SEMICONDUCTOR MATERIALS

First-principles study of p-type ZnO by S-Na co-doping

Xingyi Tan, Qiang Li and Yongdan Zhu

+ Author Affiliations

 Corresponding author: Xingyi Tan, Email:tanxingyi1009@163.com

PDF

Abstract: Using the first-principles method based on the density functional theory, the formation energy, electronic structures of S-Na co-doping in ZnO were calculated. The calculated results show that NaZn-SO have smaller formation energy than Nain-SO in energy ranges from -3.10 to 0 eV of μO, indicating that it opens up a new opportunity for growth the p-type ZnO. The band structure shows that the NaZn system is a p-type direct-band-gap semiconductor material and the calculated band gap (0.84 eV) is larger than pure ZnO (0.74 eV). The NaZn-SO system is also a p-type semiconductor material with a direct band gap (0.80 eV). The influence of S-Na co-doping in ZnO on p-type conductivity is also discussed. The effective masses of NaZn-SO are larger than effective masses of NaZn and the NaZn-SO have more hole carriers than NaZn, meaning the hole in the NaZn-SO system may have a better carrier transfer character. So we inferred that NaZn-SO should be a candidate of p-type conduction.

Key words: p-type ZnOelectronic structuresconductive property



[1]
Özgür Ü, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices. J Appl Phys, 2005, 98:0413011 https://www.researchgate.net/publication/276379347_A_Comprehensive_Review_of_ZnO_Materials_and_Devices
[2]
Sara K G, Ramin Y, Farid J S, et al. Optical and electrical properties of p-type Ag-doped ZnO nanostructures. Ceram Int, 2014, 40:7957 doi: 10.1016/j.ceramint.2013.12.145
[3]
Li W J, Kong C Y, Qin G P, et al. p-type conductivity and stability of Ag-N codoped ZnO thin films. J. Alloys Compd, 2014, 609:173 doi: 10.1016/j.jallcom.2014.04.051
[4]
Alivov Y I, Kalinina E V, Cherenkov A E, et al. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl Phys Lett, 2003, 83:4719 doi: 10.1063/1.1632537
[5]
Huang Y B, Zhou W, Wu P. Room-temperature ferromagnetism in epitaxial p-type K-doped ZnO films. Solid State Commun, 2014, 183:31 doi: 10.1016/j.ssc.2013.12.024
[6]
Makino T, Chia C H, Tuan N T, et al. Radiative and nonradiative recombination processes in lattice-matched (Cd, Zn)O/(Mg, Zn)O multiquantum wells. Appl Phys Lett, 2000, 77:1632 doi: 10.1063/1.1308540
[7]
Sáaedi A, Yousefi R, Jamali-Sheini F, et al. Optical and electrical properties of p-type Li-doped ZnO nanowires. Superlattices Microstruct, 2013, 61:91 doi: 10.1016/j.spmi.2013.06.014
[8]
Zhang S B, Wei S H, Zunger A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys Rev B, 2001, 63:075205 doi: 10.1103/PhysRevB.63.075205
[9]
Dhara S, Giri P K. Stable p-type conductivity and enhanced photoconductivity from nitrogen-doped annealed ZnO thin film. Thin Solid Films, 2012, 520:5000 doi: 10.1016/j.tsf.2012.02.081
[10]
Liu J S, Shan C X, Shen H, et al. ZnO light-emitting devices with a lifetime of 6.8 hours. Appl Phys Lett, 2012, 101:011106 doi: 10.1063/1.4733298
[11]
Shen H, Shan C X, Liu J S, et al. Stable p-type ZnO films obtained by lithium-nitrogen codoping method. Phys Status Solidi B, 2013, 250:2102 https://www.researchgate.net/publication/264251371_Stable_p-type_ZnO_films_obtained_by_lithium-nitrogen_codoping_method
[12]
Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO:the impurity perspective. Phys Rev B, 2002, 66:073202 doi: 10.1103/PhysRevB.66.073202
[13]
Yang X P, Lu J G, Zhang H H, et al. Preparation and XRD analyses of Na-doped ZnO nanorod arrays based on experiment and theory. Chem Phys Lett, 2012, 528(3):16 https://www.researchgate.net/publication/256683125_Preparation_and_XRD_Analyses_of_Na-Doped_ZnO_Nanorod_Arrays_Based_on_Experiment_and_Theory
[14]
Lin S S, Lu J G, Ye Z Z, et al. p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes. Solid State Commun, 2008, 148:25 doi: 10.1016/j.ssc.2008.07.028
[15]
Pandey S K, Awasthi V, Sengar B S, et al. Band alignment and photon extraction studies of Na-doped MgZnO/Ga-doped ZnO heterojunction for light-emitter applications. J Appl Phys, 2015, 118:165301 doi: 10.1063/1.4934560
[16]
Persson C, Platzer-Björkman C, Malmström J, et al. Strong valence-band offset bowing of ZnO1-xSx enhances p-type nitrogen doping of ZnO-like alloys. Phys Rev Lett, 2006, 97:146403 doi: 10.1103/PhysRevLett.97.146403
[17]
Xu T N, Li X, Lu Z, et al. Realization of Ag-S codoped p-type ZnO thin films. Appl Sur Sci, 2014, 316:62 doi: 10.1016/j.apsusc.2014.07.156
[18]
Xu Y, Yang T, Yao B, et al. Influence of Ag-S codoping on silver chemical states and stable p-type conduction behavior of the ZnO films. Ceram Int, 2014, 40:2161 doi: 10.1016/j.ceramint.2013.07.133
[19]
Niu W Z, Xu H B, Guo Y M, et al. The effect of sulfur on the electrical properties of S and N co-doped ZnO thin films:experiment and first-principles calculations. Phys Chem Chem Phys, 2015, 17:16705 doi: 10.1039/C5CP02434J
[20]
Perdew J P, Burke S, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77:3865 doi: 10.1103/PhysRevLett.77.3865
[21]
Van de Walle C G, Neugebauer J. First-principles calculations for defects and impurities:applications to Ⅲ-nitrides. J Appl Phys, 2004, 95:3851 doi: 10.1063/1.1682673
[22]
Oba F, Togo A, Tanaka I, et al. Defect energetics in ZnO:a hybrid Hartree-Fock density functional study. Phys Rev B, 2008, 77:245202 doi: 10.1103/PhysRevB.77.245202
[23]
Yan Y F, Zhang S B, Pantelides S T. Control of doping by impurity chemical potentials:predictions for p-type ZnO. Phys Rev Lett, 2001, 86:5723 doi: 10.1103/PhysRevLett.86.5723
[24]
Guo T T, Dong G B, Chena Q, et al. First-principles calculation on p-type conduction of (Sb, N) codoping in ZnO. J Phys Chem Solid, 2014, 75:42 doi: 10.1016/j.jpcs.2013.08.006
[25]
Zhang J K, Deng S H, Jin H, et al. First-principle study on the electronic structure and p-type conductivity of ZnO. Acta Phys Sin, 2007, 56:5371 https://www.researchgate.net/publication/291645152_First-principle_study_on_the_electronic_structure_and_p-type_conductivity_of_ZnO
[26]
Limpijumnong S, Zhang S B, Wei S H, et al. Doping by large-size-mismatched impurities:the microscopic origin of arsenic-or antimony-doped p-type zinc oxide. Phys Rev Lett, 2004, 92:155504 doi: 10.1103/PhysRevLett.92.155504
Fig. 1.  (Color online) Supercell of ZnO for (a) ZnO, (b) Na$_{\mathrm{Zn}}$, (c) Na$_{\mathrm{Zn}}$-S$_{\mathrm{O}}$, and (d) Na$_{\mathrm{in}}$-S$_{\mathrm{O}}$.

Fig. 2.  Calculated impurity formation energies as a function of the chemical potential $\mu_{\mathrm{O}}$ for Na$_{\mathrm{in}}$-S$_{\mathrm{O\thinspace }}$and Na$_{\mathrm{Zn}}$-S$_{\mathrm{O}}$.

Fig. 3.  Band structures of ZnO for (a) ZnO, (b) Na$_{\rm Zn}$, (c) Na$_{\rm Zn}$-So.

Fig. 4.  Density of states of ZnO for (a) ZnO, (b) Na$_{\rm Zn}$, (c) Na$_{\rm Zn}$-So.

[1]
Özgür Ü, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices. J Appl Phys, 2005, 98:0413011 https://www.researchgate.net/publication/276379347_A_Comprehensive_Review_of_ZnO_Materials_and_Devices
[2]
Sara K G, Ramin Y, Farid J S, et al. Optical and electrical properties of p-type Ag-doped ZnO nanostructures. Ceram Int, 2014, 40:7957 doi: 10.1016/j.ceramint.2013.12.145
[3]
Li W J, Kong C Y, Qin G P, et al. p-type conductivity and stability of Ag-N codoped ZnO thin films. J. Alloys Compd, 2014, 609:173 doi: 10.1016/j.jallcom.2014.04.051
[4]
Alivov Y I, Kalinina E V, Cherenkov A E, et al. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl Phys Lett, 2003, 83:4719 doi: 10.1063/1.1632537
[5]
Huang Y B, Zhou W, Wu P. Room-temperature ferromagnetism in epitaxial p-type K-doped ZnO films. Solid State Commun, 2014, 183:31 doi: 10.1016/j.ssc.2013.12.024
[6]
Makino T, Chia C H, Tuan N T, et al. Radiative and nonradiative recombination processes in lattice-matched (Cd, Zn)O/(Mg, Zn)O multiquantum wells. Appl Phys Lett, 2000, 77:1632 doi: 10.1063/1.1308540
[7]
Sáaedi A, Yousefi R, Jamali-Sheini F, et al. Optical and electrical properties of p-type Li-doped ZnO nanowires. Superlattices Microstruct, 2013, 61:91 doi: 10.1016/j.spmi.2013.06.014
[8]
Zhang S B, Wei S H, Zunger A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys Rev B, 2001, 63:075205 doi: 10.1103/PhysRevB.63.075205
[9]
Dhara S, Giri P K. Stable p-type conductivity and enhanced photoconductivity from nitrogen-doped annealed ZnO thin film. Thin Solid Films, 2012, 520:5000 doi: 10.1016/j.tsf.2012.02.081
[10]
Liu J S, Shan C X, Shen H, et al. ZnO light-emitting devices with a lifetime of 6.8 hours. Appl Phys Lett, 2012, 101:011106 doi: 10.1063/1.4733298
[11]
Shen H, Shan C X, Liu J S, et al. Stable p-type ZnO films obtained by lithium-nitrogen codoping method. Phys Status Solidi B, 2013, 250:2102 https://www.researchgate.net/publication/264251371_Stable_p-type_ZnO_films_obtained_by_lithium-nitrogen_codoping_method
[12]
Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO:the impurity perspective. Phys Rev B, 2002, 66:073202 doi: 10.1103/PhysRevB.66.073202
[13]
Yang X P, Lu J G, Zhang H H, et al. Preparation and XRD analyses of Na-doped ZnO nanorod arrays based on experiment and theory. Chem Phys Lett, 2012, 528(3):16 https://www.researchgate.net/publication/256683125_Preparation_and_XRD_Analyses_of_Na-Doped_ZnO_Nanorod_Arrays_Based_on_Experiment_and_Theory
[14]
Lin S S, Lu J G, Ye Z Z, et al. p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes. Solid State Commun, 2008, 148:25 doi: 10.1016/j.ssc.2008.07.028
[15]
Pandey S K, Awasthi V, Sengar B S, et al. Band alignment and photon extraction studies of Na-doped MgZnO/Ga-doped ZnO heterojunction for light-emitter applications. J Appl Phys, 2015, 118:165301 doi: 10.1063/1.4934560
[16]
Persson C, Platzer-Björkman C, Malmström J, et al. Strong valence-band offset bowing of ZnO1-xSx enhances p-type nitrogen doping of ZnO-like alloys. Phys Rev Lett, 2006, 97:146403 doi: 10.1103/PhysRevLett.97.146403
[17]
Xu T N, Li X, Lu Z, et al. Realization of Ag-S codoped p-type ZnO thin films. Appl Sur Sci, 2014, 316:62 doi: 10.1016/j.apsusc.2014.07.156
[18]
Xu Y, Yang T, Yao B, et al. Influence of Ag-S codoping on silver chemical states and stable p-type conduction behavior of the ZnO films. Ceram Int, 2014, 40:2161 doi: 10.1016/j.ceramint.2013.07.133
[19]
Niu W Z, Xu H B, Guo Y M, et al. The effect of sulfur on the electrical properties of S and N co-doped ZnO thin films:experiment and first-principles calculations. Phys Chem Chem Phys, 2015, 17:16705 doi: 10.1039/C5CP02434J
[20]
Perdew J P, Burke S, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77:3865 doi: 10.1103/PhysRevLett.77.3865
[21]
Van de Walle C G, Neugebauer J. First-principles calculations for defects and impurities:applications to Ⅲ-nitrides. J Appl Phys, 2004, 95:3851 doi: 10.1063/1.1682673
[22]
Oba F, Togo A, Tanaka I, et al. Defect energetics in ZnO:a hybrid Hartree-Fock density functional study. Phys Rev B, 2008, 77:245202 doi: 10.1103/PhysRevB.77.245202
[23]
Yan Y F, Zhang S B, Pantelides S T. Control of doping by impurity chemical potentials:predictions for p-type ZnO. Phys Rev Lett, 2001, 86:5723 doi: 10.1103/PhysRevLett.86.5723
[24]
Guo T T, Dong G B, Chena Q, et al. First-principles calculation on p-type conduction of (Sb, N) codoping in ZnO. J Phys Chem Solid, 2014, 75:42 doi: 10.1016/j.jpcs.2013.08.006
[25]
Zhang J K, Deng S H, Jin H, et al. First-principle study on the electronic structure and p-type conductivity of ZnO. Acta Phys Sin, 2007, 56:5371 https://www.researchgate.net/publication/291645152_First-principle_study_on_the_electronic_structure_and_p-type_conductivity_of_ZnO
[26]
Limpijumnong S, Zhang S B, Wei S H, et al. Doping by large-size-mismatched impurities:the microscopic origin of arsenic-or antimony-doped p-type zinc oxide. Phys Rev Lett, 2004, 92:155504 doi: 10.1103/PhysRevLett.92.155504
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2832 Times PDF downloads: 33 Times Cited by: 0 Times

    History

    Received: 31 October 2016 Revised: 12 February 2017 Online: Published: 01 August 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xingyi Tan, Qiang Li, Yongdan Zhu. First-principles study of p-type ZnO by S-Na co-doping[J]. Journal of Semiconductors, 2017, 38(8): 083001. doi: 10.1088/1674-4926/38/8/083001 X Y Tan, Q Li, Y D Zhu. First-principles study of p-type ZnO by S-Na co-doping[J]. J. Semicond., 2017, 38(8): 083001. doi: 10.1088/1674-4926/38/8/083001.Export: BibTex EndNote
      Citation:
      Xingyi Tan, Qiang Li, Yongdan Zhu. First-principles study of p-type ZnO by S-Na co-doping[J]. Journal of Semiconductors, 2017, 38(8): 083001. doi: 10.1088/1674-4926/38/8/083001

      X Y Tan, Q Li, Y D Zhu. First-principles study of p-type ZnO by S-Na co-doping[J]. J. Semicond., 2017, 38(8): 083001. doi: 10.1088/1674-4926/38/8/083001.
      Export: BibTex EndNote

      First-principles study of p-type ZnO by S-Na co-doping

      doi: 10.1088/1674-4926/38/8/083001
      Funds:

      Project supported by the Natural Science Foundation of Hubei Province, China (Nos. 2014CFB342, 2014CFB619) and the Doctoral Foundation for Scientific Research of Hubei University for Nationalities (No. MY2013B020)

      the Natural Science Foundation of Hubei Province, China 2014CFB342

      the Natural Science Foundation of Hubei Province, China 2014CFB619

      the Doctoral Foundation for Scientific Research of Hubei University for Nationalities MY2013B020

      More Information
      • Corresponding author: Xingyi Tan, Email:tanxingyi1009@163.com
      • Received Date: 2016-10-31
      • Revised Date: 2017-02-12
      • Published Date: 2017-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return