev B, 2014, 90(19): 195208 doi: 10.1103/PhysRevB.90.195208
[20]
Cendula P, Kiravittaya S, Schmidt O G. Electronic and optical properties of quantum wells embedded in wrinkled nanomembranes. J Appl Phys, 2011, 111(4): 043105 https://www.researchgate.net/publication/51915059_Electronic_and_optical_properties_of_quantum_wells_embedded_in_wrinklednanomembranes
[21]
Walle C G V D. Band lineups and deformation potentials in the model-solid theory. Phys Rev B, 1989, 39(3): 1871 doi: 10.1103/PhysRevB.39.1871
[22]
Li E H. Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures. Physica E, 2000, 5(4): 215 doi: 10.1016/S1386-9477(99)00262-3
Fig. 1.  (Color online) (a) Schematic diagram, (b) layer sequence, (c) optical image of a rolled-up QWIP device, and (d) SEM image of the part of a tubular device.

Fig. 2.  (Color online) (a) Normalized photocurrent response spectra of the 3D tubular and the corresponding 45$^\circ$ edge-facet QWIPs under a bias of 0.2 V. Schematic drawings of these QWIPs are given in the inset. The red arrow indicates the direction of a redshift. (b) Normalized photocurrent response spectra of the 45$^\circ$ edge-facet QWIPs under biases of 0.2 and 0.9 V, respectively. The blue arrow indicates the direction of a blueshift. (c) Peak energies of these QWIP devices as a function of applied electric field.

Fig. 3.  (Color online) Conduction-band diagrams of a single QW in a planar nanomembrane (blue solid lines, before rolling) and the resultant rolled-up nanomembrane (red solid lines, after rolling) under the effect of (a) the strain gradient potential and (b) the overall strain potential, respectively. The first two energy levels of the intersubband electron are plotted (dashed lines) with the corresponding wave functions (black solid lines).

Fig. 4.  (Color online) Strain distributions in the QW nanomembranes before (blue solid line) and after (red solid line) the rolling. Green short lines indicate the position of the four wells embedded into the nanomembranes.

[1]
Rogers J A, Lagally M G, Nuzzo R G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature, 2011, 477(7362): 45 doi: 10.1038/nature10381
[2]
Huang G S, Mei Y F. Thinning and shaping solid films into functional and integrative nanomembranes. Adv Mater, 2012, 24(19): 2517 doi: 10.1002/adma.v24.19
[3]
Li X L. Self-rolled-up microtube ring resonators: a review of geometrical and resonant properties. Adv Opt Photonics, 2011, 3(4): 366 doi: 10.1364/AOP.3.000366
[4]
Kipp T, Welsch H, Strelow C, et al. Optical modes in semiconductor microtube ring resonators. Phys Rev Lett, 2006, 96(7): 077403 doi: 10.1103/PhysRevLett.96.077403
[5]
Vicknesh S, Li F, Mi Z. Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes. Appl Phys Lett, 2009, 94(8): 081101 doi: 10.1063/1.3086333
[6]
Ma L, Kiravittaya S, Quiñones V A B, et al. Tuning of optical resonances in asymmetric microtube cavities. Opt Lett, 2011, 36(19): 3840 doi: 10.1364/OL.36.003840
[7]
Bianucci P, Mukherjee S, Dastjerdi M H T, et al. Self-organized InAs/InGaAsP quantum dot tube lasers. Appl Phys Lett, 2012, 101(3): 031104 doi: 10.1063/1.4737425
[8]
Dastjerdi M H T, Djavid M, Mi Z. An electrically injected rolledup semiconductor tube laser. Appl Phys Lett, 2015, 106(2): 021114 doi: 10.1063/1.4906238
[9]
Bhowmick S, Heo J, Bhattacharya P. A quantum dot rolled-up microtube directional coupler. Appl Phys Lett, 2012, 101(101): 171111 http://adsabs.harvard.edu/abs/2012ApPhL.101q1111B
[10]
Mei Y F, Kiravittaya S, Benyoucef M. Optical properties of a wrinkled nanomembrane with embedded quantum well. Nano Lett, 2007, 7(6): 1676 doi: 10.1021/nl070653e
[11]
Zhen H L, Huang G S, Kiravittaya S, et al. Light-emitting properties of a strain-tuned microtube containing coupled quantum wells. Appl Phys Lett, 2013, 102(4): 041109 doi: 10.1063/1.4789534
[12]
Dastjerdi M H T, Mi Z. Nanoscale rolled-up InAs quantum dot tube photodetector. Electron Lett, 2014, 50(9): 680 doi: 10.1049/el.2013.4070
[13]
Wang H, Zhen H L, Li S L, et al. Self-rolling and light-trapping in flexible quantum well-embedded nanomembranes for wideangle infrared photodetector. Sci Adv, 2016, 2(8): e1600027 doi: 10.1126/sciadv.1600027
[14]
Kubota K, Vaccaro P O, Ohtani N, et al. Photoluminescence of GaAs/AlGaAs micro-tubes containing uniaxially strained quantum wells. Physica E, 2002, 13(2): 313 https://www.researchgate.net/publication/243244524_Photoluminescence_of_GaAsAlGaAs_micro-tubes_containing_uniaxially_strained_quantum_wells
[15]
Harwit A, Harris J S Jr. Observation of Stark shifts in quantum well intersubband transitions. Appl Phys Lett, 1987, 50(11): 685 doi: 10.1063/1.98066
[16]
Miller D A B, Chemla D S, Damen T C. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys Rev Lett, 1984, 53(22): 2173 doi: 10.1103/PhysRevLett.53.2173
[17]
Rosencher E, Vinter B. Optoelectronics. Cambridge: CambridgeUniversity Press, 2002
[18]
Grundmann M. Nanoscroll formation from strained layer heterostructures. Appl Phys Lett, 2003, 83(12): 2444 doi: 10.1063/1.1613366
[19]
Binder R, Gu B, Kwong N H. Quantum-confined strain gradient effect in semiconductor nanomembranes. Phys Rev B, 2014, 90(19): 195208 doi: 10.1103/PhysRevB.90.195208
[20]
Cendula P, Kiravittaya S, Schmidt O G. Electronic and optical properties of quantum wells embedded in wrinkled nanomembranes. J Appl Phys, 2011, 111(4): 043105 https://www.researchgate.net/publication/51915059_Electronic_and_optical_properties_of_quantum_wells_embedded_in_wrinklednanomembranes
[21]
Walle C G V D. Band lineups and deformation potentials in the model-solid theory. Phys Rev B, 1989, 39(3): 1871 doi: 10.1103/PhysRevB.39.1871
[22]
Li E H. Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures. Physica E, 2000, 5(4): 215 doi: 10.1016/S1386-9477(99)00262-3
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3128 Times PDF downloads: 25 Times Cited by: 0 Times

    History

    Received: 26 October 2016 Revised: 03 December 2016 Online: Published: 01 May 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Han Wang, Shilong Li, Honglou Zhen, Xiaofei Nie, Gaoshan Huang, Yongfeng Mei, Wei Lu. Strain effect on intersubband transitions in rolled-up quantum well infrared photodetectors[J]. Journal of Semiconductors, 2017, 38(5): 054006. doi: 10.1088/1674-4926/38/5/054006 H Wang, S L Li, H L Zhen, X F Nie, G S Huang, Y F Mei, W Lu. Strain effect on intersubband transitions in rolled-up quantum well infraredphotodetectors[J]. J. Semicond., 2017, 38(5): 054006. doi: 10.1088/1674-4926/38/5/054006.Export: BibTex EndNote
      Citation:
      Han Wang, Shilong Li, Honglou Zhen, Xiaofei Nie, Gaoshan Huang, Yongfeng Mei, Wei Lu. Strain effect on intersubband transitions in rolled-up quantum well infrared photodetectors[J]. Journal of Semiconductors, 2017, 38(5): 054006. doi: 10.1088/1674-4926/38/5/054006

      H Wang, S L Li, H L Zhen, X F Nie, G S Huang, Y F Mei, W Lu. Strain effect on intersubband transitions in rolled-up quantum well infraredphotodetectors[J]. J. Semicond., 2017, 38(5): 054006. doi: 10.1088/1674-4926/38/5/054006.
      Export: BibTex EndNote

      Strain effect on intersubband transitions in rolled-up quantum well infrared photodetectors

      doi: 10.1088/1674-4926/38/5/054006
      Funds:

      the Natural Science Foundation of China 61575213

      the Shanghai Municipal Science and Technology Commission 14JC1400200

      Project supported by the Natural Science Foundation of China (Nos. 51322201, 61575213), and the Shanghai Municipal Science and Technology Commission (No. 14JC1400200)

      the Natural Science Foundation of China 51322201

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return