SEMICONDUCTOR PHYSICS

Differential optical gain in a GaInN/AlGaN quantum dot

K. Jaya Bala1 and A. John Peter2,

+ Author Affiliations

 Corresponding author: A. John Peter Email:a.john.peter@gmail.com

PDF

Abstract: Electronic and optical properties are obtained with the increase in indium alloy content (x) in a Ga1-xInxN/Al0.2Ga0.8N quantum dot. The barrier height with the different In alloy contents is applied to acquire the confinement potentials. The results are obtained taking into consideration geometrical confinement effect. The optical absorption coefficient with the photon energy is observed in a Ga1-xInxN/Al0.2Ga0.8N quantum dot. The optical output with the injection current density and the threshold optical pump intensity for various In alloy contents are studied. The differential gain as functions of indium alloy content, charge density and the dot radii in the Ga1-xInxN/Al0.2Ga0.8N quantum dot are investigated. The exciton binding energy is calculated in order to obtain the exciton density, the optical gain and the threshold current density in the Ga1-xInxN/Al0.2In0.8N quantum dot. The results show that the red shift energy with an increase in In alloy content is found and the differential gain increases with the charge carrier density.

Key words: semiconductorsquantum dotsnitridesoptical materials



[1]
Zeng Z, Garoufalis C S, Baskoutas S. Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot-quantumring system. Phys Lett A, 2014, 378:2713 doi: 10.1016/j.physleta.2014.07.036
[2]
Furis M, Cartwright A N, Wu H, et al. Room-temperature ultraviolet emission from GaN/AlN multiple-quantum-well heterostructures. Appl Phys Lett, 2003, 83:3486 doi: 10.1063/1.1623335
[3]
Lizuka N, Kaneko K, Suzuki N. Near-infrared intersubband absorption in GaN/AlN quantum wells grown by molecular beam epitaxy. Appl Phys Lett, 2002, 81:1803 doi: 10.1063/1.1505116
[4]
Su X H, Yang J, Bhattacharya P, et al. Proposal for ultra-high performance infrared quantum dot. Appl Phys Lett, 2006, 89:031117 doi: 10.1063/1.2233808
[5]
Chow W C, Jahnke F. On the phycics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quant Electron, 2013, 7(3):109 https://www.researchgate.net/publication/255814079_On_the_Physics_of_Semiconductor_Quantum_Dots_for_Applications_in_Lasers_and_Quantum_Optics
[6]
Asadpour S H, Golsanamlou Z, Soleimani H R. Infrared and terahertz signal detection in a quantum dot nanostructure. Phys E, 2013, 54:45 doi: 10.1016/j.physe.2013.05.022
[7]
Amano H, Kito M, Hiramatsu K. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation. Jpn J Appl Phys, 1989, 28:L2112 doi: 10.1143/JJAP.28.L2112
[8]
Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl Phys Lett, 1994, 64:1687 doi: 10.1063/1.111832
[9]
Ozel T, Sari E, Nizamoglu S, et al. Violet to deep-ultraviolet InGaN=GaNInGaN=GaN and GaN=AlGaNGaN=AlGaN quantum structures for UV electroabsorption modulators. J Appl Phys, 2007, 102:113101 doi: 10.1063/1.2817954
[10]
Zhang J, Yang J, Simin G, et al. Enhanced luminescence in InGaN multiple quantum wells with quaternary AlInGaN barriers. Appl Phys Lett, 2000, 77:2668 doi: 10.1063/1.1319531
[11]
Mack M, Abare A, Aizcorbe M, et al. Comparison of optical properties of GaN/AlGaN and InGaN/AlGaN single quantum wells. J Cryst Growth, 1998, 180/190:837 https://waseda.pure.elsevier.com/en/publications/comparison-of-optical-properties-of-ganalgan-and-inganalgan-singl
[12]
Kneissl M, Bour D P, Johnson N M, et al. Characterization of AlGaInN diode lasers with mirrors from chemically assisted ion beam etching. Appl Phys Lett, 1998, 72:1539 doi: 10.1063/1.120575
[13]
Chichibu S F, Shikanai A, Deguchi T, et al. Comparison of optical properties of GaN/AlGaN and InGaN/AlGaN single quantum wells. Jpn J Appl Phys, 2000, 39:2417 doi: 10.1143/JJAP.39.2417
[14]
Bour D P, Kneissl M, Romano L T, et al. Characteristics of InGaN-AlGaN multiple-quantum-well laser diodes. IEEE J Quan Electron, 1998, 4/3:498 http://www.academia.edu/2622230/Characteristics_of_InGaN-AlGaN_multiple-quantum-well_laser_diodes
[15]
Zhao H, Arif R A, Ee Y K, et al. Optical gain analysis of straincompensated InGaN-AlGaN quantum well active regions for lasers emitting at 420-500 nm. Opt Quantum Electron, 2008, 40:301 doi: 10.1007/s11082-007-9177-2
[16]
Chen T, Xie W, Liang S. Nonlinear optical properties of the wurtzite InGaN/AlGaN parabolic quantum do. Nano:Brief Rep Rev, 2013, 8(2):1350019 doi: 10.1142/S1793292013500197
[17]
Voskoboynikov O, Bauga O, Lee C P, et al. Magnetic properties of parabolic quantum dots in the presence of the spin-orbit interaction. J Appl Phys, 2003, 94:5891 doi: 10.1063/1.1614426
[18]
Singh J. Optoelectronics: an introduction to materials and devices. New Delhi: Tata McGraw Hill, 1996
[19]
Bir G L, Pikus E. Symmetry and strain-induced effects in semiconductors. New York: Wiley, 1974
[20]
Sangeetha R, Peter A J, Yoo C K. Effects of strain on the band alignment and the optical gain of a CdTe/ZnTe quantum dot. Can J Phys, 2014, 92:1 https://www.researchgate.net/publication/269791379_Effects_of_strain_on_the_band_alignment_and_the_optical_gain_of_a_CdTeZnTe_quantum_dot
[21]
Huang W, Jain F. Enhanced optical gain in InGaN-AlGaN quantum wire and quantum dot lasers due to excitonic transitions. J Appl Phys, 2000, 87:7354 doi: 10.1063/1.372993
[22]
Shi J J, Gan Z Z. Effects of piezoelectricity and spontaneous polarization on localized excitons in self-formed InGaN quantum dots. J Appl Phys, 2003, 94:407 doi: 10.1063/1.1576490
[23]
Chi Y M, Shi J J. Linear and nonlinear intersubband optical absorptions and refractive index changes in InGaN strained single quantum wells:strong built-inelectric field effects. Chin Phys Lett, 2007, 8:2376 http://www.oalib.com/paper/1527523
[24]
ElGhazi H, Peter A J. Threshold pump intensity effect on the refractive index changes in InGaN SQD:internal constitution and size effects. Phys B, 2015, 462:30 doi: 10.1016/j.physb.2015.01.014
[25]
Jain F, Huang W. Modeling of optical gain in InGaN-AlGaN and Inx/Ga1-xN-Iny/Ga1-y/N quantum-well lasers. IEEE J Quantum Electron, 1996, 32:859 doi: 10.1109/3.493011
[26]
Huang W, Jain F. Reduced threshold current density due to excitonic optical gain in the presence of dislocations and surface states in tensile strained ZnCdSe quantum wire lasers. J Appl Phys, 1997, 81:6781 doi: 10.1063/1.365221
[27]
Moss T S, Burrell G J, Ellis B. Semiconductor opto-electronics. London: Butterworths, 1973
[28]
Baser P, Altuntas I, Elagoz S. In concentration dependence of shallow impurity binding energy under the hydrostatic pressure. Fen Bilimleri Dergisi, 2011, 23(4):171 https://www.researchgate.net/profile/Sezai_Elagoz/publication/267783385_In_Concentration_Dependence_of_Shallow_Impurity_Binding_Energy_Under_The_Hydrostatic_Pressure/links/5513bfaa0cf23203199cc240.pdf?origin=publication_list
[29]
Zeng Z, Garoufalis C S, Baskoutas S. Combination effects of tilted electric and magnetic fields on donor binding energy in a GaAs/AlGaAs cylindrical quantum dot. Phys D, 2012, 45:235102 doi: 10.1088/0022-3727/45/23/235102
[30]
Sujanah P, Peter A J, Lee C W. Optical studies of an exciton and a biexciton in a CdTe/ZnTe quantum dot nanostructure. Opt Commun, 2015, 336:120 doi: 10.1016/j.optcom.2014.09.061
[31]
Bala K J, Peter A J. Interband optical properties in wide band gap group-Ⅲ nitride quantum dots. Adv Nano Res, 2015, 3/1:13 https://www.researchgate.net/publication/264183106_Quantum_computing_using_applied_electric_field_to_quantum_dots
[32]
Zhao H P, Arif R A, Ee Y K, et al. Self-consistent analysis of strain-compensated InGaN-AlGaN quantum wells for lasers and light-emitting diodes. IEEE J Quan Electron, 2009, 45(1):66 doi: 10.1109/JQE.2008.2004000
[33]
Zhao H, Liu G, Zhang J, at al. Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt Express, 2011, 19:A991 doi: 10.1364/OE.19.00A991
[34]
Huang W, Jain F. Enhanced optical gain in InGaN-AlGaN quantum wire and quantum dot lasers due to excitonic transitions. J App Phys, 2000, 87:7354 doi: 10.1063/1.372993
[35]
Zhang J, Tansu N. Improvement of blue InGaN light-emitting diodes with gradually increased barrier heights from n-to players. IEEE Phot J, 2013, 5(2):2600111 doi: 10.1109/JPHOT.2013.2247587
[36]
Vurgaftman I, Meyer J R, Ramohan L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys. J Appl Phys, 2001, 89:5815 doi: 10.1063/1.1368156
Fig. 1.  (Color online) Variation of exciton binding energy as a function of dot radius in a Ga$_{1-x}$In$_{x}$N/Al$_{\mathrm{0.2}}$Ga$_{\mathrm{0.8}}$N quantum dot. $x=0.2, $ 0.4, 0.6, and 0.8. The insert figure shows the variation of barrier height with the In alloy content in the Ga$_{1-x}$In$_{x}$N inner confinement potential. $V_{\mathrm{c}}$ refers to the electron confinement potential and $V_{\mathrm{h}}$ is the hole confinement potential.

Fig. 2.  (Color online) Variation of absorption coefficient as a function of photon energy in a Ga$_{1-x}$In$_{x}$N/ Al$_{\mathrm{0.2}}$Ga$_{\mathrm{0.8}}$N quantum dot. $x=0.2$, 0.4, 0.6, and 0.8. The insert figure shows the red shift energy with the In alloy content.

Fig. 3.  (Color online) Variation of optical output with the injection current density for various In alloy content in a Ga$_{1-x}$In$_{x}$N/Al$_{\mathrm{0.2}}$Ga$_{\mathrm{0.8}}$N quantum dot. The insert figure shows the threshold optical pump intensity with the In alloy content.

Fig. 4.  (Color online) Variation of differential gain as functions of indium alloy content and the dot radii in a Ga$_{1-x}$In$_{x}$N/Al$_{\mathrm{0.2}}$Ga$_{\mathrm{0.8}}$N quantum dot with a fixed charge carrier density.

Fig. 5.  (Color online) Variation of differential gain as functions of carrier density and the indium alloy content with the constant dot radii in a Ga$_{1-x}$In$_{x}$N/Al$_{\mathrm{0.2}}$Ga$_{\mathrm{0.8}}$N quantum dot.

Table 1.   Material parameters* used in the calculations (all the other parameters are linearly interpolated).

[1]
Zeng Z, Garoufalis C S, Baskoutas S. Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot-quantumring system. Phys Lett A, 2014, 378:2713 doi: 10.1016/j.physleta.2014.07.036
[2]
Furis M, Cartwright A N, Wu H, et al. Room-temperature ultraviolet emission from GaN/AlN multiple-quantum-well heterostructures. Appl Phys Lett, 2003, 83:3486 doi: 10.1063/1.1623335
[3]
Lizuka N, Kaneko K, Suzuki N. Near-infrared intersubband absorption in GaN/AlN quantum wells grown by molecular beam epitaxy. Appl Phys Lett, 2002, 81:1803 doi: 10.1063/1.1505116
[4]
Su X H, Yang J, Bhattacharya P, et al. Proposal for ultra-high performance infrared quantum dot. Appl Phys Lett, 2006, 89:031117 doi: 10.1063/1.2233808
[5]
Chow W C, Jahnke F. On the phycics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quant Electron, 2013, 7(3):109 https://www.researchgate.net/publication/255814079_On_the_Physics_of_Semiconductor_Quantum_Dots_for_Applications_in_Lasers_and_Quantum_Optics
[6]
Asadpour S H, Golsanamlou Z, Soleimani H R. Infrared and terahertz signal detection in a quantum dot nanostructure. Phys E, 2013, 54:45 doi: 10.1016/j.physe.2013.05.022
[7]
Amano H, Kito M, Hiramatsu K. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation. Jpn J Appl Phys, 1989, 28:L2112 doi: 10.1143/JJAP.28.L2112
[8]
Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl Phys Lett, 1994, 64:1687 doi: 10.1063/1.111832
[9]
Ozel T, Sari E, Nizamoglu S, et al. Violet to deep-ultraviolet InGaN=GaNInGaN=GaN and GaN=AlGaNGaN=AlGaN quantum structures for UV electroabsorption modulators. J Appl Phys, 2007, 102:113101 doi: 10.1063/1.2817954
[10]
Zhang J, Yang J, Simin G, et al. Enhanced luminescence in InGaN multiple quantum wells with quaternary AlInGaN barriers. Appl Phys Lett, 2000, 77:2668 doi: 10.1063/1.1319531
[11]
Mack M, Abare A, Aizcorbe M, et al. Comparison of optical properties of GaN/AlGaN and InGaN/AlGaN single quantum wells. J Cryst Growth, 1998, 180/190:837 https://waseda.pure.elsevier.com/en/publications/comparison-of-optical-properties-of-ganalgan-and-inganalgan-singl
[12]
Kneissl M, Bour D P, Johnson N M, et al. Characterization of AlGaInN diode lasers with mirrors from chemically assisted ion beam etching. Appl Phys Lett, 1998, 72:1539 doi: 10.1063/1.120575
[13]
Chichibu S F, Shikanai A, Deguchi T, et al. Comparison of optical properties of GaN/AlGaN and InGaN/AlGaN single quantum wells. Jpn J Appl Phys, 2000, 39:2417 doi: 10.1143/JJAP.39.2417
[14]
Bour D P, Kneissl M, Romano L T, et al. Characteristics of InGaN-AlGaN multiple-quantum-well laser diodes. IEEE J Quan Electron, 1998, 4/3:498 http://www.academia.edu/2622230/Characteristics_of_InGaN-AlGaN_multiple-quantum-well_laser_diodes
[15]
Zhao H, Arif R A, Ee Y K, et al. Optical gain analysis of straincompensated InGaN-AlGaN quantum well active regions for lasers emitting at 420-500 nm. Opt Quantum Electron, 2008, 40:301 doi: 10.1007/s11082-007-9177-2
[16]
Chen T, Xie W, Liang S. Nonlinear optical properties of the wurtzite InGaN/AlGaN parabolic quantum do. Nano:Brief Rep Rev, 2013, 8(2):1350019 doi: 10.1142/S1793292013500197
[17]
Voskoboynikov O, Bauga O, Lee C P, et al. Magnetic properties of parabolic quantum dots in the presence of the spin-orbit interaction. J Appl Phys, 2003, 94:5891 doi: 10.1063/1.1614426
[18]
Singh J. Optoelectronics: an introduction to materials and devices. New Delhi: Tata McGraw Hill, 1996
[19]
Bir G L, Pikus E. Symmetry and strain-induced effects in semiconductors. New York: Wiley, 1974
[20]
Sangeetha R, Peter A J, Yoo C K. Effects of strain on the band alignment and the optical gain of a CdTe/ZnTe quantum dot. Can J Phys, 2014, 92:1 https://www.researchgate.net/publication/269791379_Effects_of_strain_on_the_band_alignment_and_the_optical_gain_of_a_CdTeZnTe_quantum_dot
[21]
Huang W, Jain F. Enhanced optical gain in InGaN-AlGaN quantum wire and quantum dot lasers due to excitonic transitions. J Appl Phys, 2000, 87:7354 doi: 10.1063/1.372993
[22]
Shi J J, Gan Z Z. Effects of piezoelectricity and spontaneous polarization on localized excitons in self-formed InGaN quantum dots. J Appl Phys, 2003, 94:407 doi: 10.1063/1.1576490
[23]
Chi Y M, Shi J J. Linear and nonlinear intersubband optical absorptions and refractive index changes in InGaN strained single quantum wells:strong built-inelectric field effects. Chin Phys Lett, 2007, 8:2376 http://www.oalib.com/paper/1527523
[24]
ElGhazi H, Peter A J. Threshold pump intensity effect on the refractive index changes in InGaN SQD:internal constitution and size effects. Phys B, 2015, 462:30 doi: 10.1016/j.physb.2015.01.014
[25]
Jain F, Huang W. Modeling of optical gain in InGaN-AlGaN and Inx/Ga1-xN-Iny/Ga1-y/N quantum-well lasers. IEEE J Quantum Electron, 1996, 32:859 doi: 10.1109/3.493011
[26]
Huang W, Jain F. Reduced threshold current density due to excitonic optical gain in the presence of dislocations and surface states in tensile strained ZnCdSe quantum wire lasers. J Appl Phys, 1997, 81:6781 doi: 10.1063/1.365221
[27]
Moss T S, Burrell G J, Ellis B. Semiconductor opto-electronics. London: Butterworths, 1973
[28]
Baser P, Altuntas I, Elagoz S. In concentration dependence of shallow impurity binding energy under the hydrostatic pressure. Fen Bilimleri Dergisi, 2011, 23(4):171 https://www.researchgate.net/profile/Sezai_Elagoz/publication/267783385_In_Concentration_Dependence_of_Shallow_Impurity_Binding_Energy_Under_The_Hydrostatic_Pressure/links/5513bfaa0cf23203199cc240.pdf?origin=publication_list
[29]
Zeng Z, Garoufalis C S, Baskoutas S. Combination effects of tilted electric and magnetic fields on donor binding energy in a GaAs/AlGaAs cylindrical quantum dot. Phys D, 2012, 45:235102 doi: 10.1088/0022-3727/45/23/235102
[30]
Sujanah P, Peter A J, Lee C W. Optical studies of an exciton and a biexciton in a CdTe/ZnTe quantum dot nanostructure. Opt Commun, 2015, 336:120 doi: 10.1016/j.optcom.2014.09.061
[31]
Bala K J, Peter A J. Interband optical properties in wide band gap group-Ⅲ nitride quantum dots. Adv Nano Res, 2015, 3/1:13 https://www.researchgate.net/publication/264183106_Quantum_computing_using_applied_electric_field_to_quantum_dots
[32]
Zhao H P, Arif R A, Ee Y K, et al. Self-consistent analysis of strain-compensated InGaN-AlGaN quantum wells for lasers and light-emitting diodes. IEEE J Quan Electron, 2009, 45(1):66 doi: 10.1109/JQE.2008.2004000
[33]
Zhao H, Liu G, Zhang J, at al. Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt Express, 2011, 19:A991 doi: 10.1364/OE.19.00A991
[34]
Huang W, Jain F. Enhanced optical gain in InGaN-AlGaN quantum wire and quantum dot lasers due to excitonic transitions. J App Phys, 2000, 87:7354 doi: 10.1063/1.372993
[35]
Zhang J, Tansu N. Improvement of blue InGaN light-emitting diodes with gradually increased barrier heights from n-to players. IEEE Phot J, 2013, 5(2):2600111 doi: 10.1109/JPHOT.2013.2247587
[36]
Vurgaftman I, Meyer J R, Ramohan L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys. J Appl Phys, 2001, 89:5815 doi: 10.1063/1.1368156
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3553 Times PDF downloads: 41 Times Cited by: 0 Times

    History

    Received: 21 December 2015 Revised: 11 October 2016 Online: Published: 01 June 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      K. Jaya Bala, A. John Peter. Differential optical gain in a GaInN/AlGaN quantum dot[J]. Journal of Semiconductors, 2017, 38(6): 062001. doi: 10.1088/1674-4926/38/6/062001 K J Bala, A J Peter. Differential optical gain in a GaInN/AlGaN quantum dot[J]. J. Semicond., 2017, 38(6): 062001. doi:  10.1088/1674-4926/38/6/062001.Export: BibTex EndNote
      Citation:
      K. Jaya Bala, A. John Peter. Differential optical gain in a GaInN/AlGaN quantum dot[J]. Journal of Semiconductors, 2017, 38(6): 062001. doi: 10.1088/1674-4926/38/6/062001

      K J Bala, A J Peter. Differential optical gain in a GaInN/AlGaN quantum dot[J]. J. Semicond., 2017, 38(6): 062001. doi:  10.1088/1674-4926/38/6/062001.
      Export: BibTex EndNote

      Differential optical gain in a GaInN/AlGaN quantum dot

      doi: 10.1088/1674-4926/38/6/062001
      More Information
      • Corresponding author: A. John Peter Email:a.john.peter@gmail.com
      • Received Date: 2015-12-21
      • Revised Date: 2016-10-11
      • Published Date: 2017-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return