SEMICONDUCTOR MATERIALS

Improving the photocatalytic performance of TiO2 via hybridizing with graphene

K S Divya1, Athulya K Madhu1, T U Umadevi1, T Suprabha2, P. Radhakrishnan Nair2 and Suresh Mathew1, 2,

+ Author Affiliations

 Corresponding author: Suresh Mathew Email:sureshmathewmgu@gmail.com

PDF

Abstract: In this paper an improvement in the photocatalytic performance of TiO2 was carried out via hybridizing with graphene. Graphene-TiO2 (GR-TiO2)nanocomposites with different weight addition ratios of graphene oxide (GO) have been prepared via a facile microwave irradiation of GO and tetrabutyl titanate in isopropyl alcohol. Raman spectroscopy (RS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy (UV-vis), Fourier transform infrared spectra (FTIR), energy dispersive X-ray spectroscopy (EDX) and photoluminescence spectra (PL) are employed to determine the properties of the samples. Microwave irradiation can heat the reactant to a higher temperature in a short time, simultaneously GO is reduced to graphene and TiO2 nanoparticles grown on the surface of GR. GR-TiO2 nanocomposites synthesized via this approach have efficient electron conductivity in GR, resulting in a reduced electron-hole recombination rate. Among the synthesized nanocomposites, GT-8wt% exhibited the best photocatalytic activity toward photocatalytic degradation of MB. Our current work provides a new insight for the fabrication of GR-TiO2 nanocomposites within a short reaction time and also explains the mechanism of photocatalysis employing radical and hole scavengers.

Key words: graphene(GR)tetrabutyl titanate(TBT)GR-TiO2 nanocompositesmethylene bluephotocatalysis



[1]
Zhang L, Diao S, Nie Y, et al. Photocatalytic patterning and modification of graphene. J Am Chem Soc, 2011, 133:2706 doi: 10.1021/ja109934b
[2]
Akhavan O, Abdolahad M, Esfandiar A, et al. Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J Phys Chem C, 2010, 114:1295 doi: 10.1021/jp103472c?src=recsys
[3]
Zhang J, Xiong Z, Zhao X. Graphene-meta-oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem, 2011, 21:3634 doi: 10.1039/c0jm03827j
[4]
Meng X, Geng D, Liu J, et al. Non-aqueous approach to synthesize amorphous/crystalline metal oxide-graphene nanosheet hybrid composites. J Phys Chem C, 2010, 114:18330 doi: 10.1021/jp105852h
[5]
Deng S, Tjoa V, Fan H M, et al. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc, 2012, 134:490 https://www.researchgate.net/publication/221831108_Reduced_Graphene_Oxide_Conjugated_Cu2O_Nanowire_Mesocrystals_for_High-Performance_NO2_Gas_Sensor
[6]
Chu J, Li X, Qi J. Hydrothermal synthesis of CdS microparticlegraphene hybrid and its optical properties. Cryst Eng Comm, 2012, 14:1881 doi: 10.1039/c1ce06162c
[7]
Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett, 2006, 6:24 doi: 10.1021/nl051807y
[8]
Divya K, Uma Devi T, Mahtew S. Graphene-based semiconductor nanocomposites for photocatalytic applications. J Nanosci Lett, 2014, 4:2 doi: 10.1201/b19460-26
[9]
Chen X, Mao S S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications. Chem Rev, 2007, 107:2891 doi: 10.1021/cr0500535
[10]
Pan X, Zhao Y, Liu S, et al. Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl Mater Interfaces, 2012, 4:3944 doi: 10.1021/am300772t
[11]
Thomas J, Kumar K P, Mathew S. Hydrothermal synthesis of samarium doped nanotitania as highly efficient solar photocatalyst. Sci Adv Mater, 2010, 2:48 https://www.researchgate.net/publication/272272530_Hydrothermal_Synthesis_of_Samarium_Doped_Nanotitania_as_Highly_Efficient_Solar_Photocatalyst
[12]
Liu S, Yang L, Xu S, et al. Photocatalytic activities of N-doped TiO2 nanotube array/carbon nanorod composite. Electrochem Commun, 2009, 11:174 doi: 10.1016/j.elecom.2008.10.056
[13]
Ji K H, Jang D M, Cho Y K, et al. Comparative photocatalytic ability of nanocrystal-carbon nanotube and TiO2 nanocrystal hybrid nanostructures. J Phys Chem C, 2009, 113:19966 doi: 10.1021/jp906476m
[14]
Suprabha T, Roy H G, Mathew S. Gold loaded titania nanostructures——synthesis, characterization and morphology dependence on photocatalysis. Sci Adv Mater, 2010, 2:10 https://www.researchgate.net/publication/233658942_Gold_Loaded_Titania_Nanostructures-Synthesis_Characterization_and_Morphology_Dependence_on_Photocatalysis
[15]
Yu H, Quan X, Chen S, et al. TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability. J Phys Chem C, 2007, 111:12987 doi: 10.1021/jp0728454
[16]
Zhang Y, Zhang N, Tang Z R, et al. Improving the photocatalytic performance of graphene-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. PCCP, 2012, 14:916 http://pubs.rsc.org/en/content/articlelanding/2012/cp/c2cp41318c/unauth#!
[17]
Dong P, Wang Y, Guo L, et al. A facile one-step solvothermal synthesis of graphene/rod-shaped TiO2 nanocomposite and its improved photocatalytic activity. Nanoscale, 2012, 4:464 http://www.rsc.org/suppdata/nr/c2/c2nr31231j/c2nr31231j.pdf
[18]
Shah M S A S, Park A R, Zhang K, et al. Green synthesis of biphasic TiO-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl Mater Interfaces, 2012, 4:3893 doi: 10.1021/am301287m
[19]
Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett, 2008, 8:90 doi: 10.1021/nl0731872
[20]
Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Lett, 2008, 8:3498 doi: 10.1021/nl802558y
[21]
Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320:1308 doi: 10.1126/science.1156965
[22]
Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321:385 doi: 10.1126/science.1157996
[23]
Guo S, Dong D. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev, 2011, 40:2644 doi: 10.1039/c0cs00079e
[24]
Zhang L, Hao W, Wang H, et al. Porous graphene frame supported silicon@graphitic carbon via in situ solid-state synthesis for high-performance lithium-ion anodes. J Mater Chem A, 2013, 1:760 https://www.researchgate.net/publication/255773845_Porous_graphene_frame_supported_silicongraphitic_carbon_via_in_situ_solid-state_synthesis_for_high-performance_lithium-ion_anodes
[25]
Anandan S, Rao T N, Sathish M, et al. Superhydrophilic graphene-loaded TiO2 thin film for self-cleaning applications. ACS Appl Mater Interfaces, 2012, 5:207 https://www.researchgate.net/publication/233929278_Superhydrophilic_Graphene-Loaded_TiO2_Thin_Film_for_Self-Cleaning_Applications
[26]
Xin X, Zhou X, Wu J, et al. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano, 2012, 6:11035 doi: 10.1021/nn304725m
[27]
Sun J, Zhang H, Guo L H, et al. Two-dimensional interface engineering of a titani-graphene nanosheet composite for improved photocatalytic activity. ACS Appl Mater Interfaces, 2013, 5:13035 doi: 10.1021/am403937y
[28]
Moon G H, Kim D H, Kim H I, et al. Platinum-like behavior of reduced graphene oxide as a cocatalyst on TiO2 for the efficient photocatalytic oxidation of arsenite. Environ Sci Technol Lett, 2014, 1:185 doi: 10.1021/ez5000012
[29]
Gu L, Wang J, Cheng H, et al. One-step preparation of graphenesupported anatase TiO2 with exposed {00}facets and mechanism of enhanced photocatalytic properties. ACS Appl Mater Interfaces, 2013, 5:308 doi: 10.1021/am303274t?src=recsys
[30]
Liu B, Huang Y, Wen Y, et al. Highly dispersive {00} facetsexposed nanocrystalline TiO2 on high quality graphene as a high performance photocatalyst. J Mater Chem, 2012, 22:7484 doi: 10.1039/c2jm16114a
[31]
Zhang Y, Tang Z R, Fu X, et al. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:is TiO2-graphene truly different from other TiO2-carbon composite materials. ACS Nano, 2010, 4:7303 doi: 10.1021/nn1024219
[32]
Wang Z, Huang B, Dai Y, et al. Crystal facets controlled synthesis of graphene@TiO2 nanocomposites by a one-pot hydrothermal process. Cryst Eng Comm, 2012, 14:168 http://pubs.rsc.org/en/content/articlelanding/2012/ce/c1ce06193c/unauth#!divAbstract
[33]
Yan W, He F, Gai S, et al. A novel 3D structured reduced graphene oxide/TiO2 composite:synthesis and photocatalytic performance. J Mater Chem A, 2014, 2:360 doi: 10.1039/C3TA13584E
[34]
Liu X, Pan L, Lv T, et al. Microwave-assisted synthesis of TiO 2-reduced graphene oxide composites for the photocatalytic reduction of Cr (Ⅵ). RSC Adv, 2011, 1:124 http://pubs.rsc.org/en/content/articlelanding/2012/ce/c1ce06193c/unauth#!divAbstract
[35]
Bilecka I, Niederberger M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2010, 2:135 https://www.researchgate.net/publication/46282847_Microwave_Chemistry_for_Inorganic_Nanomaterials_Synthesis
[36]
Baghbanzadeh M, Carbone L, Cozzoli P D, et al. Microwaveassisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed, 2011, 50:11312 doi: 10.1002/anie.v50.48
[37]
Hummers W S Jr, Offeman R E. Preparation of graphitic oxide. J Am Chem Soc, 1958, 80:1339 doi: 10.1021/ja01539a017
[38]
Che J, Shen L, Xiao Y. A new approach to fabricate graphene nanosheets in organic medium:combination of reduction and dispersion. J Mater Chem, 2010, 20:1722 doi: 10.1039/b922667b
[39]
Xu Y J, Zhuang Y, Fu X. New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes:a case study on degradation of benzene and methyl orange. J Phys Chem C, 2010, 114:2669 doi: 10.1021/jp909855p
[40]
Yu J, Ma T, Liu S. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. PCCP, 2011, 13:349 doi: 10.1039/c0cp90149k
[41]
Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles:size quantization versus direct transitions in this indirect semiconductor. J Phys Chem, 1995, 99:1664 https://www.researchgate.net/publication/231396119_Size_Effects_on_the_Photophysical_Properties_of_Colloidal_Anatase_TiO2_Particles_Size_Quantization_Versus_Direct_Transitions_in_This_Indirect_Semiconductor
[42]
Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett, 2008, 8:36 doi: 10.1021/nl071822y
[43]
Yu J, Ma T, Liu G, et al. Enhanced photocatalytic activity of bimodal mesoporous titania powders by C60 modification. Dalton Trans, 2011, 40:663 https://www.researchgate.net/publication/51107858_Enhanced_photocatalytic_activity_of_bimodal_mesoporous_titania_powders_by_C-60_modification
[44]
Zhang X Y, Li H P, Cui X L, et al. Graphene/TiO2 nanocomposites:synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem, 2010, 20:2801 doi: 10.1039/b917240h
[45]
Jiang B, Tian C, Pan Q, et al. Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed {00} facets. J Phys Chem C, 2011, 115:23718 doi: 10.1021/jp207624x
[46]
Yeh T F, Syu J M, Cheng C T, et al. Graphite oxide as a photocatalyst for hydrogen production from water. Adv Funct Mater, 2010, 20:2255 doi: 10.1002/adfm.v20:14
[47]
Tang F Q, Hou L P, Guo G S. Preparation of TiO2 nanometer powders. J Inorgan Mater, 2001, 16:615
[48]
Yu J C, Yu J, Ho W, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater, 2002, 14:3808 doi: 10.1021/cm020027c
[49]
Tu W, Zhou Y, Liu Q, et al. An in situ simultaneous reductionhydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets:graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv Funct Mater, 2013, 23:1743 doi: 10.1002/adfm.v23.14
[50]
Zhou K, Zhu Y, Yang X, et al. Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J Chem, 2011, 35:35 https://www.researchgate.net/publication/255750422_Preparation_of_Graphene-TiO2_Composites_With_Enhanced_Photocatalytic_Activity
[51]
Zhang W, Zhang M, Yin Z, et al. Photoluminescence in anatase titanium dioxide nanocrystals. Appl Phys B, 2000, 70:26 https://www.researchgate.net/publication/226120273_Photoluminescence_in_Anatase_Titanium_Dioxide_Nanocrystals
[52]
Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2:1487 doi: 10.1021/nn800251f?src=recsys
[53]
Houas A, Lachheb H, Ksibi M, et al. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B, 2001, 31:14 https://www.researchgate.net/publication/236880306_Photocatalytic_Degradation_Pathway_of_Methylene_Blue_in_Water
Fig. 1.  Shematic illustration of incorporating TiO$_{2}$ into graphene oxide forming GR/TiO$_{2}$ nanocomposite.

Fig. 2.  (a) XRD patterns of graphene oxide and graphite powder. (b) XRD patterns of TiO$_{2}$, GT-8wt%, GT-10wt%, and GT-12wt%.

Fig. 3.  (Color online) (a) UV-visible spectra of TiO$_{2}$ and GR-TiO$_{2}$ nanocomposites and (b) the plot transformed Kubelka -Munk function versus the energy of light.

Fig. 4.  (Color online) Raman Spectra of Graphene oxide and GR-TiO$_{2}$ nanocomposites.

Fig. 5.  (a) TEM image of graphene oxide. (b) SEM image of GR-TiO$_{2}$ nanocomposite. (c) TEM images of GR-TiO$_{2}$ nanocomposites. (d) EDX spectra of GR-TiO$_{2}$ nanocomposites.

Fig. 6.  (Color online) FTIR spectra of graphene oxide, TiO$_{2}$ and GR-TiO$_{2}$ composites.

Fig. 7.  (Color online) Photoluminescence spectra of TiO$_{2}$ and GR-TiO$_{2}$ with different weight percentage.

Fig. 8.  (a) Photocatalytic activities, (b) the degradation efficiency and (c) percentage of dergradation for TiO$_{\mathrm{2}}$ and GR/TiO$_{\mathrm{2}}$ nanocomposites.

Fig. 9.  Controlled experiments of photocatalytic degradation of MB over GT-10 mg in the presence of ter-butyl alcohol (TBA, radical scavenger) and ethylene diammine tetraacetic acid (EDTA-2Na, hole scavenger) under UV light irradiation.

Fig. 10.  Schematic illustration showing the reaction mechanism for photocatalytic degradation of MB over GR-TiO$_{\mathrm{2 }}$ nanocomposite.

[1]
Zhang L, Diao S, Nie Y, et al. Photocatalytic patterning and modification of graphene. J Am Chem Soc, 2011, 133:2706 doi: 10.1021/ja109934b
[2]
Akhavan O, Abdolahad M, Esfandiar A, et al. Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J Phys Chem C, 2010, 114:1295 doi: 10.1021/jp103472c?src=recsys
[3]
Zhang J, Xiong Z, Zhao X. Graphene-meta-oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem, 2011, 21:3634 doi: 10.1039/c0jm03827j
[4]
Meng X, Geng D, Liu J, et al. Non-aqueous approach to synthesize amorphous/crystalline metal oxide-graphene nanosheet hybrid composites. J Phys Chem C, 2010, 114:18330 doi: 10.1021/jp105852h
[5]
Deng S, Tjoa V, Fan H M, et al. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc, 2012, 134:490 https://www.researchgate.net/publication/221831108_Reduced_Graphene_Oxide_Conjugated_Cu2O_Nanowire_Mesocrystals_for_High-Performance_NO2_Gas_Sensor
[6]
Chu J, Li X, Qi J. Hydrothermal synthesis of CdS microparticlegraphene hybrid and its optical properties. Cryst Eng Comm, 2012, 14:1881 doi: 10.1039/c1ce06162c
[7]
Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett, 2006, 6:24 doi: 10.1021/nl051807y
[8]
Divya K, Uma Devi T, Mahtew S. Graphene-based semiconductor nanocomposites for photocatalytic applications. J Nanosci Lett, 2014, 4:2 doi: 10.1201/b19460-26
[9]
Chen X, Mao S S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications. Chem Rev, 2007, 107:2891 doi: 10.1021/cr0500535
[10]
Pan X, Zhao Y, Liu S, et al. Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl Mater Interfaces, 2012, 4:3944 doi: 10.1021/am300772t
[11]
Thomas J, Kumar K P, Mathew S. Hydrothermal synthesis of samarium doped nanotitania as highly efficient solar photocatalyst. Sci Adv Mater, 2010, 2:48 https://www.researchgate.net/publication/272272530_Hydrothermal_Synthesis_of_Samarium_Doped_Nanotitania_as_Highly_Efficient_Solar_Photocatalyst
[12]
Liu S, Yang L, Xu S, et al. Photocatalytic activities of N-doped TiO2 nanotube array/carbon nanorod composite. Electrochem Commun, 2009, 11:174 doi: 10.1016/j.elecom.2008.10.056
[13]
Ji K H, Jang D M, Cho Y K, et al. Comparative photocatalytic ability of nanocrystal-carbon nanotube and TiO2 nanocrystal hybrid nanostructures. J Phys Chem C, 2009, 113:19966 doi: 10.1021/jp906476m
[14]
Suprabha T, Roy H G, Mathew S. Gold loaded titania nanostructures——synthesis, characterization and morphology dependence on photocatalysis. Sci Adv Mater, 2010, 2:10 https://www.researchgate.net/publication/233658942_Gold_Loaded_Titania_Nanostructures-Synthesis_Characterization_and_Morphology_Dependence_on_Photocatalysis
[15]
Yu H, Quan X, Chen S, et al. TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability. J Phys Chem C, 2007, 111:12987 doi: 10.1021/jp0728454
[16]
Zhang Y, Zhang N, Tang Z R, et al. Improving the photocatalytic performance of graphene-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. PCCP, 2012, 14:916 http://pubs.rsc.org/en/content/articlelanding/2012/cp/c2cp41318c/unauth#!
[17]
Dong P, Wang Y, Guo L, et al. A facile one-step solvothermal synthesis of graphene/rod-shaped TiO2 nanocomposite and its improved photocatalytic activity. Nanoscale, 2012, 4:464 http://www.rsc.org/suppdata/nr/c2/c2nr31231j/c2nr31231j.pdf
[18]
Shah M S A S, Park A R, Zhang K, et al. Green synthesis of biphasic TiO-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl Mater Interfaces, 2012, 4:3893 doi: 10.1021/am301287m
[19]
Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett, 2008, 8:90 doi: 10.1021/nl0731872
[20]
Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Lett, 2008, 8:3498 doi: 10.1021/nl802558y
[21]
Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320:1308 doi: 10.1126/science.1156965
[22]
Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321:385 doi: 10.1126/science.1157996
[23]
Guo S, Dong D. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev, 2011, 40:2644 doi: 10.1039/c0cs00079e
[24]
Zhang L, Hao W, Wang H, et al. Porous graphene frame supported silicon@graphitic carbon via in situ solid-state synthesis for high-performance lithium-ion anodes. J Mater Chem A, 2013, 1:760 https://www.researchgate.net/publication/255773845_Porous_graphene_frame_supported_silicongraphitic_carbon_via_in_situ_solid-state_synthesis_for_high-performance_lithium-ion_anodes
[25]
Anandan S, Rao T N, Sathish M, et al. Superhydrophilic graphene-loaded TiO2 thin film for self-cleaning applications. ACS Appl Mater Interfaces, 2012, 5:207 https://www.researchgate.net/publication/233929278_Superhydrophilic_Graphene-Loaded_TiO2_Thin_Film_for_Self-Cleaning_Applications
[26]
Xin X, Zhou X, Wu J, et al. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano, 2012, 6:11035 doi: 10.1021/nn304725m
[27]
Sun J, Zhang H, Guo L H, et al. Two-dimensional interface engineering of a titani-graphene nanosheet composite for improved photocatalytic activity. ACS Appl Mater Interfaces, 2013, 5:13035 doi: 10.1021/am403937y
[28]
Moon G H, Kim D H, Kim H I, et al. Platinum-like behavior of reduced graphene oxide as a cocatalyst on TiO2 for the efficient photocatalytic oxidation of arsenite. Environ Sci Technol Lett, 2014, 1:185 doi: 10.1021/ez5000012
[29]
Gu L, Wang J, Cheng H, et al. One-step preparation of graphenesupported anatase TiO2 with exposed {00}facets and mechanism of enhanced photocatalytic properties. ACS Appl Mater Interfaces, 2013, 5:308 doi: 10.1021/am303274t?src=recsys
[30]
Liu B, Huang Y, Wen Y, et al. Highly dispersive {00} facetsexposed nanocrystalline TiO2 on high quality graphene as a high performance photocatalyst. J Mater Chem, 2012, 22:7484 doi: 10.1039/c2jm16114a
[31]
Zhang Y, Tang Z R, Fu X, et al. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:is TiO2-graphene truly different from other TiO2-carbon composite materials. ACS Nano, 2010, 4:7303 doi: 10.1021/nn1024219
[32]
Wang Z, Huang B, Dai Y, et al. Crystal facets controlled synthesis of graphene@TiO2 nanocomposites by a one-pot hydrothermal process. Cryst Eng Comm, 2012, 14:168 http://pubs.rsc.org/en/content/articlelanding/2012/ce/c1ce06193c/unauth#!divAbstract
[33]
Yan W, He F, Gai S, et al. A novel 3D structured reduced graphene oxide/TiO2 composite:synthesis and photocatalytic performance. J Mater Chem A, 2014, 2:360 doi: 10.1039/C3TA13584E
[34]
Liu X, Pan L, Lv T, et al. Microwave-assisted synthesis of TiO 2-reduced graphene oxide composites for the photocatalytic reduction of Cr (Ⅵ). RSC Adv, 2011, 1:124 http://pubs.rsc.org/en/content/articlelanding/2012/ce/c1ce06193c/unauth#!divAbstract
[35]
Bilecka I, Niederberger M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2010, 2:135 https://www.researchgate.net/publication/46282847_Microwave_Chemistry_for_Inorganic_Nanomaterials_Synthesis
[36]
Baghbanzadeh M, Carbone L, Cozzoli P D, et al. Microwaveassisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed, 2011, 50:11312 doi: 10.1002/anie.v50.48
[37]
Hummers W S Jr, Offeman R E. Preparation of graphitic oxide. J Am Chem Soc, 1958, 80:1339 doi: 10.1021/ja01539a017
[38]
Che J, Shen L, Xiao Y. A new approach to fabricate graphene nanosheets in organic medium:combination of reduction and dispersion. J Mater Chem, 2010, 20:1722 doi: 10.1039/b922667b
[39]
Xu Y J, Zhuang Y, Fu X. New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes:a case study on degradation of benzene and methyl orange. J Phys Chem C, 2010, 114:2669 doi: 10.1021/jp909855p
[40]
Yu J, Ma T, Liu S. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. PCCP, 2011, 13:349 doi: 10.1039/c0cp90149k
[41]
Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles:size quantization versus direct transitions in this indirect semiconductor. J Phys Chem, 1995, 99:1664 https://www.researchgate.net/publication/231396119_Size_Effects_on_the_Photophysical_Properties_of_Colloidal_Anatase_TiO2_Particles_Size_Quantization_Versus_Direct_Transitions_in_This_Indirect_Semiconductor
[42]
Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett, 2008, 8:36 doi: 10.1021/nl071822y
[43]
Yu J, Ma T, Liu G, et al. Enhanced photocatalytic activity of bimodal mesoporous titania powders by C60 modification. Dalton Trans, 2011, 40:663 https://www.researchgate.net/publication/51107858_Enhanced_photocatalytic_activity_of_bimodal_mesoporous_titania_powders_by_C-60_modification
[44]
Zhang X Y, Li H P, Cui X L, et al. Graphene/TiO2 nanocomposites:synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem, 2010, 20:2801 doi: 10.1039/b917240h
[45]
Jiang B, Tian C, Pan Q, et al. Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed {00} facets. J Phys Chem C, 2011, 115:23718 doi: 10.1021/jp207624x
[46]
Yeh T F, Syu J M, Cheng C T, et al. Graphite oxide as a photocatalyst for hydrogen production from water. Adv Funct Mater, 2010, 20:2255 doi: 10.1002/adfm.v20:14
[47]
Tang F Q, Hou L P, Guo G S. Preparation of TiO2 nanometer powders. J Inorgan Mater, 2001, 16:615
[48]
Yu J C, Yu J, Ho W, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater, 2002, 14:3808 doi: 10.1021/cm020027c
[49]
Tu W, Zhou Y, Liu Q, et al. An in situ simultaneous reductionhydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets:graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv Funct Mater, 2013, 23:1743 doi: 10.1002/adfm.v23.14
[50]
Zhou K, Zhu Y, Yang X, et al. Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J Chem, 2011, 35:35 https://www.researchgate.net/publication/255750422_Preparation_of_Graphene-TiO2_Composites_With_Enhanced_Photocatalytic_Activity
[51]
Zhang W, Zhang M, Yin Z, et al. Photoluminescence in anatase titanium dioxide nanocrystals. Appl Phys B, 2000, 70:26 https://www.researchgate.net/publication/226120273_Photoluminescence_in_Anatase_Titanium_Dioxide_Nanocrystals
[52]
Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2:1487 doi: 10.1021/nn800251f?src=recsys
[53]
Houas A, Lachheb H, Ksibi M, et al. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B, 2001, 31:14 https://www.researchgate.net/publication/236880306_Photocatalytic_Degradation_Pathway_of_Methylene_Blue_in_Water
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3505 Times PDF downloads: 28 Times Cited by: 0 Times

    History

    Received: 21 September 2016 Revised: 16 November 2016 Online: Published: 01 June 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      K S Divya, Athulya K Madhu, T U Umadevi, T Suprabha, P. Radhakrishnan Nair, Suresh Mathew. Improving the photocatalytic performance of TiO2 via hybridizing with graphene[J]. Journal of Semiconductors, 2017, 38(6): 063002. doi: 10.1088/1674-4926/38/6/063002 K S Divya, A K Madhu, T U Umadevi, T Suprabha, P R Nair, S Mathew. Improving the photocatalytic performance of TiO2 via hybridizing with graphene[J]. J. Semicond., 2017, 38(6): 063002. doi:  10.1088/1674-4926/38/6/063002.Export: BibTex EndNote
      Citation:
      K S Divya, Athulya K Madhu, T U Umadevi, T Suprabha, P. Radhakrishnan Nair, Suresh Mathew. Improving the photocatalytic performance of TiO2 via hybridizing with graphene[J]. Journal of Semiconductors, 2017, 38(6): 063002. doi: 10.1088/1674-4926/38/6/063002

      K S Divya, A K Madhu, T U Umadevi, T Suprabha, P R Nair, S Mathew. Improving the photocatalytic performance of TiO2 via hybridizing with graphene[J]. J. Semicond., 2017, 38(6): 063002. doi:  10.1088/1674-4926/38/6/063002.
      Export: BibTex EndNote

      Improving the photocatalytic performance of TiO2 via hybridizing with graphene

      doi: 10.1088/1674-4926/38/6/063002
      More Information
      • Corresponding author: Suresh Mathew Email:sureshmathewmgu@gmail.com
      • Received Date: 2016-09-21
      • Revised Date: 2016-11-16
      • Published Date: 2017-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return