SEMICONDUCTOR INTEGRATED CIRCUITS

The design of miniaturized broadband power divider utilizing GaAs-based IPD process and equivalent circuit model

Ying Lu, Liang Shen, Jiabo Wang and Ya Shen

+ Author Affiliations

 Corresponding author: Ying Lu, Email:jekou008@163.com

PDF

Abstract: The GaAs-based TF-IPD fabrication process and equivalent lumped element circuit are utilized to reduce the circuit size for double-section Wilkinson power divider. Ultimately the dimension of the proposed S-band power divider is reduced to 1.03×0.98 mm2. Its measured results show an operating fractional bandwidth of 54%, and return losses and isolation of greater than 20 dB. In addition the excess insertion loss is less than 1.1 dB. Moreover the good features contain amplitude and phase equilibrium with the values of better than 0.03 dB and 1.5° separately. This miniaturized power divider could be widely used in RF/microwave circuit systems.

Key words: thin film integrated passive device (TF-IPD)parameters extractionde-embeddinglumped element



[1]
Ho C Y, Cheng H H, Pan P C, et al. Dielectric characterization of ultra-thin low-loss build-up substrate for system-in-package (SiP) modules. IEEE Trans Microwave Theory Tech, 2015, 63(9):2923 doi: 10.1109/TMTT.2015.2455502
[2]
Hirvonen M, Vähä-Heikkilä T, Yrjänä S, et al. A 2.4 GHz SiP radio module with embedded antenna and IPD matching and filter circuits. Microwave Opt Technol Lett, 2016, 58(9):2062 doi: 10.1002/mop.29976
[3]
Shen M L, Shao Z H, Du X K, et al. Ka-band multilayered substrate integrated waveguide narrowband filter for system-in-package applications. Microwave Opt Technol Lett, 2016, 58(6):1395 doi: 10.1002/mop.29833
[4]
Takács G, Szabó P G, Bognár G. Thermal management in system-on-package structures by applying microscale heat sink. Part I:Consideration of the appropriate channel length of microscale heat sink(s). Microelectron J, 2015, 46(12):1202 doi: 10.1016/j.mejo.2015.10.014
[5]
Zhou B. Broadband and compact LTCC power divider. Electron Lett, 2015, 51(23):1939 doi: 10.1049/el.2015.2265
[6]
Kaymaksut E, Gürbüz Y, Tekin I. Impedance matching Wilkinson power dividers in 0.35μm SiGe BiCMOS technology. Microwave Opt Technol Lett, 2009, 51(3):681 doi: 10.1002/mop.v51:3
[7]
Tseng Y C, Ma T G. On-chip X-band branch-line coupler using glass integrated passive device technology. Electron Lett, 2012, 48(25):1605 doi: 10.1049/el.2012.3604
[8]
Lai C H, Chung W S, Ma T G. On-chip miniaturized triplexer using lumped networks with dual resonators on an integrated passive device process. IEEE Trans Microwave Theory Tech, 2014, 62(12-1):2923 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=6951457&filter%3DAND%28p_IS_Number%3A6971049%29
[9]
Yi Z X, Liao X P. An X-band Wilkinson power divider and comparison with its miniaturization based on GaAs MMIC process. Microwave Opt Technol Lett, 2014, 56(3):700 doi: 10.1002/mop.v56.3
[10]
Li Y, Wang C, Kim N Y. A high performance compact Wilkinson power divider using GaAs-based optimized integrated passive device fabrication process for LTE application. Solid-State Electron, 2015, 103(0):147 http://linkinghub.elsevier.com/retrieve/pii/S0038110114002123
[11]
Gao W, Yu Z P. Parameter extraction for 2-π equivalent circuit model of RF CMOS spiral inductors. Chin J Semicond, 2006, 27(4):667
[12]
Huang C C, Chen Y C. Applying line-series-shunt calibration to one-tier on-wafer device de-embedding up to millimeter waves. Microwave Opt Technol Lett, 2013, 55(4):744 doi: 10.1002/mop.v55.4
[13]
He J, Chen Z F, Yang B H, et al. Miniaturized microstrip Wilkinson power divider with capacitor loading. Microwave Opt Technol Lett, 2012, 54(1):61 doi: 10.1002/mop.v54.1
[14]
Li Y J, Xing M J, Zhu Z M, et al. Novel compact compass navigation system (CNS) power divider. 201011th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), Xi'an, China, 2010: 710
[15]
Hsu L C, Wu Y L, Zou J Y, et al. Periodic synthesized transmission lines with 2-D routing capability and its applications to power divider and couplers using integrated passive device process. IEEE Trans Microwave Theory Tech, 2016, 64(2):493 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7383342&filter%3DAND%28p_IS_Number%3A7398197%29
[16]
Wang S, Wang R X. A tunable CMOS Wilkinson power divider using active inductors. Int J Electron Commun (AEÜ), 2012, 66(8):655 doi: 10.1016/j.aeue.2011.12.005
Fig. 1.  $\pi $ type equivalent lumped element circuit of $\lambda$/4 wavelength transmission line.

Fig. 2.  Schematic of the proposed PD. (a) Transmission line. (b) Equivalent circuit.

Fig. 3.  Equivalent circuit model of passive components. (a) Spiral inductor. (b) MIM capacitor. (c) TFR.

Fig. 4.  Layout of spiral inductors. (a) Inductor $L_{\rm {1}}$. (b) Inductor $L_{\rm {2}}$.

Fig. 5.  Pictures of IPD PD. (a) 3-D view modeled by ADS. (b) Microphotograph of the chip ($1030\times 980$ $\mu $m$^{\mathrm{2}})$.

Fig. 6.  Images of the proposed PD simulated at 2 GHz (HFSS). (a) Surface current distribution. (b) E-field distribution.

Fig. 7.  $S$-parameters comparison among simulated (HFSS, ADS), modeled and measured results. (a) Return losses ($S_{\rm {22}}$, $S_{\rm {33}})$. (b) Return losses ($S_{\rm {11}})$. (c) Isolation ($S_{\rm {23}})$. (d) Transmission losses ($S_{\rm {21}})$.

Fig. 8.  Measured results of amplitude and phase balance. (a) Amplitude differences. (b) Phase differences.

Table 1.   Parameters of equivalent circuit model for spiral inductor.

Table 2.   Parameters of equivalent circuit model for MIM capacitor.

Table 3.   Parameters of equivalent circuit model for TFR.

Table 4.   Summary of extracted parameters by simulation, measurement and de-embedding method.

Table 5.   Electrical and structural parameters of the proposed device.

Table 6.   Summary and comparison of the performance in the paper and previously published designs.

[1]
Ho C Y, Cheng H H, Pan P C, et al. Dielectric characterization of ultra-thin low-loss build-up substrate for system-in-package (SiP) modules. IEEE Trans Microwave Theory Tech, 2015, 63(9):2923 doi: 10.1109/TMTT.2015.2455502
[2]
Hirvonen M, Vähä-Heikkilä T, Yrjänä S, et al. A 2.4 GHz SiP radio module with embedded antenna and IPD matching and filter circuits. Microwave Opt Technol Lett, 2016, 58(9):2062 doi: 10.1002/mop.29976
[3]
Shen M L, Shao Z H, Du X K, et al. Ka-band multilayered substrate integrated waveguide narrowband filter for system-in-package applications. Microwave Opt Technol Lett, 2016, 58(6):1395 doi: 10.1002/mop.29833
[4]
Takács G, Szabó P G, Bognár G. Thermal management in system-on-package structures by applying microscale heat sink. Part I:Consideration of the appropriate channel length of microscale heat sink(s). Microelectron J, 2015, 46(12):1202 doi: 10.1016/j.mejo.2015.10.014
[5]
Zhou B. Broadband and compact LTCC power divider. Electron Lett, 2015, 51(23):1939 doi: 10.1049/el.2015.2265
[6]
Kaymaksut E, Gürbüz Y, Tekin I. Impedance matching Wilkinson power dividers in 0.35μm SiGe BiCMOS technology. Microwave Opt Technol Lett, 2009, 51(3):681 doi: 10.1002/mop.v51:3
[7]
Tseng Y C, Ma T G. On-chip X-band branch-line coupler using glass integrated passive device technology. Electron Lett, 2012, 48(25):1605 doi: 10.1049/el.2012.3604
[8]
Lai C H, Chung W S, Ma T G. On-chip miniaturized triplexer using lumped networks with dual resonators on an integrated passive device process. IEEE Trans Microwave Theory Tech, 2014, 62(12-1):2923 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=6951457&filter%3DAND%28p_IS_Number%3A6971049%29
[9]
Yi Z X, Liao X P. An X-band Wilkinson power divider and comparison with its miniaturization based on GaAs MMIC process. Microwave Opt Technol Lett, 2014, 56(3):700 doi: 10.1002/mop.v56.3
[10]
Li Y, Wang C, Kim N Y. A high performance compact Wilkinson power divider using GaAs-based optimized integrated passive device fabrication process for LTE application. Solid-State Electron, 2015, 103(0):147 http://linkinghub.elsevier.com/retrieve/pii/S0038110114002123
[11]
Gao W, Yu Z P. Parameter extraction for 2-π equivalent circuit model of RF CMOS spiral inductors. Chin J Semicond, 2006, 27(4):667
[12]
Huang C C, Chen Y C. Applying line-series-shunt calibration to one-tier on-wafer device de-embedding up to millimeter waves. Microwave Opt Technol Lett, 2013, 55(4):744 doi: 10.1002/mop.v55.4
[13]
He J, Chen Z F, Yang B H, et al. Miniaturized microstrip Wilkinson power divider with capacitor loading. Microwave Opt Technol Lett, 2012, 54(1):61 doi: 10.1002/mop.v54.1
[14]
Li Y J, Xing M J, Zhu Z M, et al. Novel compact compass navigation system (CNS) power divider. 201011th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), Xi'an, China, 2010: 710
[15]
Hsu L C, Wu Y L, Zou J Y, et al. Periodic synthesized transmission lines with 2-D routing capability and its applications to power divider and couplers using integrated passive device process. IEEE Trans Microwave Theory Tech, 2016, 64(2):493 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7383342&filter%3DAND%28p_IS_Number%3A7398197%29
[16]
Wang S, Wang R X. A tunable CMOS Wilkinson power divider using active inductors. Int J Electron Commun (AEÜ), 2012, 66(8):655 doi: 10.1016/j.aeue.2011.12.005
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3018 Times PDF downloads: 32 Times Cited by: 0 Times

    History

    Received: 10 January 2017 Revised: 05 March 2017 Online: Published: 01 August 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ying Lu, Liang Shen, Jiabo Wang, Ya Shen. The design of miniaturized broadband power divider utilizing GaAs-based IPD process and equivalent circuit model[J]. Journal of Semiconductors, 2017, 38(8): 085004. doi: 10.1088/1674-4926/38/8/085004 Y Lu, L Shen, J B Wang, Y Shen. The design of miniaturized broadband power divider utilizing GaAs-based IPD process and equivalent circuit model[J]. J. Semicond., 2017, 38(8): 085004. doi: 10.1088/1674-4926/38/8/085004.Export: BibTex EndNote
      Citation:
      Ying Lu, Liang Shen, Jiabo Wang, Ya Shen. The design of miniaturized broadband power divider utilizing GaAs-based IPD process and equivalent circuit model[J]. Journal of Semiconductors, 2017, 38(8): 085004. doi: 10.1088/1674-4926/38/8/085004

      Y Lu, L Shen, J B Wang, Y Shen. The design of miniaturized broadband power divider utilizing GaAs-based IPD process and equivalent circuit model[J]. J. Semicond., 2017, 38(8): 085004. doi: 10.1088/1674-4926/38/8/085004.
      Export: BibTex EndNote

      The design of miniaturized broadband power divider utilizing GaAs-based IPD process and equivalent circuit model

      doi: 10.1088/1674-4926/38/8/085004
      More Information
      • Corresponding author: Ying Lu, Email:jekou008@163.com
      • Received Date: 2017-01-10
      • Revised Date: 2017-03-05
      • Published Date: 2017-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return