SEMICONDUCTOR MATERIALS

Facile synthesis of Cu/tetrapod-like ZnO whisker compounds with enhanced photocatalytic properties

Hong Liu1, , Huarong Liu1 and Ximei Fan2

+ Author Affiliations

 Corresponding author: Hong Liu, Email: 596289939@qq.com

PDF

Abstract: Cu/tetrapod-like ZnO whisker (T-ZnOw) compounds were successfully synthesized using N2H4·H2O as a reducing agent by a simple reduction method without any insert gas at room temperature. The crystal phase composition and morphology of the as-prepared samples were investigated by XRD, SEM and FESEM tests. The photocatalytic property of the as-prepared samples was detected by the degradation of methyl orange (MO) aqueous solution under UV irradiation. It can be found that Cu nanoparticles (CuNPs) dispersed on the surface of T-ZnOw increased with the increasing of Cu/Zn molar ratios (Cu/Zn MRs), and an octahedral structure of CuNPs was obtained when the sample was prepared with less than and equal to 7.30% Cu/Zn MR, but tended to a spherical or nanorod structure of CuNPs densely arranged on the surface of T-ZnOw, which is prepared by Cu/Zn MRs up to 22.00%. All the compounds exhibited excellent photocatalytic activity in decomposing of MO than T-ZnOw, the photocatalytic property of the samples increased with the increasing of Cu/Zn MRs up to 7.30%, while it decreases when further increasing the Cu/Zn MRs. The Schottky barrier of the Cu/T-ZnOw compound can effectively capture photoinduced electrons from the interface and enhanced the photocatalytic property of T-ZnOw.

Key words: hydrazineCu/Zn MRsCu/T-ZnOwphotodegradation



[1]
Sakthivel S, Geissen S U, Bahnemann D W, et al. Enhancement of photocatalytic activity by semiconductor heterojunctions:α -Fe2O3, WO3, and CdS deposited on ZnO. J Photochem Photobiol A, 2002, 148(1-3):283 doi: 10.1016/S1010-6030(02)00055-2
[2]
Zhu H, Jiang R, Fu Y, et al. Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination, 2012, 286(1):41 http://www.sciencedirect.com/science/article/pii/S0011916411009143
[3]
Regulska E, Brus D M, Rodziewicz P, et al. Photocatalytic degradation of hazardous food yellow 13 in TiO2, and ZnO aqueous and river water suspensions. Catalysis Today, 2015, 266(66):72
[4]
Mishra M, Chun D M. α -Fe2O3 as a photocatalytic material:a review. Appl Catal A, 2015, 498:126 doi: 10.1016/j.apcata.2015.03.023
[5]
Khodja A A, Sehili T, Pilichowski J F, et al. Photocatalytic degradation of 2-phenylphenol on TiO2, and ZnO in aqueous suspensions. J Photochem Photobiol A, 2001, 141(2/3):231 http://www.sciencedirect.com/science/article/pii/S1010603001004233
[6]
Pera-Titus M, Garcı A-Molina V, Baños M A, et al. Degradation of chlorophenols by means of advanced oxidation processes:a general review. Appl Catal B, 2004, 47(4):219 doi: 10.1016/j.apcatb.2003.09.010
[7]
Wintgens T, Salehi F, Hochstrat R, et al. Emerging contaminants and treatment options in water recycling for indirect potable use. Water Sci Technol A, 2008, 57(1):99 doi: 10.2166/wst.2008.799
[8]
Malato S, Fernández-Ibáñez P, Maldonado M I, et al. Decontamination and disinfection of water by solar photocatalysis:recent overview and trends. Catal Today, 2009, 147(1):1 doi: 10.1016/j.cattod.2009.06.018
[9]
Gu C, Cheng C, Huang H, et al. Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals. Cryst Growth Des, 2009, 9(7):3278 doi: 10.1021/cg900043k
[10]
Mansilla H D, Villaseñor J, Maturana G, et al. ZnO-catalysed photodegradation of kraft black liquor. J Photochem Photobiol A, 1994, 78(3):267 doi: 10.1016/1010-6030(93)03731-U
[11]
Ohnishi H, Matsumura M, Tsubomura H, et al. Bleaching of lignin solution by a photocatalyzed reaction on semiconductor photocatalysts. Ind Eng Chem Res, 1989, 28(6):719 doi: 10.1021/ie00090a012
[12]
Xu X, Duan X, Yi Z, et al. Photocatalytic production of superoxide ion in the aqueous suspensions of two kinds of ZnO under simulated solar light. Catal Commun, 2010, 12(3):169 doi: 10.1016/j.catcom.2010.09.006
[13]
Yamaguchi Y, Yamazaki M, Yoshihara S, et al. Photocatalytic ZnO films prepared by anodizing. J Electroanal Chem, 1998, 442(1):1
[14]
Liu H, Wang J, Fan X M, et al. Synthesis of Cu2O/T-ZnOw nanocompound and characterization of its photocatalytic activity and stability property under UV irradiation. Mater Sci Eng B, 2013, 178:158 doi: 10.1016/j.mseb.2012.10.041
[15]
Misra M, Kapur P, Singla M L. Surface plasmon quenched of near band edge emission and enhanced visible photocatalytic activity of Au@ZnO core-shell nanostructure. Appl Catal B, 2014, 150/151(9):605 https://www.sciencedirect.com/science/article/pii/S0926337314000125
[16]
Chen P K, Lee G J, Davies S H, et al. Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of orange Ⅱ dye. Mater Res Bull, 2013, 48(6):2375 doi: 10.1016/j.materresbull.2013.02.062
[17]
Zeng H, Liu P, Cai W, et al. Controllable Pt/ZnO porous nanocages with improved photocatalytic activity. J Phys Chem C, 2008, 112(49):19620 doi: 10.1021/jp807309s
[18]
Zhai H, Wang L, Sun D, et al. Facile synthesis of Pd-ZnO microhole composites with enhanced photocatalysis and its photoluminescence properties. Catal Lett, 2015, 145(4):1041 doi: 10.1007/s10562-015-1481-z
[19]
Wang J, Fan X M, Tian K, et al. Largely improved photocatalytic properties of Ag/tetrapod-like ZnO nanocompounds prepared with different PEG contents. Appl Surf Sci, 2011, 257(17):7763 doi: 10.1016/j.apsusc.2011.04.026
[20]
Jing L, Wang D, Wang B, et al. Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles. J Mol Catal A, 2006, 244(1):193 http://www.sciencedirect.com/science/article/pii/S1381116905006655
[21]
Chen T, Zheng Y, Lin J M, et al. Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry. J Am Soc Mass Spectrom, 2008, 19(7):997 doi: 10.1016/j.jasms.2008.03.008
[22]
Kansal S K, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater, 2007, 141(3):581 doi: 10.1016/j.jhazmat.2006.07.035
[23]
Chao X, Cao L, Ge S, et al. Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. J Hazard Mater, 2010, 176(1-3):807 doi: 10.1016/j.jhazmat.2009.11.106
[24]
Kapoor S, Mukherjee T. Photochemical formation of copper nanoparticles in poly(N-vinylpyrrolidone). Chem Phys Lett, 2003, 370(1/2):83 http://www.sciencedirect.com/science/article/pii/S0009261403000733
[25]
Wu S H, Chen D H. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interf Sci, 2004, 273(1):165 doi: 10.1016/j.jcis.2004.01.071
[26]
Al-Thabaiti S A, Obaid A Y, Khan Z, et al. Cu nanoparticles:synthesis, crystallographic characterization, and stability. Colloid Polymer Sci, 2015, 293(9):2543 doi: 10.1007/s00396-015-3633-5
[27]
Chandrasekharan N, Kamat P V. Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B, 2000, 104(46):10851 doi: 10.1021/jp0010029
[28]
Yang Z, Zhang P, Ding Y, et al. Facile synthesis of Ag/ZnO heterostructures assisted by UV irradiation:highly photocatalytic property and enhanced photostability. Mater Res Bull, 2011, 46(10):1625 doi: 10.1016/j.materresbull.2011.06.016
[29]
Herrmann J M. Heterogeneous photocatalysis:fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today, 1999, 53(1):115 doi: 10.1016/S0920-5861(99)00107-8
Fig. 1.  The molecular structure of methyl orange dyes with different functional groups[22].

Fig. 2.  XRD patterns of pure T-ZnOw and as-prepared samples with different Cu/Zn MRs in the reaction system.

Fig. 3.  The SEM images of as-prepared samples with different Cu/Zn MRs: (a) 3.65%, (b) 7.30%, (c) 10.95%, (d) 14.60%, (e) 18.25%, and (f) 21.90%, respectively.

Fig. 4.  The EDX spectrum of as-prepared samples with different Cu/Zn MRs: (a) 7.30% and (b) 21.90%, respectively.

Fig. 5.  The FESEM images of the sample fabricated by Cu/Zn MRs of (a) 7.30%, (b) 14.60%, and (c) 21.90%, respectively.

Fig. 6.  UV-vis absorption spectra of MO aqueous solution with Cu/T-ZnOw compound prepared by 7.30% Cu/Zn MR at different UV irradiation intervals.

Fig. 7.  The MO photocatalytic curves of UV, T-ZnOw, and Cu/T-ZnOw samples with different Cu/Zn MRs, respectively.

Fig. 8.  The schematic representation of Fermi level equilibration, excitation and separation of electrons and holes for Cu/T-ZnOw compound under UV irradiation[27, 28].

[1]
Sakthivel S, Geissen S U, Bahnemann D W, et al. Enhancement of photocatalytic activity by semiconductor heterojunctions:α -Fe2O3, WO3, and CdS deposited on ZnO. J Photochem Photobiol A, 2002, 148(1-3):283 doi: 10.1016/S1010-6030(02)00055-2
[2]
Zhu H, Jiang R, Fu Y, et al. Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination, 2012, 286(1):41 http://www.sciencedirect.com/science/article/pii/S0011916411009143
[3]
Regulska E, Brus D M, Rodziewicz P, et al. Photocatalytic degradation of hazardous food yellow 13 in TiO2, and ZnO aqueous and river water suspensions. Catalysis Today, 2015, 266(66):72
[4]
Mishra M, Chun D M. α -Fe2O3 as a photocatalytic material:a review. Appl Catal A, 2015, 498:126 doi: 10.1016/j.apcata.2015.03.023
[5]
Khodja A A, Sehili T, Pilichowski J F, et al. Photocatalytic degradation of 2-phenylphenol on TiO2, and ZnO in aqueous suspensions. J Photochem Photobiol A, 2001, 141(2/3):231 http://www.sciencedirect.com/science/article/pii/S1010603001004233
[6]
Pera-Titus M, Garcı A-Molina V, Baños M A, et al. Degradation of chlorophenols by means of advanced oxidation processes:a general review. Appl Catal B, 2004, 47(4):219 doi: 10.1016/j.apcatb.2003.09.010
[7]
Wintgens T, Salehi F, Hochstrat R, et al. Emerging contaminants and treatment options in water recycling for indirect potable use. Water Sci Technol A, 2008, 57(1):99 doi: 10.2166/wst.2008.799
[8]
Malato S, Fernández-Ibáñez P, Maldonado M I, et al. Decontamination and disinfection of water by solar photocatalysis:recent overview and trends. Catal Today, 2009, 147(1):1 doi: 10.1016/j.cattod.2009.06.018
[9]
Gu C, Cheng C, Huang H, et al. Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals. Cryst Growth Des, 2009, 9(7):3278 doi: 10.1021/cg900043k
[10]
Mansilla H D, Villaseñor J, Maturana G, et al. ZnO-catalysed photodegradation of kraft black liquor. J Photochem Photobiol A, 1994, 78(3):267 doi: 10.1016/1010-6030(93)03731-U
[11]
Ohnishi H, Matsumura M, Tsubomura H, et al. Bleaching of lignin solution by a photocatalyzed reaction on semiconductor photocatalysts. Ind Eng Chem Res, 1989, 28(6):719 doi: 10.1021/ie00090a012
[12]
Xu X, Duan X, Yi Z, et al. Photocatalytic production of superoxide ion in the aqueous suspensions of two kinds of ZnO under simulated solar light. Catal Commun, 2010, 12(3):169 doi: 10.1016/j.catcom.2010.09.006
[13]
Yamaguchi Y, Yamazaki M, Yoshihara S, et al. Photocatalytic ZnO films prepared by anodizing. J Electroanal Chem, 1998, 442(1):1
[14]
Liu H, Wang J, Fan X M, et al. Synthesis of Cu2O/T-ZnOw nanocompound and characterization of its photocatalytic activity and stability property under UV irradiation. Mater Sci Eng B, 2013, 178:158 doi: 10.1016/j.mseb.2012.10.041
[15]
Misra M, Kapur P, Singla M L. Surface plasmon quenched of near band edge emission and enhanced visible photocatalytic activity of Au@ZnO core-shell nanostructure. Appl Catal B, 2014, 150/151(9):605 https://www.sciencedirect.com/science/article/pii/S0926337314000125
[16]
Chen P K, Lee G J, Davies S H, et al. Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of orange Ⅱ dye. Mater Res Bull, 2013, 48(6):2375 doi: 10.1016/j.materresbull.2013.02.062
[17]
Zeng H, Liu P, Cai W, et al. Controllable Pt/ZnO porous nanocages with improved photocatalytic activity. J Phys Chem C, 2008, 112(49):19620 doi: 10.1021/jp807309s
[18]
Zhai H, Wang L, Sun D, et al. Facile synthesis of Pd-ZnO microhole composites with enhanced photocatalysis and its photoluminescence properties. Catal Lett, 2015, 145(4):1041 doi: 10.1007/s10562-015-1481-z
[19]
Wang J, Fan X M, Tian K, et al. Largely improved photocatalytic properties of Ag/tetrapod-like ZnO nanocompounds prepared with different PEG contents. Appl Surf Sci, 2011, 257(17):7763 doi: 10.1016/j.apsusc.2011.04.026
[20]
Jing L, Wang D, Wang B, et al. Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles. J Mol Catal A, 2006, 244(1):193 http://www.sciencedirect.com/science/article/pii/S1381116905006655
[21]
Chen T, Zheng Y, Lin J M, et al. Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry. J Am Soc Mass Spectrom, 2008, 19(7):997 doi: 10.1016/j.jasms.2008.03.008
[22]
Kansal S K, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater, 2007, 141(3):581 doi: 10.1016/j.jhazmat.2006.07.035
[23]
Chao X, Cao L, Ge S, et al. Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. J Hazard Mater, 2010, 176(1-3):807 doi: 10.1016/j.jhazmat.2009.11.106
[24]
Kapoor S, Mukherjee T. Photochemical formation of copper nanoparticles in poly(N-vinylpyrrolidone). Chem Phys Lett, 2003, 370(1/2):83 http://www.sciencedirect.com/science/article/pii/S0009261403000733
[25]
Wu S H, Chen D H. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interf Sci, 2004, 273(1):165 doi: 10.1016/j.jcis.2004.01.071
[26]
Al-Thabaiti S A, Obaid A Y, Khan Z, et al. Cu nanoparticles:synthesis, crystallographic characterization, and stability. Colloid Polymer Sci, 2015, 293(9):2543 doi: 10.1007/s00396-015-3633-5
[27]
Chandrasekharan N, Kamat P V. Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B, 2000, 104(46):10851 doi: 10.1021/jp0010029
[28]
Yang Z, Zhang P, Ding Y, et al. Facile synthesis of Ag/ZnO heterostructures assisted by UV irradiation:highly photocatalytic property and enhanced photostability. Mater Res Bull, 2011, 46(10):1625 doi: 10.1016/j.materresbull.2011.06.016
[29]
Herrmann J M. Heterogeneous photocatalysis:fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today, 1999, 53(1):115 doi: 10.1016/S0920-5861(99)00107-8
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2832 Times PDF downloads: 17 Times Cited by: 0 Times

    History

    Received: 25 October 2016 Revised: 17 February 2017 Online: Published: 01 September 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hong Liu, Huarong Liu, Ximei Fan. Facile synthesis of Cu/tetrapod-like ZnO whisker compounds with enhanced photocatalytic properties[J]. Journal of Semiconductors, 2017, 38(9): 093004. doi: 10.1088/1674-4926/38/9/093004 H Liu, H R Liu, X M Fan. Facile synthesis of Cu/tetrapod-like ZnO whisker compounds with enhanced photocatalytic properties[J]. J. Semicond., 2017, 38(9): 093004. doi: 10.1088/1674-4926/38/9/093004.Export: BibTex EndNote
      Citation:
      Hong Liu, Huarong Liu, Ximei Fan. Facile synthesis of Cu/tetrapod-like ZnO whisker compounds with enhanced photocatalytic properties[J]. Journal of Semiconductors, 2017, 38(9): 093004. doi: 10.1088/1674-4926/38/9/093004

      H Liu, H R Liu, X M Fan. Facile synthesis of Cu/tetrapod-like ZnO whisker compounds with enhanced photocatalytic properties[J]. J. Semicond., 2017, 38(9): 093004. doi: 10.1088/1674-4926/38/9/093004.
      Export: BibTex EndNote

      Facile synthesis of Cu/tetrapod-like ZnO whisker compounds with enhanced photocatalytic properties

      doi: 10.1088/1674-4926/38/9/093004
      More Information
      • Corresponding author: Hong Liu, Email: 596289939@qq.com
      • Received Date: 2016-10-25
      • Revised Date: 2017-02-17
      • Published Date: 2017-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return