SEMICONDUCTOR INTEGRATED CIRCUITS

A small signal coupling model for predicting the coupling between LNAs

Junyu Shi, Dasheng Cui and Yuming Wu

+ Author Affiliations

 Corresponding author: Junyu Shi, E-mail:junyu@bit.edu.cn

PDF

Abstract: A small signal coupling model is developed to analyze the coupling between two LNAs. The mutual inductance between the adjacent on-chip inductors is considered responsible for this coupling. A set of formulas have been derived to quantitatively predict the coupling effects. Based on our analysis, a quick estimation can be made to see which pair of inductors plays a key role in evaluating the coupling between the LNAs. Source inductors of two LNAs are placed closely while the load inductors are far apart according to the analysis. To validate the proposed theory, two 2 GHz LNAs are fabricated. The LNAs have a peak gain of 18 dB and NF of 1.4 dB. The coupling between the LNAs is -30 dB.

Key words: low noise amplifier (LNA)small signal modelon-chip inductorscoupling



[1]
Cohen E, Ruberto M, Cohen M, et al. A CMOS bidirectional 32-element phased-array transceiver at 60 GHz with LTCC antenna. IEEE Trans Microwave Theory Tech, 2013, 61(3): 1359 doi: 10.1109/TMTT.2013.2243749
[2]
Kuo J L, Lu Y F, Huang T Y, et al. 60-GHz four-element phased-array transmit/receive system-in-package using phase compensation techniques in 65-nm flip-chip CMOS process. IEEE Trans Microwave Theory Tech, 2012, 60(3): 743 doi: 10.1109/TMTT.2011.2176508
[3]
Emami S, Wiser R F, Ali E, et al. A 60 GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications. 2011 IEEE International Solid-State Circuits Conference, 2011: 164 http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&tp=&arnumber=5746265&contentType=Conference+Publications&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A5746170%29%26pageNumber%3D4
[4]
Kuo J L, Lu Y F, Huang T Y, et al. 60-GHz four-element phased-array transmit/receive system-in-package using phase compensation techniques in 65-nm flip-chip CMOS process. IEEE Trans Microwave Theory Tech, 2012, 60(3): 743 doi: 10.1109/TMTT.2011.2176508
[5]
Nagatsuma T. Terahertz technologies: present and future. IEICE Electron Express, 2011, 8(14): 1127 doi: 10.1587/elex.8.1127
[6]
Pfeiffer U R, Zhao Y, Grzyb J, et al. A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications. IEEE J Solid-State Circuits, 2014, 49(12): 2938 doi: 10.1109/JSSC.2014.2358570
[7]
Sherry H, Grzyb J, Zhao Y, et al. A 1 kpixel CMOS camera chip for 25 fps real-time terahertz imaging applications. 2012 IEEE International Solid-State Circuits Conference, 2012: 252 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=6176997&punumber%3D6171933
[8]
Han R, Zhang Y, Kim Y, et al. Active terahertz imaging using Schottky diodes in CMOS: array and 860-GHz pixel. IEEE J Solid-State Circuits, 2013, 48(10): 2296 doi: 10.1109/JSSC.2013.2269856
[9]
Yu T, Rebeiz G M. A 22-24 GHz 4-element CMOS phased array with on-chip coupling characterization. IEEE J Solid-State Circuits, 2008, 43(9): 2134 doi: 10.1109/JSSC.2008.2001905
[10]
Wallace J W, Mehmood R. On the accuracy of equivalent circuit models for multi-antenna systems. IEEE Trans Antennas Propagation, 2012, 60(2): 540 doi: 10.1109/TAP.2011.2152339
[11]
Warnick K F, Jensen M A. Effects of mutual coupling on interference mitigation with a focal plane array. IEEE Trans Sntennas Propagation, 2005, 53(8): 2490 doi: 10.1109/TAP.2005.852278
[12]
Shaeffer D K, Lee T H. A 1.5-V 1.5-GHz CMOS low noise amplifier. IEEE J Solid-State Circuits, 1997, 32(5): 745 doi: 10.1109/4.568846
[13]
Kargaran E, Khosrowjerdi H, Ghaffarzadegan K, et al. A 5.7 GHz low noise figure ultra high gain CMOS LNA with inter stage technique. IEICE Electron Express, 2010, 7: 1686 doi: 10.1587/elex.7.1686
[14]
Kargaran E, Khosrowjerdi H, Ghaffarzadegan K, et al. A 5.7 GHz low noise figure ultra high gain CMOS LNA with inter stage technique. IEICE Electron Express, 2010, 7(23): 1686 doi: 10.1587/elex.7.1686
[15]
Sonnet Software Inc Sonnet: User's Guide Ver. 15. 52, 2015: 74
[16]
Yin W Y, Pan S J, Li L W, et al. Experimental characterization of coupling effects between two on-chip neighboring square inductors. IEEE Trans Electromagnet Compatib, 2003, 45(3): 557 doi: 10.1109/TEMC.2003.815597
Fig. 1.  (a) Block diagram of two 2 GHz LNAs. In this paper, the common source inductive degeneration cascade type LNA[12, 13] is taken as an example to explore the coupling effects. The topology of single LNA is depicted in Fig. 1(b).

Fig. 2.  Small signal equivalent model of the common source inductor feedback LNAs.

Fig. 3.  Simulated coupling coefficient $k$ versus edge distances between two inductors

Fig. 4.  Simulated results of the (a) forward coupling and (b) isolation with changing $k$.

Fig. 5.  (Color online) Photograph of two LNAs

Fig. 6.  (Color online) Measured results of the proposed LNAs. (a) $S_{11}$ and $S_{22}$. (b) $S_{21}$ and noise figure.

Fig. 7.  (Color online) Measured results of forward coupling.

Table 1.   Design parameters of LNAs.

[1]
Cohen E, Ruberto M, Cohen M, et al. A CMOS bidirectional 32-element phased-array transceiver at 60 GHz with LTCC antenna. IEEE Trans Microwave Theory Tech, 2013, 61(3): 1359 doi: 10.1109/TMTT.2013.2243749
[2]
Kuo J L, Lu Y F, Huang T Y, et al. 60-GHz four-element phased-array transmit/receive system-in-package using phase compensation techniques in 65-nm flip-chip CMOS process. IEEE Trans Microwave Theory Tech, 2012, 60(3): 743 doi: 10.1109/TMTT.2011.2176508
[3]
Emami S, Wiser R F, Ali E, et al. A 60 GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications. 2011 IEEE International Solid-State Circuits Conference, 2011: 164 http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&tp=&arnumber=5746265&contentType=Conference+Publications&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A5746170%29%26pageNumber%3D4
[4]
Kuo J L, Lu Y F, Huang T Y, et al. 60-GHz four-element phased-array transmit/receive system-in-package using phase compensation techniques in 65-nm flip-chip CMOS process. IEEE Trans Microwave Theory Tech, 2012, 60(3): 743 doi: 10.1109/TMTT.2011.2176508
[5]
Nagatsuma T. Terahertz technologies: present and future. IEICE Electron Express, 2011, 8(14): 1127 doi: 10.1587/elex.8.1127
[6]
Pfeiffer U R, Zhao Y, Grzyb J, et al. A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications. IEEE J Solid-State Circuits, 2014, 49(12): 2938 doi: 10.1109/JSSC.2014.2358570
[7]
Sherry H, Grzyb J, Zhao Y, et al. A 1 kpixel CMOS camera chip for 25 fps real-time terahertz imaging applications. 2012 IEEE International Solid-State Circuits Conference, 2012: 252 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=6176997&punumber%3D6171933
[8]
Han R, Zhang Y, Kim Y, et al. Active terahertz imaging using Schottky diodes in CMOS: array and 860-GHz pixel. IEEE J Solid-State Circuits, 2013, 48(10): 2296 doi: 10.1109/JSSC.2013.2269856
[9]
Yu T, Rebeiz G M. A 22-24 GHz 4-element CMOS phased array with on-chip coupling characterization. IEEE J Solid-State Circuits, 2008, 43(9): 2134 doi: 10.1109/JSSC.2008.2001905
[10]
Wallace J W, Mehmood R. On the accuracy of equivalent circuit models for multi-antenna systems. IEEE Trans Antennas Propagation, 2012, 60(2): 540 doi: 10.1109/TAP.2011.2152339
[11]
Warnick K F, Jensen M A. Effects of mutual coupling on interference mitigation with a focal plane array. IEEE Trans Sntennas Propagation, 2005, 53(8): 2490 doi: 10.1109/TAP.2005.852278
[12]
Shaeffer D K, Lee T H. A 1.5-V 1.5-GHz CMOS low noise amplifier. IEEE J Solid-State Circuits, 1997, 32(5): 745 doi: 10.1109/4.568846
[13]
Kargaran E, Khosrowjerdi H, Ghaffarzadegan K, et al. A 5.7 GHz low noise figure ultra high gain CMOS LNA with inter stage technique. IEICE Electron Express, 2010, 7: 1686 doi: 10.1587/elex.7.1686
[14]
Kargaran E, Khosrowjerdi H, Ghaffarzadegan K, et al. A 5.7 GHz low noise figure ultra high gain CMOS LNA with inter stage technique. IEICE Electron Express, 2010, 7(23): 1686 doi: 10.1587/elex.7.1686
[15]
Sonnet Software Inc Sonnet: User's Guide Ver. 15. 52, 2015: 74
[16]
Yin W Y, Pan S J, Li L W, et al. Experimental characterization of coupling effects between two on-chip neighboring square inductors. IEEE Trans Electromagnet Compatib, 2003, 45(3): 557 doi: 10.1109/TEMC.2003.815597
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2937 Times PDF downloads: 20 Times Cited by: 0 Times

    History

    Received: 28 November 2016 Revised: 10 January 2017 Online: Published: 01 July 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Junyu Shi, Dasheng Cui, Yuming Wu. A small signal coupling model for predicting the coupling between LNAs[J]. Journal of Semiconductors, 2017, 38(7): 075002. doi: 10.1088/1674-4926/38/7/075002 J Y Shi, D S Cui, Y M Wu. A small signal coupling model for predicting the coupling between LNAs[J]. J. Semicond., 2017, 38(7): 075002. doi: 10.1088/1674-4926/38/7/075002.Export: BibTex EndNote
      Citation:
      Junyu Shi, Dasheng Cui, Yuming Wu. A small signal coupling model for predicting the coupling between LNAs[J]. Journal of Semiconductors, 2017, 38(7): 075002. doi: 10.1088/1674-4926/38/7/075002

      J Y Shi, D S Cui, Y M Wu. A small signal coupling model for predicting the coupling between LNAs[J]. J. Semicond., 2017, 38(7): 075002. doi: 10.1088/1674-4926/38/7/075002.
      Export: BibTex EndNote

      A small signal coupling model for predicting the coupling between LNAs

      doi: 10.1088/1674-4926/38/7/075002
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 61401025)

      the National Natural Science Foundation of China 61401025

      More Information
      • Corresponding author: Junyu Shi, E-mail:junyu@bit.edu.cn
      • Received Date: 2016-11-28
      • Revised Date: 2017-01-10
      • Published Date: 2017-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return