SEMICONDUCTOR DEVICES

Application of resist-profile-aware source optimization in 28 nm full chip optical proximity correction

Jun Zhu1, Wei Zhang1, Chinte Kuo1, Qing Wang2, , Fang Wei2, Chenming Zhang2, Han Chen2, Daquan He2 and D. Hsu Stephen3

+ Author Affiliations

 Corresponding author: Qing Wang, Email: qangever@126.com

PDF

Abstract: As technology node shrinks, aggressive design rules for contact and other back end of line (BEOL) layers continue to drive the need for more effective full chip patterning optimization. Resist top loss is one of the major challenges for 28 nm and below technology nodes, which can lead to post-etch hotspots that are difficult to predict and eventually degrade the process window significantly. To tackle this problem, we used an advanced programmable illuminator (FlexRay) and Tachyon SMO (Source Mask Optimization) platform to make resist-aware source optimization possible, and it is proved to greatly improve the imaging contrast, enhance focus and exposure latitude, and minimize resist top loss thus improving the yield.

Key words: integrated circuitsOPCsource optimizationlithographyresist top loss



[1]
Hsu S, Chen L, Liu H Y, et al. An innovative source-mask co-optimization (SMO) method for extending low k1 imaging. Proc SPIE, 2008, 7140(12): 714010 https://www.researchgate.net/publication/229001493_An_Innovative_Source-Mask_co-Optimization_SMO_Method_for_Extending_Low_k1_Imaging
[2]
Hsu S, Chen L, Liu H, et al. Source-mask cooptimization: optimize design for imaging and impact of source complexity on lithography performance. Proc SPIE, 2009, 7520(7): 712008 https://www.researchgate.net/publication/252623150_Source-mask_co-optimization_Optimize_design_for_imaging_and_impact_of_source_complexity_on_lithography_performance?ev=auth_pub
[3]
Zhang D Q, Chua G S, Foong Y M, et al. Source mask optimization methodology (SMO) & application to real full chip optical proximity correction. Proc SPIE, 2012, 8326: 83261V-11 doi: 10.1117/12.916614
[4]
Chen A, Foong Y M, Khoh A, et al. Resist profile aware source mask optimization. Proc SPIE, 2014, 9053(1): 43
[5]
Wang Z H, Liu W, Wang L, et al. Key process study in nanoimprint lithography. J Semicond, 2012, 33(10): 106002 doi: 10.1088/1674-4926/33/10/106002
[6]
Setten E V, Oorschot D, Manet C W, et al. EUV mask stack optimization for enhanced imaging performance. Proc SPIE, 2010, 7823(10): 782312
[7]
Zhou K J, Wang P J, Wen L. Design of power balance SRAM for DPA-resistance. J Semicond, 2016, 37(4): 045002 doi: 10.1088/1674-4926/37/4/045002
[8]
Yu J C, Yu P, Chao H Y. Fast source optimization involving quadratic line-contour objectives for the resist image. Opt Express, 2012, 20(7): 8161 doi: 10.1364/OE.20.008161
[9]
Xie C L, Chen Y, Shi Z. A novel OPC method to reduce mask volume with yield-aware dissection. J Semicond, 2013, 34(10): 106002 doi: 10.1088/1674-4926/34/10/106002
[10]
Yu M Y, Li T, Yang J Q, et al. A 1 V 186-μW 50-MS/s 10-bit subrange SAR ADC in 130-nm CMOS process. J Semicond, 2016, 37(7): 075005 doi: 10.1088/1674-4926/37/7/075005
[11]
Song Z, Ma X, Gao J, et al. Inverse lithography source optimization via compressive sensing. Opt Express, 2014, 22(12): 14180 doi: 10.1364/OE.22.014180
[12]
Zhong S, Zhu Z M. A 0.1-1.5 GHz, low jitter, area efficient PLL in 55-nm CMOS process. J Semicond, 2016, 37(5): 055004 doi: 10.1088/1674-4926/37/5/055004
[13]
Pang L, Xiao G, Tolani V, et al. Inverse lithography technology (ILT) enabled source mask optimization (SMO). ECS Trans, 2009, 18(1): 299 http://d.wanfangdata.com.cn/Conference/WFHYXW355775
[14]
Koops H W P, Kretz J, Weber M. Combined lithographies for the reduction of stitching errors in lithography. J Vac Sci Technol B, 1994, 12(6): 3265 doi: 10.1116/1.587609
[15]
Li J, Shen Y, Lam E Y. Hotspot-aware fast source and mask optimization. Opt Express, 2012, 20(19): 21792 doi: 10.1364/OE.20.021792
[16]
Granik Y. Source optimization for image fidelity and throughput. J Microlithography Microfabric Microsyst, 2007, 3(4): 509
[17]
Clerc F, Farrusseng D, Mirodatos C. A versatile open-source optimization platform for experimental design. Chemometrics & Intelligent Laboratory Systems, 2008, 93(2): 167 https://www.researchgate.net/publication/223350594_OptiCat_A_versatile_open-source_optimization_platform_for_experimental_design
[18]
Erdmann A, Farkas R, Fuehner T, et al. Mask and source optimization for lithographic imaging systems. Proc SPIE, 2003: 5182
Fig. 1.  At 2x node, resist top loss and sidewall angle variation.

Fig. 2.  (Color online) Full chip SMO source optimization flow.

Fig. 3.  (Color online) Using R3D model (optimizing the top and bottom contours) in SMO enables a source that improves CD profile across process window.

Fig. 4.  (Color online) FMO flow.

Fig. 5.  (Color online) Resist 3D (R3D) model.

Fig. 6.  (Color online) Post-etch CD variation.

Fig. 7.  (Color online) PW comparison between 13 clips and 98 clips.

Fig. 8.  (Color online) PW comparison of POR and FFS.

Fig. 9.  (Color online) BFS comparison.

Fig. 10.  (Color online) Simulation contours match SEM image.

Fig. 11.  (Color online) Top and bottom contour comparison for both POR and FFS.

Fig. 13.  AEI SEM image comparison on hotspot 2 for (a) POR and (b) FFS source.

Fig. 12.  AEI SEM image comparison on hotspot 1 for (a) POR and (b) FFS source.

Table 1.   Key litho-spec comparison on POR and FFS.

DownLoad: CSV
[1]
Hsu S, Chen L, Liu H Y, et al. An innovative source-mask co-optimization (SMO) method for extending low k1 imaging. Proc SPIE, 2008, 7140(12): 714010 https://www.researchgate.net/publication/229001493_An_Innovative_Source-Mask_co-Optimization_SMO_Method_for_Extending_Low_k1_Imaging
[2]
Hsu S, Chen L, Liu H, et al. Source-mask cooptimization: optimize design for imaging and impact of source complexity on lithography performance. Proc SPIE, 2009, 7520(7): 712008 https://www.researchgate.net/publication/252623150_Source-mask_co-optimization_Optimize_design_for_imaging_and_impact_of_source_complexity_on_lithography_performance?ev=auth_pub
[3]
Zhang D Q, Chua G S, Foong Y M, et al. Source mask optimization methodology (SMO) & application to real full chip optical proximity correction. Proc SPIE, 2012, 8326: 83261V-11 doi: 10.1117/12.916614
[4]
Chen A, Foong Y M, Khoh A, et al. Resist profile aware source mask optimization. Proc SPIE, 2014, 9053(1): 43
[5]
Wang Z H, Liu W, Wang L, et al. Key process study in nanoimprint lithography. J Semicond, 2012, 33(10): 106002 doi: 10.1088/1674-4926/33/10/106002
[6]
Setten E V, Oorschot D, Manet C W, et al. EUV mask stack optimization for enhanced imaging performance. Proc SPIE, 2010, 7823(10): 782312
[7]
Zhou K J, Wang P J, Wen L. Design of power balance SRAM for DPA-resistance. J Semicond, 2016, 37(4): 045002 doi: 10.1088/1674-4926/37/4/045002
[8]
Yu J C, Yu P, Chao H Y. Fast source optimization involving quadratic line-contour objectives for the resist image. Opt Express, 2012, 20(7): 8161 doi: 10.1364/OE.20.008161
[9]
Xie C L, Chen Y, Shi Z. A novel OPC method to reduce mask volume with yield-aware dissection. J Semicond, 2013, 34(10): 106002 doi: 10.1088/1674-4926/34/10/106002
[10]
Yu M Y, Li T, Yang J Q, et al. A 1 V 186-μW 50-MS/s 10-bit subrange SAR ADC in 130-nm CMOS process. J Semicond, 2016, 37(7): 075005 doi: 10.1088/1674-4926/37/7/075005
[11]
Song Z, Ma X, Gao J, et al. Inverse lithography source optimization via compressive sensing. Opt Express, 2014, 22(12): 14180 doi: 10.1364/OE.22.014180
[12]
Zhong S, Zhu Z M. A 0.1-1.5 GHz, low jitter, area efficient PLL in 55-nm CMOS process. J Semicond, 2016, 37(5): 055004 doi: 10.1088/1674-4926/37/5/055004
[13]
Pang L, Xiao G, Tolani V, et al. Inverse lithography technology (ILT) enabled source mask optimization (SMO). ECS Trans, 2009, 18(1): 299 http://d.wanfangdata.com.cn/Conference/WFHYXW355775
[14]
Koops H W P, Kretz J, Weber M. Combined lithographies for the reduction of stitching errors in lithography. J Vac Sci Technol B, 1994, 12(6): 3265 doi: 10.1116/1.587609
[15]
Li J, Shen Y, Lam E Y. Hotspot-aware fast source and mask optimization. Opt Express, 2012, 20(19): 21792 doi: 10.1364/OE.20.021792
[16]
Granik Y. Source optimization for image fidelity and throughput. J Microlithography Microfabric Microsyst, 2007, 3(4): 509
[17]
Clerc F, Farrusseng D, Mirodatos C. A versatile open-source optimization platform for experimental design. Chemometrics & Intelligent Laboratory Systems, 2008, 93(2): 167 https://www.researchgate.net/publication/223350594_OptiCat_A_versatile_open-source_optimization_platform_for_experimental_design
[18]
Erdmann A, Farkas R, Fuehner T, et al. Mask and source optimization for lithographic imaging systems. Proc SPIE, 2003: 5182
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4352 Times PDF downloads: 47 Times Cited by: 0 Times

    History

    Received: 18 December 2016 Revised: 10 January 2017 Online: Published: 01 July 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jun Zhu, Wei Zhang, Chinte Kuo, Qing Wang, Fang Wei, Chenming Zhang, Han Chen, Daquan He, D. Hsu Stephen. Application of resist-profile-aware source optimization in 28 nm full chip optical proximity correction[J]. Journal of Semiconductors, 2017, 38(7): 074007. doi: 10.1088/1674-4926/38/7/074007 J Zhu, W Zhang, C N T Kuo, Q Wang, F Wei, C M Zhang, H Chen, D Q He, D H Stephen. Application of resist-profile-aware source optimization in 28 nm full chip optical proximity correction[J]. J. Semicond., 2017, 38(7): 074007. doi:  10.1088/1674-4926/38/7/074007.Export: BibTex EndNote
      Citation:
      Jun Zhu, Wei Zhang, Chinte Kuo, Qing Wang, Fang Wei, Chenming Zhang, Han Chen, Daquan He, D. Hsu Stephen. Application of resist-profile-aware source optimization in 28 nm full chip optical proximity correction[J]. Journal of Semiconductors, 2017, 38(7): 074007. doi: 10.1088/1674-4926/38/7/074007

      J Zhu, W Zhang, C N T Kuo, Q Wang, F Wei, C M Zhang, H Chen, D Q He, D H Stephen. Application of resist-profile-aware source optimization in 28 nm full chip optical proximity correction[J]. J. Semicond., 2017, 38(7): 074007. doi:  10.1088/1674-4926/38/7/074007.
      Export: BibTex EndNote

      Application of resist-profile-aware source optimization in 28 nm full chip optical proximity correction

      doi: 10.1088/1674-4926/38/7/074007
      More Information
      • Corresponding author: Qing Wang, Email: qangever@126.com
      • Received Date: 2016-12-18
      • Revised Date: 2017-01-10
      • Published Date: 2017-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return