SEMICONDUCTOR PHYSICS

ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis

Utsa Das1, 2 and Partha P. Pal2,

+ Author Affiliations

 Corresponding author: Partha P.Pal, Email:phys.ppal@gmail.com

PDF

Abstract: ZnO1-xTex ternary alloys have great potential to work as a photovoltaic (PV) absorber in solar cells. ZnO1-xSx is also a ZnO based alloy that have uses in solar cells. In this paper we report the comparative study of various parameters of ZnO1-xTex and ZnO1-xSx for selecting it to be a competent material for solar cell applications. The parameters are mainly being calculated using the well-known VCA (virtual crystal approximation) and VBAC (Valence Band Anti-Crossing) model. It was certainly being analysed that the incorporation of Te atoms produces a high band gap lower than S atoms in the host ZnO material. The spin-orbit splitting energy value of ZnO1-xTex was found to be higher than that of ZnO1-xSx. Beside this, the strain effects are also higher in ZnO1-xTex than ZnO1-xSx. The remarkable notifying result which the paper is reporting is that at a higher percentage of Te atoms in ZnO1-xTex, the spin-orbit splitting energy value rises above the band gap value, which signifies a very less internal carrier recombination that decreases the leakage current and increases the efficiency of the solar cell. Moreover, it also covers a wide wavelength range compared to ZnO1-xSx.

Key words: VBAC modelsemiconductor alloysband gapspin-orbit splitting energystrainsolar cell



[1]
Weł na M, Kudrawiec R, Nabetani Y. Effects of a semiconductor matrix on the band anticrossing in dilute group Ⅱ-Ⅵ oxides. Semicond Sci Technol, 2015, 30:085018 doi: 10.1088/0268-1242/30/8/085018
[2]
He Y B, Zhang L, Wang L H, et al. Structural and optical properties of single-phase ZnO1-xSx alloy films epitaxially grown by pulsed laser deposition. J Alloys Compounds, 2014, 587:369 doi: 10.1016/j.jallcom.2013.10.201
[3]
Ramanathan S, Patibandla S, Bandyopadhyay S, et al. Fluorescence and infrared spectroscopy of electrochemically self assembled ZnO nanowires:evidence of the quantum confined Stark effect. J Mater Sci:Mater Electron, 2006, 17:651 doi: 10.1007/s10854-006-0021-4
[4]
Jaquez M, Yu K M, Ting M, et al. Growth and characterization of ZnO1-xSx highly mismatched alloys over the entire composition. J Appl Phys, 2015, 118:215702 doi: 10.1063/1.4936551
[5]
Gonfa B A, da Cunha A F, Timmons A B. ZnO nanostructures for photovoltaic cells. Phys Stat Solidi B, 2010, 247:1633 doi: 10.1002/pssb.v247:7
[6]
Gondek E, Djaoued Y, Priya S, et al. Organic hybrid solar cells——influence of ZnO nanoparticles on the photovoltaic efficiency. Mater Lett, 2014, 131:259 doi: 10.1016/j.matlet.2014.06.007
[7]
Ting M, dos Reis R, Jaquez M, et al. Electronic band structure of ZnO-rich highly mismatched ZnO1-xTex alloys. Appl Phys Lett, 2015, 106:092101 doi: 10.1063/1.4913840
[8]
Wang W, Bowen W, Spanninga S, et al. Optical characteristics of ZnTeO thin films synthesized by pulsed laser deposition and molecular beam epitaxy. J Electron Mater, 2009, 38:119 doi: 10.1007/s11664-008-0577-2
[9]
Nabetani Y, Okuno T, Aoki K, et al. Photoluminescence properties of ZnTeO and ZnSeO alloys with dilute O concentrations. Phys Status Solidi C, 2006, 3:1078 doi: 10.1002/(ISSN)1610-1642
[10]
Lin A S, Wang W, Phillips J D. Model for intermediate band solar cells incorporating carrier transport and recombination. J Appl Phys, 2009, 105:064512 doi: 10.1063/1.3093962
[11]
Wang W, Lin A S, Phillips J D, et al. Generation and recombination rates at ZnTe:O intermediate band states. Appl Phys Lett, 2009, 95:261107 doi: 10.1063/1.3274131
[12]
Thankalekshmi R R, Rastogi A C. Structure and optical band gap of ZnO1-xSx thin films synthesized by chemical spray pyrolysis for application in solar cells. J Appl Phys, 2012, 112:063708 doi: 10.1063/1.4754014
[13]
Meyer B K, Polity A, Farangis B, et al. Structural properties and bandgap bowing of ZnO1-xSx thin films deposited by reactive sputtering. Appl Phys Lett, 2004, 85:4929 doi: 10.1063/1.1825053
[14]
Wu J Q, Walukiewicz W, Yu K M, et al. Origin of large band-gap bowing in highly mismatched semiconductor alloys. Phys Rev B, 2003, 67:035207 doi: 10.1103/PhysRevB.67.035207
[15]
Walukiewicz W, Shan W, Yu K M, et al. Interaction of localised electronic states with conduction band:band anti-crossing in Ⅱ-Ⅵ semiconductor ternaries. Phys Rev Lett, 2000, 85:7
[16]
Alberi J, Blacksberg, Bell L D, et al. Band anticrossing in highly mismatched Sn_xGe1-x semiconductor alloys. Phys Rev B, 2008, 77:073202 doi: 10.1103/PhysRevB.77.073202
[17]
Iribarren A, Fernández P, Piqueras J. Recombination processes in Te-doped ZnO microstructures. Phys Status Solidi B, 2014, 251:683 doi: 10.1002/pssb.201248600
[18]
Vegard L. The constitution of the mixed crystals and the room filling the atoms. Z Phys, 1921, 5:17 doi: 10.1007/BF01349680
[19]
Gai Y Q, Tang G. Effects of hydrostatic pressures on the ionization and formation energies of dopants in ZnO and ZnTe. Phys Lett A, 2014, 378:82 doi: 10.1016/j.physleta.2013.10.041
[20]
Janetzko F, Jug K. Miscibility of zinc chalcogenides. J Phys Chem A, 2004, 108:5449 doi: 10.1021/jp040061+
[21]
Ashrafi A, Jagadish C. Review of zincblende ZnO:stability of metastable ZnO phases. J Appl Phys, 2007, 102:071101 doi: 10.1063/1.2787957
[22]
Samajdar D P, Das T D, Dhar S. Valence band anticrossing for Ga Sb1-xBix and Ga Sb1-xBix using k. p method. Mater Sci Semicond Process, 2015, 40: 539
[23]
Niv A, Abrams Z R, Gharghi M, et al. Overcoming the bandgap limitation on solar cell materials. Appl Phys Lett, 2012, 100:083901 doi: 10.1063/1.3682101
[24]
Sweeney S J, Jin S R. Bismide-nitride alloys:promising for efficient light emitting devices in the near-and mid-infrared. J Appl Phys, 2013, 113:043110 doi: 10.1063/1.4789624
Fig. 1.  Band gap variation of ZnO$_{{1-x}}$Te$_{{x}}$ and ZnO$_{{1-x}}$S$_{{x\thinspace }}$with dependence on Te and S mole fraction respectively.

Fig. 2.  Spin-orbit splitting energy disparity for ZnO$_{{1-x}}$Te$_{{x}}$ and ZnO$_{{1-x}}$S$_{{x\thinspace }}$pivoting upon Te and S mole fraction respectively.

Fig. 3.  Band gap and spin-orbit splitting energy variation for ZnO$_{{1-x}}$Te$_{{x}}$ and ZnO$_{{1-x}}$S$_{{x\thinspace }}$depending on Te and S mole fraction respectively.

Fig. 4.  Compressive strain effects on ZnO$_{{1-x}}$Te$_{{x}}$ and ZnO$_{{1-x}}$S$_{{x\thinspace }}$depending upon the Te and S mole fraction respectively.

Fig. 5.  Wavelength variation of ZnO$_{{1-x}}$Te$_{{x}}$ and ZnO$_{{1-x}}$S$_{{x\thinspace }}$depending on Te and S mole fraction respectively.

Table 1.   ZnO input parameters for the calculations.

Table 2.   Other input parameters for calculations.

Table 3.   Results obtained from calculations.

[1]
Weł na M, Kudrawiec R, Nabetani Y. Effects of a semiconductor matrix on the band anticrossing in dilute group Ⅱ-Ⅵ oxides. Semicond Sci Technol, 2015, 30:085018 doi: 10.1088/0268-1242/30/8/085018
[2]
He Y B, Zhang L, Wang L H, et al. Structural and optical properties of single-phase ZnO1-xSx alloy films epitaxially grown by pulsed laser deposition. J Alloys Compounds, 2014, 587:369 doi: 10.1016/j.jallcom.2013.10.201
[3]
Ramanathan S, Patibandla S, Bandyopadhyay S, et al. Fluorescence and infrared spectroscopy of electrochemically self assembled ZnO nanowires:evidence of the quantum confined Stark effect. J Mater Sci:Mater Electron, 2006, 17:651 doi: 10.1007/s10854-006-0021-4
[4]
Jaquez M, Yu K M, Ting M, et al. Growth and characterization of ZnO1-xSx highly mismatched alloys over the entire composition. J Appl Phys, 2015, 118:215702 doi: 10.1063/1.4936551
[5]
Gonfa B A, da Cunha A F, Timmons A B. ZnO nanostructures for photovoltaic cells. Phys Stat Solidi B, 2010, 247:1633 doi: 10.1002/pssb.v247:7
[6]
Gondek E, Djaoued Y, Priya S, et al. Organic hybrid solar cells——influence of ZnO nanoparticles on the photovoltaic efficiency. Mater Lett, 2014, 131:259 doi: 10.1016/j.matlet.2014.06.007
[7]
Ting M, dos Reis R, Jaquez M, et al. Electronic band structure of ZnO-rich highly mismatched ZnO1-xTex alloys. Appl Phys Lett, 2015, 106:092101 doi: 10.1063/1.4913840
[8]
Wang W, Bowen W, Spanninga S, et al. Optical characteristics of ZnTeO thin films synthesized by pulsed laser deposition and molecular beam epitaxy. J Electron Mater, 2009, 38:119 doi: 10.1007/s11664-008-0577-2
[9]
Nabetani Y, Okuno T, Aoki K, et al. Photoluminescence properties of ZnTeO and ZnSeO alloys with dilute O concentrations. Phys Status Solidi C, 2006, 3:1078 doi: 10.1002/(ISSN)1610-1642
[10]
Lin A S, Wang W, Phillips J D. Model for intermediate band solar cells incorporating carrier transport and recombination. J Appl Phys, 2009, 105:064512 doi: 10.1063/1.3093962
[11]
Wang W, Lin A S, Phillips J D, et al. Generation and recombination rates at ZnTe:O intermediate band states. Appl Phys Lett, 2009, 95:261107 doi: 10.1063/1.3274131
[12]
Thankalekshmi R R, Rastogi A C. Structure and optical band gap of ZnO1-xSx thin films synthesized by chemical spray pyrolysis for application in solar cells. J Appl Phys, 2012, 112:063708 doi: 10.1063/1.4754014
[13]
Meyer B K, Polity A, Farangis B, et al. Structural properties and bandgap bowing of ZnO1-xSx thin films deposited by reactive sputtering. Appl Phys Lett, 2004, 85:4929 doi: 10.1063/1.1825053
[14]
Wu J Q, Walukiewicz W, Yu K M, et al. Origin of large band-gap bowing in highly mismatched semiconductor alloys. Phys Rev B, 2003, 67:035207 doi: 10.1103/PhysRevB.67.035207
[15]
Walukiewicz W, Shan W, Yu K M, et al. Interaction of localised electronic states with conduction band:band anti-crossing in Ⅱ-Ⅵ semiconductor ternaries. Phys Rev Lett, 2000, 85:7
[16]
Alberi J, Blacksberg, Bell L D, et al. Band anticrossing in highly mismatched Sn_xGe1-x semiconductor alloys. Phys Rev B, 2008, 77:073202 doi: 10.1103/PhysRevB.77.073202
[17]
Iribarren A, Fernández P, Piqueras J. Recombination processes in Te-doped ZnO microstructures. Phys Status Solidi B, 2014, 251:683 doi: 10.1002/pssb.201248600
[18]
Vegard L. The constitution of the mixed crystals and the room filling the atoms. Z Phys, 1921, 5:17 doi: 10.1007/BF01349680
[19]
Gai Y Q, Tang G. Effects of hydrostatic pressures on the ionization and formation energies of dopants in ZnO and ZnTe. Phys Lett A, 2014, 378:82 doi: 10.1016/j.physleta.2013.10.041
[20]
Janetzko F, Jug K. Miscibility of zinc chalcogenides. J Phys Chem A, 2004, 108:5449 doi: 10.1021/jp040061+
[21]
Ashrafi A, Jagadish C. Review of zincblende ZnO:stability of metastable ZnO phases. J Appl Phys, 2007, 102:071101 doi: 10.1063/1.2787957
[22]
Samajdar D P, Das T D, Dhar S. Valence band anticrossing for Ga Sb1-xBix and Ga Sb1-xBix using k. p method. Mater Sci Semicond Process, 2015, 40: 539
[23]
Niv A, Abrams Z R, Gharghi M, et al. Overcoming the bandgap limitation on solar cell materials. Appl Phys Lett, 2012, 100:083901 doi: 10.1063/1.3682101
[24]
Sweeney S J, Jin S R. Bismide-nitride alloys:promising for efficient light emitting devices in the near-and mid-infrared. J Appl Phys, 2013, 113:043110 doi: 10.1063/1.4789624
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3652 Times PDF downloads: 52 Times Cited by: 0 Times

    History

    Received: 01 October 2016 Revised: 04 March 2017 Online: Published: 01 August 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Utsa Das, Partha P. Pal. ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis[J]. Journal of Semiconductors, 2017, 38(8): 082001. doi: 10.1088/1674-4926/38/8/082001 U Das, P P Pal. ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis[J]. J. Semicond., 2017, 38(8): 082001. doi:  10.1088/1674-4926/38/8/082001.Export: BibTex EndNote
      Citation:
      Utsa Das, Partha P. Pal. ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis[J]. Journal of Semiconductors, 2017, 38(8): 082001. doi: 10.1088/1674-4926/38/8/082001

      U Das, P P Pal. ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis[J]. J. Semicond., 2017, 38(8): 082001. doi:  10.1088/1674-4926/38/8/082001.
      Export: BibTex EndNote

      ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis

      doi: 10.1088/1674-4926/38/8/082001
      More Information
      • Corresponding author: Partha P.Pal, Email:phys.ppal@gmail.com
      • Received Date: 2016-10-01
      • Revised Date: 2017-03-04
      • Published Date: 2017-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return