Special Issue on Flexible and Wearable Electronics: from Materials to Applications

Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application

Dingrun Wang, Yongfeng Mei and Gaoshan Huang

+ Author Affiliations

 Corresponding author: Gaoshan Huang, Email: gshuang@fudan.edu.cn

PDF

Turn off MathJax

Abstract: Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skin-like pressure sensors, and radio frequency identification tags in our daily life. As the most-fundamental component of electronics, electrodes are made of conductive materials that play a key role in flexible and printed electronic devices. In this review, various inorganic conductive materials and strategies for obtaining highly conductive and uniform electrodes are demonstrated. Applications of printed electrodes fabricated via these strategies are also described. Nevertheless, there are a number of challenges yet to overcome to optimize the processing and performance of printed electrodes.

Key words: printed electrodesconductive inkmetal nanomaterialscarbonaceous materialscomposite nanomaterials



[1]
Hermerschmidt F, Ignasi B C, Savva A, et al. High performance indium tin oxide-free solution-processed organic light emitting diodes based on inkjet-printed fine silver grid lines. Flex Print Electron, 2016, 1(3): 035004 doi: 10.1088/2058-8585/1/3/035004
[2]
Sekine C, Tsubata Y, Yamada T, et al. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics. Sci Technol Adv Mater, 2014, 15(3): 034203 doi: 10.1088/1468-6996/15/3/034203
[3]
Karakawa M, Tokuno T, Nogi M, et al. Silver nanowire networks as a transparent printable electrode for organic photovoltaic cells. Electrochemistry, 2017, 85(5): 245 doi: 10.5796/electrochemistry.85.245
[4]
Li K, Zhang Y, Zhen H, et al. Printed light-trapping nanorelief Cu electrodes for full-solution-processed flexible organic solar cells. Mater Res Express, 2016, 3(7): 074006 doi: 10.1088/2053-1591/3/7/074006
[5]
Griffith M J, Cooling N A, Vaughan B, et al. Combining printing, coating, and vacuum deposition on the roll-to-roll scale: a hybrid organic photovoltaics fabrication. IEEE J Sel Top Quant, 2016, 22(1): 112 doi: 10.1109/JSTQE.2015.2487968
[6]
Jain P, Arun P. Photovoltaic performance of hybrid ITO/PEDOT:PSS/n-SnS/Al solar cell structure. J Semicond, 2016, 37(7): 074002 doi: 10.1088/1674-4926/37/7/074002
[7]
Zhang S, Cai L, Wang T, et al. Fully printed flexible carbon nanotube photodetectors. Appl Phys Lett, 2017, 110(12): 123105 doi: 10.1063/1.4978935
[8]
Guo Q, Fang Y, Zhang M, et al. Wrinkled single-crystalline germanium nanomembranes for stretchable photodetectors. IEEE Trans Electron Devices, 2017, 64(5): 1985 doi: 10.1109/TED.2016.2618423
[9]
Song E, Guo Q, Huang G, et al. Bendable photodetector on fibers wrapped with flexible ultrathin single crystalline silicon nanomembranes. ACS Appl Mater Inter, 2017, 9(14): 12171 doi: 10.1021/acsami.7b02123
[10]
Lou Z, Liang Z Z, Shen G Z. Photodetectors based on two dimensional materials. J Semicond, 2016, 37(9): 091001 doi: 10.1088/1674-4926/37/9/091001
[11]
Hyun W J, Secor E B, Rojas G A, et al. All-printed, foldable organic thin-film transistors on glassine paper. Adv Mater, 2015, 27(44): 7058 doi: 10.1002/adma.201503478
[12]
Takeda Y, Yoshimura Y, Kobayashi Y, et al. Integrated circuits using fully solution-processed organic TFT devices with printed silver electrodes. Org Electron, 2013, 14(12): 3362 doi: 10.1016/j.orgel.2013.10.006
[13]
Cao C, Andrews J B, Franklin A D. Completely printed, flexible, stable, and hysteresis-free carbon nanotube thin-film transistors via aerosol jet printing. Adv Electron Mater, 2017, 3(5): 1700057 doi: 10.1002/aelm.201700057
[14]
Kelly A G, Hallam T, Backes C, et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science, 2017, 356(6333): 69 doi: 10.1126/science.aal4062
[15]
Barr M C, Rowehl J A, Lunt R R, et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater, 2011, 23(31): 3500 doi: 10.1002/adma.201101263
[16]
Han D, Khan Y, Ting J, et al. Flexible blade-coated multicolor polymer light-emitting diodes for optoelectronic sensors. Adv Mater, 2017, 29(22): 1606206 doi: 10.1002/adma.v29.22
[17]
Chien Y M, Lefevre F, Shih I, et al. A solution processed top emission OLED with transparent carbon nanotube electrodes. Nanotechnology, 2010, 21(13): 134020 doi: 10.1088/0957-4484/21/13/134020
[18]
Kamyshny A, Magdassi S. Conductive nanomaterials for printed electronics. Small, 2014, 10(17): 3515 doi: 10.1002/smll.v10.17
[19]
Guo H, Lin N, Chen Y, et al. Copper nanowires as fully transparent conductive electrodes. Sci Rep, 2013, 3(7): 2323 doi: 10.1038/srep02323
[20]
Chen R, Das S R, Jeong C, et al. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Adv Funct Mater, 2013, 23(41): 5150 doi: 10.1002/adfm.v23.41
[21]
Song J, Zeng H. Transparent electrodes printed with nanocrystal inks for flexible smart devices. Angew Chem Int Ed, 2015, 54(34): 9760 doi: 10.1002/anie.201501233
[22]
Bade S G R, Li J, Shan X, et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano, 2016, 10(2): 1795 doi: 10.1021/acsnano.5b07506
[23]
Bhanushali S, Ghosh P, Ganesh A, et al. 1D copper nanostructures: progress, challenges and opportunities. Small, 2015, 11(11): 1232 doi: 10.1002/smll.201402295
[24]
Magdassi S, Grouchko M, Kamyshny A. Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials, 2010, 3(9): 4626 doi: 10.3390/ma3094626
[25]
Song J, Kulinich S A, Li J, et al. A general one-pot strategy for the synthesis of high-performance transparent-conducting-oxide nanocrystal inks for all-solution-processed devices. Angew Chem Int Ed, 2015, 54(2): 462
[26]
Luo L, Bozyigit D, Wood V, et al. High-quality transparent electrodes spin-cast from preformed antimony-doped tin oxide nanocrystals for thin film optoelectronics. Chem Mater, 2013, 25(24): 4901 doi: 10.1021/cm4030149
[27]
Buonsanti R, Llordes A, Aloni S, et al. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett, 2011, 11(11): 4706 doi: 10.1021/nl203030f
[28]
Gao J, Mu X, Li X, et al. Modification of carbon nanotube transparent conducting films for electrodes in organic light-emitting diodes. Nanotechnology, 2013, 24(43): 435201 doi: 10.1088/0957-4484/24/43/435201
[29]
Meng Y, Xu X, Li H, et al. Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon, 2014, 70(2): 103
[30]
Secor E B, Prabhumirashi P L, Puntambekar K, et al. Inkjet printing of high conductivity, flexible graphene patterns. J Phys Chem Lett, 2013, 4(8): 1347 doi: 10.1021/jz400644c
[31]
Secor E B, Lim S, Zhang H, et al. Gravure printing of graphene for large-area flexible electronics. Adv Mater, 2014, 26(26): 4533 doi: 10.1002/adma.v26.26
[32]
Loevenich W. PEDOT-properties and applications. Polym Sci Ser C+, 2014, 56(1): 135 doi: 10.1134/S1811238214010068
[33]
Guo Y, Otley M T, Li M, et al. PEDOT:PSS "wires" printed on textile for wearable electronics. ACS Appl Mater Inter, 2016, 8(40): 26998 doi: 10.1021/acsami.6b08036
[34]
Heydarnezhad H R, Pourabbas B. Deposition of electrically conductive ceria/polypyrrole nanocomposite particles on flexible polyethylene naphthalate film via in situ photo-induced polymerization. J Mater Sci: Mater Electron, 2014, 25(2): 1017 doi: 10.1007/s10854-013-1681-5
[35]
Yue B, Wang C, Ding X, et al. Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim Acta, 2012, 68: 18 doi: 10.1016/j.electacta.2012.01.109
[36]
Zhao Y, Liu B, Pan L, et al. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energ Environ Sci, 2013, 6(10): 2856 doi: 10.1039/c3ee40997j
[37]
Foroutani K, Pourabbas B, Sharif M, et al. Preparation of conductive flexible films by in situ deposition of polythiophene nanoparticles on polyethylene naphthalate. Mater Sci Semicond Proc, 2014, 18(2): 6
[38]
Tian Z, Zhang L, Fang Y. Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture. Adv Mater, 2017, 29(13): 1604572 doi: 10.1002/adma.201604572
[39]
Pan S, Zhao Y, Huang G. Highly photocatalytic TiO2 interconnected porous powder fabricated by sponge-templated atomic layer deposition. Nanotechnology, 2015, 26(36): 364001 doi: 10.1088/0957-4484/26/36/364001
[40]
Jang S, Seo Y, Choi J. Sintering of inkjet printed copper nanoparticles for flexible electronic. Scripta Mater, 2010, 62(5): 258 doi: 10.1016/j.scriptamat.2009.11.011
[41]
Li Y, Wu Y, Ong B S. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J Am Chem Soc, 2005, 127(10): 3266 doi: 10.1021/ja043425k
[42]
Wu Y, Li Y, Ong B S. A simple and efficient approach to a printable silver conductor for printed electronics. J Am Chem Soc, 2007, 129(7): 1862 doi: 10.1021/ja067596w
[43]
Minari T, Kanehara Y, Liu C. Room-temperature printing of organic thin-film transistors with π-junction gold nanoparticles. Adv Funct Mater, 2014, 24(31): 4886 doi: 10.1002/adfm.201400169
[44]
Zhang W, Chen P, Gao Q, et al. High-concentration preparation of silver nanowires: restraining in situ nitric acidic etching by steel-assisted polyol method. Chem Mater, 2008, 20(5): 1699 doi: 10.1021/cm7022554
[45]
Johan M R, Aznan N A K, Yee S T, et al. Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl2 and NaCl) polyol process. J Nanomater, 2014(2014): 54
[46]
Li S J, Chen Y Y, Huang L J, et al. Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks. Inorg Chem, 2014, 53(9): 4440 doi: 10.1021/ic500094b
[47]
Huo Z, Tsung C K, Huang W, et al. Sub-two nanometer single crystal Au nanowires. Nano Lett, 2008, 8(7): 2041 doi: 10.1021/nl8013549
[48]
Chen Y, Ouyang Z, Gu M, et al. Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv Mater, 2013, 25(1): 80 doi: 10.1002/adma.201202241
[49]
Sun S, Zhang G, Zhong Y. Ultrathin single crystal Pt nanowires grown on N-doped carbon nanotubes. Chem Commun, 2009, 45: 7048
[50]
El-Nour K M M A, Eftaiha A A, Al-Warthan A, et al. Synthesis and applications of silver nanoparticles. Arab J Chem, 2010, 3(3): 135 doi: 10.1016/j.arabjc.2010.04.008
[51]
Gurav A S, Kodas T T, Wang L M, et al. Generation of nanometer-size fullerene particles via vapor condensation. Chem Phys Lett, 1994, 218(4): 304 doi: 10.1016/0009-2614(93)E1491-X
[52]
Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem, 2006, 45(28): 4597 doi: 10.1002/(ISSN)1521-3773
[53]
Mayer A B R, Grebner W, Wannemacher R. Preparation of silver-latex composites. J Phys Chem B, 2000, 104(31): 7278 doi: 10.1021/jp000568u
[54]
Peng P, Hu A, Zhou Y. Laser sintering of silver nanoparticle thin films: microstructure and optical properties. Appl Phys A, 2012, 108(3): 685 doi: 10.1007/s00339-012-6951-1
[55]
Zhang Z, Zhang X, Xin Z, et al. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology, 2011, 22(42): 425601 doi: 10.1088/0957-4484/22/42/425601
[56]
Kamyshny A. Metal-based inkjet inks for printed electronics. Open Appl Phys J, 2011, 4(19): 19
[57]
Wang Z, Yi P, Peng L, et al. Continuous fabrication of highly conductive and transparent ag mesh electrodes for flexible electronics. IEEE Trans Nanotechnol, 2017, 4(16): 687
[58]
Zhang Z, Zhu W. Controllable fabrication of a flexible transparent metallic grid conductor based on the coffee ring effect. J Mater Chem C, 2014, 2(45): 9587 doi: 10.1039/C4TC01908C
[59]
Hong S, Yeo J, Kim G, et al. Nonvacuum maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano, 2013, 7(6): 5024 doi: 10.1021/nn400432z
[60]
Jung S, Lee S, Song M, et al. Extremely flexible transparent conducting electrodes for organic devices. Adv Energy Mater, 2014, 4(1): 1
[61]
Zhang Y, Zhu P, Li G, et al. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink. ACS Appl Mater Inter, 2014, 6(1): 560 doi: 10.1021/am404620y
[62]
Murphy C J, San T K, Gole A M, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B, 2005, 109(29): 13857 doi: 10.1021/jp0516846
[63]
Xu L, Yang Y, Hu Z, et al. Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid. ACS Nano, 2016, 10(3): 3823 doi: 10.1021/acsnano.6b00704
[64]
Lee Y, Choi J, Lee K J, et al. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology, 2008, 41(19): 415604
[65]
Jeong S, Woo K, Kim D, et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv Funct Mater, 2008, 18(5): 679 doi: 10.1002/(ISSN)1616-3028
[66]
Zain N M, Stapley A G F, Shama G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohyd Polym, 2014, 112: 195 doi: 10.1016/j.carbpol.2014.05.081
[67]
Umer A, Naveed S, Ramzan N, et al. A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Matéria (Rio de Janeiro), 2014, 19(3): 197 doi: 10.1590/S1517-70762014000300002
[68]
Wu C, Sheng Y, Tsao H. Copper conductive lines on flexible substrates fabricated at room temperature. J Mater Chem C, 2016, 4(15): 3274 doi: 10.1039/C6TC00234J
[69]
Athanassiou E K, Grass R N, Stark W J. Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology, 2006, 6(17): 1668
[70]
Luechinger N A, Athanassiou E K, Stark W J. Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology, 2008, 19(44): 445201 doi: 10.1088/0957-4484/19/44/445201
[71]
Grouchko M, Kamyshny A, Magdassi S. Formation of air-stable copper-" silver core-" shell nanoparticles for inkjet printing. Nanotechnology, 2009, 19(19): 3057
[72]
Grouchko M, Kamyshny A, Magdassi S. Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing. J Mater Chem, 2009, 19(19): 3057 doi: 10.1039/b821327e
[73]
Tsuji M, Hikino S, Sano Y, et al. Preparation of Cu@Ag core-" shell nanoparticles using a two-step polyol process under bubbling of N2 gas. Chem Lett, 2009, 6(38): 518
[74]
Wu X, Shao S, Chen Z, et al. Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate. Nanotechnology, 2017, 28(3): 35203 doi: 10.1088/1361-6528/28/3/035203
[75]
Wang X, Wang R, Shi L, et al. Synthesis of metal/bimetal nanowires and their applications as flexible transparent electrodes. Small, 2015, 11(36): 4737 doi: 10.1002/smll.201501314
[76]
Kim Y, Ryu T I, Ok K, et al. Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv Funct Mater, 2015, 25(29): 4580 doi: 10.1002/adfm.201501046
[77]
Angmo D, Andersen T R, Bentzen J J, et al. Roll-to-roll printed silver nanowire semitransparent electrodes for fully ambient solution-processed tandem polymer solar cells. Adv Funct Mater, 2015, 25(28): 4539 doi: 10.1002/adfm.v25.28
[78]
Jiu J, Araki T, Wang J, et al. Facile synthesis of very-long silver nanowires for transparent electrodes. J Mater Chem A, 2014, 2(18): 6326 doi: 10.1039/C4TA00502C
[79]
Bergin S M, Chen Y, Rathmell A R, et al. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale, 2012, 4(6): 1996 doi: 10.1039/c2nr30126a
[80]
Tokuno T, Nogi M, Karakawa M, et al. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res, 2011, 4(12): 1215 doi: 10.1007/s12274-011-0172-3
[81]
Wang Z, Liu J, Chen X, et al. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chemistry, 2004, 11(1): 160
[82]
Zou K, Zhang X H, Duan X F, et al. Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation. J Cryst Growth, 2004, 273(1/2): 285
[83]
Riveros G, Green S, Cortes A, et al. Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Nanotechnology, 2006, 17(2): 561 doi: 10.1088/0957-4484/17/2/037
[84]
Choi J, Sauer G, Nielsch K, et al. Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem Mater, 2003, 15(3): 776 doi: 10.1021/cm0208758
[85]
Tsuji M, Matsumoto K, Jiang P, et al. Roles of Pt seeds and chloride anions in the preparation of silver nanorods and nanowires by microwave-polyol method. Colloids Surf A, 2008, 316(1): 266
[86]
Yang Y, Hu Y, Xiong X, et al. Impact of microwave power on the preparation of silver nanowires via a microwave-assisted method. RSC Adv, 2013, 3(22): 8431 doi: 10.1039/c3ra00117b
[87]
Sun Y G, Yin Y D, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chem Mater, 2002, 14(11): 4736 doi: 10.1021/cm020587b
[88]
Li Z, Gu A, Guan M, et al. Large-scale synthesis of silver nanowires and platinum nanotubes. Colloid Polym Sci, 2010, 288(10/11): 1185
[89]
Jiu J, Murai K, Kim D, et al. Preparation of Ag nanorods with high yield by polyol process. Mater Chem Phys, 2009, 114(1): 333 doi: 10.1016/j.matchemphys.2008.09.028
[90]
Tsuji M, Hashimoto M, Nishizawa Y, et al. Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry, 2005, 11(2): 440 doi: 10.1002/(ISSN)1521-3765
[91]
Chen D, Qiao X, Qiu X, et al. Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method. J Colloid Interf Sci, 2010, 344(2): 286 doi: 10.1016/j.jcis.2009.12.055
[92]
Sun Y G, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Lett, 2002, 2(2): 165 doi: 10.1021/nl010093y
[93]
Korte K E, Skrabalak S E, Xia Y. Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J Mater Chem, 2008, 18(4): 437 doi: 10.1039/B714072J
[94]
Sun Y G, Xia Y N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. 3.0.CO;2-K">Adv Mater, 2002, 14(11): 833 doi: 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K
[95]
Wiley B, Sun Y G, Xia Y N. Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir, 2005, 21(18): 8077 doi: 10.1021/la050887i
[96]
Shobin L R, Sastikumar D, Manivannan S. Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing. Sens Actuators A, 2014, 214: 74 doi: 10.1016/j.sna.2014.04.017
[97]
Shobin L R, Manivannan S. One pot rapid synthesis of silver nanowires using NaCl assisted glycerol mediated polyol process. Electron Mater Lett, 2014, 10(6): 1027 doi: 10.1007/s13391-014-4013-x
[98]
Lai X, Feng X, Zhang M, et al. Large-scale synthesis and surface plasmon resonance properties of angled silver/silver homojunction nanowires. J Nanopart Res, 2014, 16(3): 1
[99]
Liang X, Zhao T, Hu Y, et al. CuCl2 and stainless steel synergistically assisted synthesis of high-purity silver nanowires on a large scale. RSC Adv, 2014, 4(88): 47536 doi: 10.1039/C4RA09317H
[100]
Li Z C, Shang T M, Zhou Q F, et al. Sodium chloride assisted synthesis of silver nanowires. Micro Nano Lett, 2011, 6(2): 90 doi: 10.1049/mnl.2010.0183
[101]
Chen C, Wang L, Jiang G, et al. Study on the synthesis of silver nanowires with adjustable diameters through the polyol process. Nanotechnology, 2006, 17(15): 3933 doi: 10.1088/0957-4484/17/15/054
[102]
Chen C, Wang L, Jiang G H, et al. The influence of seeding conditions and shielding gas atmosphere on the synthesis of silver nanowires through the polyol process. Nanotechnology, 2006, 17(2): 466 doi: 10.1088/0957-4484/17/2/021
[103]
Chen C, Wang L, Yu H, et al. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process. Nanotechnology, 2007, 18(11): 115612 doi: 10.1088/0957-4484/18/11/115612
[104]
Ma J, Zhan M. Rapid production of silver nanowires based on high concentration of AgNO3 precursor and use of FeCl3 as reaction promoter. RSC Adv, 2014, 4(40): 21060 doi: 10.1039/c4ra00711e
[105]
Coskun S, Aksoy B, Unalan H E. Polyol synthesis of silver nanowires: an extensive parametric study. Cryst Growth Des, 2011, 11(11): 4963 doi: 10.1021/cg200874g
[106]
Li Y, Wang Y, Chen L, et al. Controlled synthesis on ag nanowires for conductive transparent electrodes. Mater Manuf Process, 2015, 30(1): 30 doi: 10.1080/10426914.2014.965318
[107]
Lin J, Hsueh Y, Huang J. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method. J Solid State Chem, 2014, 214(214): 2
[108]
Xue J, Song J, Dong Y, et al. Nanowire-based transparent conductors for flexible electronics and optoelectronics. Sci Bull, 2017, 62(2): 143 doi: 10.1016/j.scib.2016.11.009
[109]
Lee J H, Lee P, Lee D, et al. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst Growth Des, 2012, 12(11): 5598 doi: 10.1021/cg301119d
[110]
Moon H, Won P, Lee J, et al. Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel. Nanotechnology, 2016, 27(27): 295201
[111]
Hong S, Lee H, Lee J, et al. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater, 2015, 27(32): 4744 doi: 10.1002/adma.v27.32
[112]
Yeo J, Kim G, Hong S. Single nanowire resistive nano-heater for highly localized thermo-chemical reactions: localized hierarchical heterojunction nanowire growth. Small, 2014, 10(24): 5015
[113]
Lee H, Hong S, Lee J. Highly stretchable and transparent supercapacitor by Ag-Au core-shell nanowire network with high electrochemical stability. ACS Appl Mater Inter, 2016, 8(24): 15449 doi: 10.1021/acsami.6b04364
[114]
Hong S, Yeo J, Lee J, et al. Selective laser direct patterning of silver nanowire percolation network transparent conductor for capacitive touch panel. J Nanosci Nanotechnol, 2015, 15(3): 2317 doi: 10.1166/jnn.2015.9493
[115]
Oh M, Jin W, Jeong H J, et al. Silver nanowire transparent conductive electrodes for high-efficiency III-nitride light-emitting diodes. Sci Rep, 2015, 5: 13483 doi: 10.1038/srep13483
[116]
Kim K K, Hong S, Cho H M, et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett, 2015, 15(8): 5240 doi: 10.1021/acs.nanolett.5b01505
[117]
Binh N V, Daeho L. Copper nanowires and their applications for flexible, transparent conducting films: a review. Nanomaterials, 2016, 6(3): 47 doi: 10.3390/nano6030047
[118]
Zhang D, Wang R, Wen M. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J Am Chem Soc, 2012, 134(35): 14283 doi: 10.1021/ja3050184
[119]
Kumar D V R, K W, J M. Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications. Nanoscale, 2015, 7(41): 17195 doi: 10.1039/C5NR05138J
[120]
Ah C S, Do Hong S, Jang D J. Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances. J Phys Chem B, 2001, 105(33): 7871 doi: 10.1021/jp0113578
[121]
Stewart I E, Ye S, Chen Z, et al. Synthesis of Cu-Ag, Cu-Au, and Cu-Pt core-shell nanowires and their use in transparent conducting films. Chem Mater, 2015, 27(22): 7788 doi: 10.1021/acs.chemmater.5b03709
[122]
Xue J, Song J, Zou Y, et al. Nickel concentration-dependent opto-electrical performances and stability of Cu@CuNi nanowire transparent conductors. RSC Adv, 2016, 6(94): 91394 doi: 10.1039/C6RA19577F
[123]
Kholmanov I N, Domingues S H, Chou H. Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano, 2013, 7(2): 1811 doi: 10.1021/nn3060175
[124]
Won Y, Kim A, Lee D. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics. NPG Asia Mater, 2014, 6(6): 105 doi: 10.1038/am.2014.36
[125]
Niu Z, Cui F, Yu Y, et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors. J Am Chem Soc, 2017, 139(21): 7348 doi: 10.1021/jacs.7b02884
[126]
Han S, Hong S, Yeo J, et al. Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction. Adv Mater, 2015, 27(41): 6396 doi: 10.1002/adma.201570279
[127]
Song J, Li J, Xu J, et al. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Lett, 2014, 14(11): 6298 doi: 10.1021/nl502647k
[128]
Han S, Hong S, Ham J, et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater, 2014, 26(33): 5808 doi: 10.1002/adma.v26.33
[129]
Zhang Y, Su L, Manuzzi D. Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens Bioelectron, 2012, 31(1): 426 doi: 10.1016/j.bios.2011.11.006
[130]
Stewart I E, Rathmell A R, Yan L, et al. Solution-processed copper-" nickel nanowire anodes for organic solar cells. Nanoscale, 2014, 6(11): 5980 doi: 10.1039/c4nr01024h
[131]
Feng H, Yang Y, You Y. Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem Commun, 2009, 15(15): 1984
[132]
Lyons P E, De S, Elias J, et al. High-performance transparent conductors from networks of gold nanowires. J Phys Chem Lett, 2011, 2(24): 3058 doi: 10.1021/jz201401e
[133]
Dawson K, Strutwolf J, Rodgers K P. Single nanoskived nanowires for electrochemical applications. Analytical Chemistry, 2011, 83(14): 5535 doi: 10.1021/ac2004086
[134]
Gonzalez-Garcia L, Maurer J H M, Reiser B, et al. Ultrathin gold nanowires for transparent electronics: breaking barriers. Procedia Eng, 2016, 141: 152 doi: 10.1016/j.proeng.2015.08.1120
[135]
Bao C, Zhu W, Yang J, et al. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Appl Mater Inter, 2016, 8(36): 23868 doi: 10.1021/acsami.6b08318
[136]
Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun, 2014, 5(2): 3132
[137]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
[138]
Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312 doi: 10.1126/science.1171245
[139]
Wang Y, Xu X, Lu J, et al. Toward high throughput interconvertible graphane-to-graphene growth and patterning. ACS Nano, 2010, 4(10): 6146 doi: 10.1021/nn1017389
[140]
Xu X, Zhang Z, Qiu L, et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat Nanotechnol, 2016, 11(11): 930 doi: 10.1038/nnano.2016.132
[141]
Zhu Y, Ji H, Cheng H M, et al. Mass production and industrial applications of graphene materials. National Science Review, 2017
[142]
Yang W, Wang C. Graphene and the related conductive inks for flexible electronics. J Mater Chem C, 2016, 4(30): 7193 doi: 10.1039/C6TC01625A
[143]
Secor E B, Ahn B Y, Gao T Z, et al. Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv Mater, 2015, 27(42): 6683 doi: 10.1002/adma.201502866
[144]
Du J, Pei S, Ma L, et al. Carbon nanotube- and graphene- based transparent conductive films for optoelectronic devices. Adv Mater, 2014, 26(13): 1958 doi: 10.1002/adma.201304135
[145]
Torrisi F, Hasan T, Wu W, et al. Inkjet-printed graphene electronics. ACS Nano, 2012, 6(4): 2992 doi: 10.1021/nn2044609
[146]
Hyun W J, Secor E B, Hersam M C, et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater, 2015, 27(1): 109 doi: 10.1002/adma.v27.1
[147]
Finn D J, Lotya M, Cunningham G, et al. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J Mater Chem C, 2014, 2(5): 925 doi: 10.1039/C3TC31993H
[148]
Hyun W J, Secor E B, Rojas G A, et al. All-printed, foldable organic thin-film transistors on glassine paper. Adv Mater, 2015, 27(44): 7058 doi: 10.1002/adma.201503478
[149]
Casaluci S, Gemmi M, Pellegrini V, et al. Graphene-based large area dye-sensitized solar cell modules. Nanoscale, 2016, 8(9): 5368 doi: 10.1039/C5NR07971C
[150]
He D, Shen L, Zhang X, et al. An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. AIChE J, 2014, 60(8): 2757 doi: 10.1002/aic.14499
[151]
Kong D, Le L T, Li Y, et al. Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir, 2012, 28(37): 13467 doi: 10.1021/la301775d
[152]
Wei D, Li H, Han D, et al. Properties of graphene inks stabilized by different functional groups. Nanotechnology, 2011, 22(24): 1
[153]
Georgakilas V, Demeslis A, Ntararas E, et al. Hydrophilic nanotube supported graphene-water dispersible carbon superstructure with excellent conductivity. Adv Funct Mater, 2015, 25(10): 1481 doi: 10.1002/adfm.201403801
[154]
Yadav S, Kaur I. Low temperature processed graphene thin film transparent electrodes for supercapacitor applications. RSC Adv, 2016, 6(82): 78702 doi: 10.1039/C6RA17668B
[155]
Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics, 2012, 6(2): 105 doi: 10.1038/nphoton.2011.318
[156]
Yu W J, Lee S Y, Chae S H, et al. Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett, 2011, 11(3): 1344 doi: 10.1021/nl104488z
[157]
Lee S K, Kim B J, Jang H, et al. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett, 2011, 11(11): 4642 doi: 10.1021/nl202134z
[158]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574 doi: 10.1038/nnano.2010.132
[159]
IIJIMA S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56 doi: 10.1038/354056a0
[160]
Hu L, Hecht D S, Gruener G. Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev, 2010, 110(10): 5790 doi: 10.1021/cr9002962
[161]
Jia X, Wei F. Advances in production and applications of carbon nanotubes. Topics in Current Chemistry, 2017, 375(1): 18 doi: 10.1007/s41061-017-0102-2
[162]
Park S, Vosguerichian M, Bao Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, 5(5): 1727 doi: 10.1039/c3nr33560g
[163]
Li Y, Kim W, Zhang Y, et al. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J Phys Chem B, 2001, 105(46): 11424 doi: 10.1021/jp012085b
[164]
Qian W, Liu T, Wei F, et al. Carbon nanotubes with large cores produced by adding sodium carbonate to the catalyst. Carbon, 2003, 41(13): 2683 doi: 10.1016/S0008-6223(03)00382-8
[165]
Lv R, Kang F, Wang W. Effect of using chlorine-containing precursors in the synthesis of FeNi-filled carbon nanotubes. Carbon, 2007, 45(7): 1433 doi: 10.1016/j.carbon.2007.03.032
[166]
Arnold M S, Green A A, Hulvat J F, et al. Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol, 2006, 1(1): 60 doi: 10.1038/nnano.2006.52
[167]
Liu H, Nishide D, Tanaka T, et al. Large-scale single-chirality separation of single-wall nanotubes by simple gel chromatography. Nat Commun, 2011, 2(1): 309
[168]
Bahr J L, Mickelson E T, Bronikowski M J, et al. Dissolution of small diameter single-wall carbon nanotubes in organic solvents. Chem Commun, 2001(2): 193 doi: 10.1039/b008042j
[169]
Cheng Q, Debnath S, O'Neill L, et al. Systematic study of the dispersion of SWNTs in organic solvents. J Phys Chem C, 2010, 114(11): 4857 doi: 10.1021/jp911202d
[170]
Wang J, Sun J, Gao L, et al. Removal of the residual surfactants in transparent and conductive single-walled carbon nanotube films. J Phys Chem C, 2009, 113(41): 17685 doi: 10.1021/jp905353c
[171]
Park C, Ounaies Z, Watson K A, et al. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett, 2002, 364(3/4): 303
[172]
Bandyopadhyaya R, Nativ-Roth E, Regev O, et al. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett, 2002, 2(1): 25 doi: 10.1021/nl010065f
[173]
Star A, Joshi V, Han T R, et al. Electronic detection of the enzymatic degradation of starch. Org Lett, 2004, 6(13): 2089 doi: 10.1021/ol0495826
[174]
Hecht D S, Ramirez R J A, Briman M, et al. Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Lett, 2006, 6(9): 2031 doi: 10.1021/nl061231s
[175]
Zheng M, Jagota A, Semke E D, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater, 2003, 2(5): 338 doi: 10.1038/nmat877
[176]
Chen X, Qiu M, Ding H, et al. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale, 2016, 8(10): 5696 doi: 10.1039/C5NR08697C
[177]
Li H, Zheng N, Liang N, et al. Adsorption mechanism of different organic chemicals on fluorinated carbon nanotubes. Chemosphere, 2016, 154: 258 doi: 10.1016/j.chemosphere.2016.03.099
[178]
Qiu X, Ke F, Timsina R, et al. Attractive interactions between DNA-carbon nanotube hybrids in monovalent salts. J Phys Chem C, 2016, 120(25): 13831 doi: 10.1021/acs.jpcc.6b04623
[179]
Meng Y, Xu X, Li H, et al. Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon, 2014, 70: 103 doi: 10.1016/j.carbon.2013.12.078
[180]
Wan Q, Tian J, Liu M, et al. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization. Appl Surf Sci, 2015, 346: 335 doi: 10.1016/j.apsusc.2015.04.012
[181]
Cui H, Du L, Guo P, et al. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J Power Sources, 2015, 283: 46 doi: 10.1016/j.jpowsour.2015.02.088
[182]
Wan Q, Liu M, Tian J, et al. Surface modification of carbon nanotubes by combination of mussel inspired chemistry and SET-LRP. Polym Chem-UK, 2015, 6(10): 1786 doi: 10.1039/C4PY01565G
[183]
Huang W J, Lin Y, Taylor S, et al. Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Lett, 2002, 2(3): 231 doi: 10.1021/nl010083x
[184]
Hecht D, Hu L, Gruner G. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl Phys Lett, 2006, 89(13): 425
[185]
Kaempgen M, Lebert M, Haluska M, et al. Sonochemical optimization of the conductivity of single wall carbon nanotube networks. Adv Mater, 2008, 20(3): 616 doi: 10.1002/(ISSN)1521-4095
[186]
Hu L, Hecht D S, Gruner G. Infrared transparent carbon nanotube thin films. Appl Phys Lett, 2009, 94(8): 1273
[187]
Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453): 622 doi: 10.1126/science.287.5453.622
[188]
Hamon M A, Sorci G A, Sugar M A, et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282(5386): 95 doi: 10.1126/science.282.5386.95
[189]
Geng H, Kim K K, So K P, et al. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J Am Chem Soc, 2007, 129(25): 7758 doi: 10.1021/ja0722224
[190]
Skakalova V, Kaiser A B, Dettlaff-Weglikowska U, et al. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes. J Phys Chem B, 2005, 109(15): 7174 doi: 10.1021/jp044741o
[191]
Yang S B, Kong B, Geng J, et al. Enhanced electrical conductivities of transparent double-walled carbon nanotube network films by post-treatment. J Phys Chem C, 2009, 113(31): 13658 doi: 10.1021/jp903605p
[192]
Han J T, Kim J S, Jo S B, et al. Graphene oxide as a multi-functional p-dopant of transparent single-walled carbon nanotube films for optoelectronic devices. Nanoscale, 2012, 4(24): 7735 doi: 10.1039/c2nr31923c
[193]
Fuhrer M S, Nygard J, Shih L, et al. Crossed nanotube junctions. Science, 2000, 288(5465): 494 doi: 10.1126/science.288.5465.494
[194]
Barrau S, Demont P, Peigney A, et al. DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules, 2003, 36(14): 5187 doi: 10.1021/ma021263b
[195]
Mallakpour S, Soltanian S. Surface functionalization of carbon nanotubes: fabrication and applications. RSC Adv, 2016, 6(111): 109916 doi: 10.1039/C6RA24522F
[196]
Zhou Y, Azumi R. Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci Technol Adv Mater, 2016, 17(1): 493 doi: 10.1080/14686996.2016.1214526
[197]
Li S D, Yu Z, Rutherglen C, et al. Electrical properties of 0.4 cm long single-walled carbon nanotubes. Nano Lett, 2004, 4(10): 2003 doi: 10.1021/nl048687z
[198]
Kane C L, Mele E J. Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett, 1997, 78(10): 1932 doi: 10.1103/PhysRevLett.78.1932
[199]
Wang Y, Yang H, Geng H, et al. Fabrication and evaluation of adhesion enhanced flexible carbon nanotube transparent conducting films. J Mater Chem C, 2015, 3(15): 3796 doi: 10.1039/C5TC00138B
[200]
Pei T, Xu H, Zhang Z, et al. Electronic transport in single-walled carbon nanotube/graphene junction. Appl Phys Lett, 2011, 99(11): 787
[201]
Sarker B K, Kang N, Khondaker S I. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes. Nanoscale, 2014, 6(9): 4896 doi: 10.1039/c3nr06470k
[202]
Shin D H, Shim H C, Song J, et al. Conductivity of films made from single-walled carbon nanotubes in terms of bundle diameter. Scripta Mater, 2009, 60(8): 607 doi: 10.1016/j.scriptamat.2008.12.019
[203]
Geng H, Kim K K, Lee K, et al. Dependence of material quality on performance of flexible transparent conducting films with single-walled carbon nanotubes. Nano, 2007, 2(3): 157 doi: 10.1142/S1793292007000532
[204]
Kim D, Zhu L, Jeong D, et al. Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon, 2013, 63: 530 doi: 10.1016/j.carbon.2013.07.030
[205]
Chae S H, Yu W J, Bae J J, et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat Mater, 2013, 12(5): 403 doi: 10.1038/nmat3572
[206]
Wu X, Liu J, Wu D, et al. Highly conductive and uniform graphene oxide modified PEDOT:PSS electrodes for ITO-Free organic light emitting diodes. J Mater Chem C, 2014, 2(20): 4044 doi: 10.1039/C4TC00305E
[207]
Rowell M W, Topinka M A, McGehee M D, et al. Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett, 2006, 88(23): 233506 doi: 10.1063/1.2209887
[208]
Hecht D S, Thomas D, Hu L, et al. Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. J Soc Inf Display, 2009, 17(11): 941 doi: 10.1889/JSID17.11.941
[209]
Cao Q, Hur S H, Zhu Z T, et al. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater, 2006, 18(3): 304 doi: 10.1002/(ISSN)1521-4095
[210]
Hu L, Li J, Liu J, et al. Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions. Nanotechnology, 2010, 21(15): 155202 doi: 10.1088/0957-4484/21/15/155202
[211]
Schindler A, Schau P, Fruehauf N. Active-matrix and flexible liquid-crystal displays with carbon-nanotube pixel electrodes. J Soc Inf Display, 2009, 17(10): 853 doi: 10.1889/JSID17.10.853
[212]
Degraff J, Liang R, Le M Q, et al. Printable low-cost and flexible carbon nanotube buckypaper motion sensors. Mater Design, 2017, 133: 47 doi: 10.1016/j.matdes.2017.07.048
[213]
Guan W J, Li Y, Chen Y Q, et al. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosens Bioelectron, 2005, 21(3): 508 doi: 10.1016/j.bios.2004.10.030
[214]
Pandit B, Dhakate S R, Singh B P, et al. Free-standing flexible MWCNTs bucky paper: Extremely stable and energy efficient supercapacitive electrode. Electrochim Acta, 2017, 249: 395 doi: 10.1016/j.electacta.2017.08.013
[215]
Nasibulin A G, Pikhitsa P V, Jiang H, et al. A novel hybrid carbon material. Nat Nanotechnol, 2007, 2(3): 156 doi: 10.1038/nnano.2007.37
[216]
Moisala A, Nasibulin A G, Shandakov S D. On-line detection of single-walled carbon nanotube formation during aerosol synthesis method. Carbon, 2005, 43: 2047
[217]
Nasibulin A G, Moisala A, Brown D P, et al. A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett, 2005, 402: 227 doi: 10.1016/j.cplett.2004.12.040
[218]
Reddy B P N, Gupta B, Gacche R N. An arsenal for 21st century noxious diseases: carbon nanomaterials. Int J Nanotechnol Appl, 2009, 3(2): 61
[219]
Graff R A, Swanson J P, Barone P W, et al. Achieving individual-nanotube dispersion at high loading in single-walled carbon nanotube composites. Adv Mater, 2005, 17(15): 1820 doi: 10.1002/(ISSN)1521-4095
[220]
Wu X, Zeng X C. First-principles study of a carbon nanobud. ACS Nano, 2008, 2(7): 1459 doi: 10.1021/nn800256d
[221]
He H Y, Pan B C. Electronic structures and Raman features of a carbon nanobud. J Phys Chem C, 2013, 113(49): 20822
[222]
Zhu X, Su H. Magnetism in hybrid carbon nanostructures: Nanobuds. Phys Rev B, 2009, 22(16): 70
[223]
Ahangari M G, Ganji M D, Montazar F. Mechanical and electronic properties of carbon nanobuds: first-principles study. Solid State Commun, 2015, 203: 58 doi: 10.1016/j.ssc.2014.11.019
[224]
Zhao P, Wang P J, Zhang Z, et al. First-principles study of the electronic transport properties of the carbon nanobuds. Phys B, 2010, 405(8): 2097 doi: 10.1016/j.physb.2010.01.110
[225]
Anisimov A S, Brown D P, Mikladal B F, et al. Printed touch sensors using carbon NanoBud® material. Sid Symposium Digest of Technical Papers, 2015, 45(1): 200
[226]
Kaskela A, Nasibulin A G, Timmermans M Y. Aerosol synthesized SWCNT networks with tuneable conductivity and transparency by dry transfer technique. Nano Lett, 2010, 10(11): 4349 doi: 10.1021/nl101680s
[227]
Gonzalez D, Nasibulin A G, Baklanov A M. A new thermophoretic precipitator for collection of nanometer-sized aerosol particles. Aerosol Sci Tech, 2005, 39(11): 1064 doi: 10.1080/02786820500385569
[228]
Lee M, Kim J, Park J, et al. Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Nanoscale Res Lett, 2015, 10(1): 27 doi: 10.1186/s11671-015-0748-z
[229]
Kholmanov I N, Magnuson C W, Aliev A E, et al. Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett, 2012, 12(11): 5679 doi: 10.1021/nl302870x
[230]
Ye T, Jun L, Kun L, et al. Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics. Org Electron, 2017, 41: 179 doi: 10.1016/j.orgel.2016.10.046
[231]
Hu D, Zhu W, Peng Y, et al. Flexible carbon nanotube-enriched silver electrode films with high electrical conductivity and reliability prepared by facile screen printing. J Mater Sci Technol, 2017, 33: 1113 doi: 10.1016/j.jmst.2017.06.008
[232]
Morgenstern F S F, Kabra D, Massip S, et al. Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells. Appl Phys Lett, 2011, 99(18): 242
[233]
Kang H, Jung S, Jeong S, et al. Polymer-metal hybrid transparent electrodes for flexible electronics. Nat Commun, 2015, 6: 6503 doi: 10.1038/ncomms7503
[234]
Won Y, Kim A, Lee D, et al. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaic. NPG Asia Mater, 2014, 6(6): e105 doi: 10.1038/am.2014.36
[235]
Moon I K, Kim J I, Lee H, et al. 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci Rep, 2013, 3(1): 1112 doi: 10.1038/srep01112
[236]
Lee H J, Hwang J H, Choi K B, et al. Effective indium-doped zinc oxide buffer layer on silver nanowires for electrically highly stable, flexible, transparent, and conductive composite electrodes. ACS Appl Mater Inter, 2013, 5(21): 10397 doi: 10.1021/am4025802
[237]
Liu Z, Parvez K, Li R, et al. Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors. Adv Mater, 2015, 27(4): 669 doi: 10.1002/adma.201403826
[238]
Lee J, Lee P, Lee H B, et al. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv Funct Mater, 2013, 23(34): 4171 doi: 10.1002/adfm.v23.34
[239]
Gaynor W, Burkhard G F, McGehee M D, et al. Smooth nanowire/polymer composite transparent electrodes. Adv Mater, 2011, 23(26): 2905 doi: 10.1002/adma.v23.26
[240]
Khan Y, Ostfeld A E, Lochner C M, et al. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater, 2016, 28(22): 4373 doi: 10.1002/adma.v28.22
[241]
Kulkarni G U, Kiruthika S, Gupta R, et al. Towards low cost materials and methods for transparent electrodes. Curr Opin Chem Eng, 2015, 8: 60 doi: 10.1016/j.coche.2015.03.001
Fig. 1.  (Color online) (a) The display’s circuitry is powered by the paper photovoltaic. Reproduced from Ref. [15]. (b) A flexible array of printed TFT. Reproduced from Ref. [14]. (c) Optoelectronic sensor that uses green and red polymer light LED and a silicon PD as the light detector. Reproduced from Ref. [16]. (d) A top emission OLED with CNTs as the transparent electrode. Reproduced from Ref. [17].

Fig. 2.  (Color online) Different technologies for the fabrication of printed electrodes: (a) spin coating, (b) spray coating, (c) dip coating, (d) inkjet printing, (e) screen printing, and (f) roll-to-roll.

Fig. 3.  (Color online) (a)–(f) Morphologies of Ag NWs. (a) and (b) show Ag NWs synthesized with 50 k PVP. (c) and (d) show Ag NWs synthesized with 360 k PVP. (e) and (f) show Ag NWs synthesized with 1300 k PVP. (g)–(i) show the growth mechanism of Ag NWs using 50, 360, and 1300 k Mw PVP, respectively. Suppression forces of different kinds of PVP are shown. Reproduced from Ref. [106].

Fig. 4.  (Color online) Various applications of metal NWs. (a) Photo of Ag@Au core–shell NW-based supercapacitor at 30% strain. A commercial LED could be turned on at the stretched conditions. Reproduced from Ref. [113]. (b) Photo of a multipixel strain sensor array (left) and it is embedded in a glove to provide handgrip motion (middle and right). Reproduced from Ref. [116]. (c) Photo of a stretchable and transparent heater affixed to a human wrist at outward bending (left), neutral (center), and inward bending (right) conditions. Reproduced from Ref. [111]. (d) OLED applications of Cu@Cu4Ni NW conductive elastomer composites. Reproduced from Ref. [127]. (e) Photo of the touch screen panel fabricated with Cu NWs transparent electrodes. Reproduced from Ref. [128]. (f) Photo of the flexible MAPbI3 PD based on PEN/Au NW transparent electrodes. Reproduced from Ref. [135].

Fig. 5.  (Color online) (a) Graphene functionalized by IL and (b) graphene modified by different functional groups of polyaniline, polyelectrolyte, and PSS anions. (c) and (d) Drops of graphene inks with different surface tensions on Si substrates after being drop-cast and when dried respectively. (1) IL-modified graphene (2) KOH-exfoliated graphene (3) polyelectrolyte-modified graphene, (4) PSS-modified graphene and (5) polyaniline-modified graphene. Reproduced from Ref. [152].

Fig. 6.  (Color online) (a) Flexible OLED lighting device with a graphene anode on a 5 × 5 cm2 PET substrate. Reproduced from Ref. [155]. (b) Photo of the fabricated flexible and transparent TFTs based on graphene on a PET substrate. Reproduced from Ref. [156]. (c) Arrays of transistors based on all graphene electrodes on balloon. Reproduced from Ref. [157]. (d) A graphene-based touch screen panel connected to a computer with control software. Reproduced from Ref. [158].

Fig. 7.  (Color online) (a) Schematic of CNT dispersion, film deposition, and post treatment. (b) Enhancement of the conductivity utilizing different methods. Modification/doping will decrease the sheet resistance of CNT to 50–200 Ω/sq. Ultra-long CNTs may reduce the sheet resistance to 10–50 Ω/sq. Incorporating with metal NWs/NPs can further reduce the sheet resistance. Reproduced from Ref. [196].

Fig. 8.  (Color online) (a) Photo of the highly flexible cell using SWCNTs electrodes on PET. Reproduced from Ref. [207]. (b) Photo of touch screen panel utilizing CNT film as touch electrode. Reproduced from Ref. [208]. (c) Array of the TFTs based on CNT electrodes on a plastic substrate. Reproduced from Ref. [209]. (d) OLEDs fabricated with a SWCNTs network anode. Reproduced from Ref. [210]. (e) Liquid crystal display with CNT top electrode. Reproduced from Ref. [211].

Fig. 9.  (Color online) (a) Fullerene–SWNT hybrid structures, reminiscent of buds on a branch. Reproduced from Ref. [225]. (b) Morphology revealing the presence of spherical structures on the surface of the SWNTs. Reproduced from Ref. [225]. (c) Photo of a flexible CNB touch sensor. Reproduced from Ref. [225]. (d) CNB touch sensor integrated in an Intel Ultrabook reference design. Reproduced from Ref. [225].

Fig. 10.  (Color online) (a) Microstructures of conducting film based on graphene-Ag NW structures. Reproduced from Ref. [228]. (b) Microstructures of hybrid electrode of Ag NWs combined with Ag grid. Reproduced from Ref. [230]. (c) CNT enriched silver electrode films. Reproduced from Ref. [231]. (d) Device structure of a bulk heterojunction inverted solar cell using a ZnO NPs coated Ag NW film as the transparent electrode. Reproduced from Ref. [232]. (e) Hybrid electrode consisting of an ultra-thin Ag layer between PEI and PEDOT:PSS. Reproduced from Ref. [233]. (f) Structure of solar cells using AZO/CuNWs/AZO hybrid electrodes. Reproduced from Ref. [234].

Fig. 11.  (Color online) Diagram of the wearable medical devices. Reproduced from Ref. [240].

Table 1.   Classification of conductive materials as alternatives of ITO.

Type Composition
Inorganic Metal based Metal NPs/NWs[2224]
Metal oxide[2527]
Carbonaceous CNT[28, 29]
Graphene[30, 31]
Organic Conductive polymer Poly(3,4-ethylenedioxythiophene) (PEDOT)[32, 33]
Polypyrrole (PPy)[34, 35]
Polyethylene naphthalate (PEN)[36, 37]
DownLoad: CSV
[1]
Hermerschmidt F, Ignasi B C, Savva A, et al. High performance indium tin oxide-free solution-processed organic light emitting diodes based on inkjet-printed fine silver grid lines. Flex Print Electron, 2016, 1(3): 035004 doi: 10.1088/2058-8585/1/3/035004
[2]
Sekine C, Tsubata Y, Yamada T, et al. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics. Sci Technol Adv Mater, 2014, 15(3): 034203 doi: 10.1088/1468-6996/15/3/034203
[3]
Karakawa M, Tokuno T, Nogi M, et al. Silver nanowire networks as a transparent printable electrode for organic photovoltaic cells. Electrochemistry, 2017, 85(5): 245 doi: 10.5796/electrochemistry.85.245
[4]
Li K, Zhang Y, Zhen H, et al. Printed light-trapping nanorelief Cu electrodes for full-solution-processed flexible organic solar cells. Mater Res Express, 2016, 3(7): 074006 doi: 10.1088/2053-1591/3/7/074006
[5]
Griffith M J, Cooling N A, Vaughan B, et al. Combining printing, coating, and vacuum deposition on the roll-to-roll scale: a hybrid organic photovoltaics fabrication. IEEE J Sel Top Quant, 2016, 22(1): 112 doi: 10.1109/JSTQE.2015.2487968
[6]
Jain P, Arun P. Photovoltaic performance of hybrid ITO/PEDOT:PSS/n-SnS/Al solar cell structure. J Semicond, 2016, 37(7): 074002 doi: 10.1088/1674-4926/37/7/074002
[7]
Zhang S, Cai L, Wang T, et al. Fully printed flexible carbon nanotube photodetectors. Appl Phys Lett, 2017, 110(12): 123105 doi: 10.1063/1.4978935
[8]
Guo Q, Fang Y, Zhang M, et al. Wrinkled single-crystalline germanium nanomembranes for stretchable photodetectors. IEEE Trans Electron Devices, 2017, 64(5): 1985 doi: 10.1109/TED.2016.2618423
[9]
Song E, Guo Q, Huang G, et al. Bendable photodetector on fibers wrapped with flexible ultrathin single crystalline silicon nanomembranes. ACS Appl Mater Inter, 2017, 9(14): 12171 doi: 10.1021/acsami.7b02123
[10]
Lou Z, Liang Z Z, Shen G Z. Photodetectors based on two dimensional materials. J Semicond, 2016, 37(9): 091001 doi: 10.1088/1674-4926/37/9/091001
[11]
Hyun W J, Secor E B, Rojas G A, et al. All-printed, foldable organic thin-film transistors on glassine paper. Adv Mater, 2015, 27(44): 7058 doi: 10.1002/adma.201503478
[12]
Takeda Y, Yoshimura Y, Kobayashi Y, et al. Integrated circuits using fully solution-processed organic TFT devices with printed silver electrodes. Org Electron, 2013, 14(12): 3362 doi: 10.1016/j.orgel.2013.10.006
[13]
Cao C, Andrews J B, Franklin A D. Completely printed, flexible, stable, and hysteresis-free carbon nanotube thin-film transistors via aerosol jet printing. Adv Electron Mater, 2017, 3(5): 1700057 doi: 10.1002/aelm.201700057
[14]
Kelly A G, Hallam T, Backes C, et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science, 2017, 356(6333): 69 doi: 10.1126/science.aal4062
[15]
Barr M C, Rowehl J A, Lunt R R, et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater, 2011, 23(31): 3500 doi: 10.1002/adma.201101263
[16]
Han D, Khan Y, Ting J, et al. Flexible blade-coated multicolor polymer light-emitting diodes for optoelectronic sensors. Adv Mater, 2017, 29(22): 1606206 doi: 10.1002/adma.v29.22
[17]
Chien Y M, Lefevre F, Shih I, et al. A solution processed top emission OLED with transparent carbon nanotube electrodes. Nanotechnology, 2010, 21(13): 134020 doi: 10.1088/0957-4484/21/13/134020
[18]
Kamyshny A, Magdassi S. Conductive nanomaterials for printed electronics. Small, 2014, 10(17): 3515 doi: 10.1002/smll.v10.17
[19]
Guo H, Lin N, Chen Y, et al. Copper nanowires as fully transparent conductive electrodes. Sci Rep, 2013, 3(7): 2323 doi: 10.1038/srep02323
[20]
Chen R, Das S R, Jeong C, et al. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Adv Funct Mater, 2013, 23(41): 5150 doi: 10.1002/adfm.v23.41
[21]
Song J, Zeng H. Transparent electrodes printed with nanocrystal inks for flexible smart devices. Angew Chem Int Ed, 2015, 54(34): 9760 doi: 10.1002/anie.201501233
[22]
Bade S G R, Li J, Shan X, et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano, 2016, 10(2): 1795 doi: 10.1021/acsnano.5b07506
[23]
Bhanushali S, Ghosh P, Ganesh A, et al. 1D copper nanostructures: progress, challenges and opportunities. Small, 2015, 11(11): 1232 doi: 10.1002/smll.201402295
[24]
Magdassi S, Grouchko M, Kamyshny A. Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials, 2010, 3(9): 4626 doi: 10.3390/ma3094626
[25]
Song J, Kulinich S A, Li J, et al. A general one-pot strategy for the synthesis of high-performance transparent-conducting-oxide nanocrystal inks for all-solution-processed devices. Angew Chem Int Ed, 2015, 54(2): 462
[26]
Luo L, Bozyigit D, Wood V, et al. High-quality transparent electrodes spin-cast from preformed antimony-doped tin oxide nanocrystals for thin film optoelectronics. Chem Mater, 2013, 25(24): 4901 doi: 10.1021/cm4030149
[27]
Buonsanti R, Llordes A, Aloni S, et al. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett, 2011, 11(11): 4706 doi: 10.1021/nl203030f
[28]
Gao J, Mu X, Li X, et al. Modification of carbon nanotube transparent conducting films for electrodes in organic light-emitting diodes. Nanotechnology, 2013, 24(43): 435201 doi: 10.1088/0957-4484/24/43/435201
[29]
Meng Y, Xu X, Li H, et al. Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon, 2014, 70(2): 103
[30]
Secor E B, Prabhumirashi P L, Puntambekar K, et al. Inkjet printing of high conductivity, flexible graphene patterns. J Phys Chem Lett, 2013, 4(8): 1347 doi: 10.1021/jz400644c
[31]
Secor E B, Lim S, Zhang H, et al. Gravure printing of graphene for large-area flexible electronics. Adv Mater, 2014, 26(26): 4533 doi: 10.1002/adma.v26.26
[32]
Loevenich W. PEDOT-properties and applications. Polym Sci Ser C+, 2014, 56(1): 135 doi: 10.1134/S1811238214010068
[33]
Guo Y, Otley M T, Li M, et al. PEDOT:PSS "wires" printed on textile for wearable electronics. ACS Appl Mater Inter, 2016, 8(40): 26998 doi: 10.1021/acsami.6b08036
[34]
Heydarnezhad H R, Pourabbas B. Deposition of electrically conductive ceria/polypyrrole nanocomposite particles on flexible polyethylene naphthalate film via in situ photo-induced polymerization. J Mater Sci: Mater Electron, 2014, 25(2): 1017 doi: 10.1007/s10854-013-1681-5
[35]
Yue B, Wang C, Ding X, et al. Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim Acta, 2012, 68: 18 doi: 10.1016/j.electacta.2012.01.109
[36]
Zhao Y, Liu B, Pan L, et al. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energ Environ Sci, 2013, 6(10): 2856 doi: 10.1039/c3ee40997j
[37]
Foroutani K, Pourabbas B, Sharif M, et al. Preparation of conductive flexible films by in situ deposition of polythiophene nanoparticles on polyethylene naphthalate. Mater Sci Semicond Proc, 2014, 18(2): 6
[38]
Tian Z, Zhang L, Fang Y. Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture. Adv Mater, 2017, 29(13): 1604572 doi: 10.1002/adma.201604572
[39]
Pan S, Zhao Y, Huang G. Highly photocatalytic TiO2 interconnected porous powder fabricated by sponge-templated atomic layer deposition. Nanotechnology, 2015, 26(36): 364001 doi: 10.1088/0957-4484/26/36/364001
[40]
Jang S, Seo Y, Choi J. Sintering of inkjet printed copper nanoparticles for flexible electronic. Scripta Mater, 2010, 62(5): 258 doi: 10.1016/j.scriptamat.2009.11.011
[41]
Li Y, Wu Y, Ong B S. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J Am Chem Soc, 2005, 127(10): 3266 doi: 10.1021/ja043425k
[42]
Wu Y, Li Y, Ong B S. A simple and efficient approach to a printable silver conductor for printed electronics. J Am Chem Soc, 2007, 129(7): 1862 doi: 10.1021/ja067596w
[43]
Minari T, Kanehara Y, Liu C. Room-temperature printing of organic thin-film transistors with π-junction gold nanoparticles. Adv Funct Mater, 2014, 24(31): 4886 doi: 10.1002/adfm.201400169
[44]
Zhang W, Chen P, Gao Q, et al. High-concentration preparation of silver nanowires: restraining in situ nitric acidic etching by steel-assisted polyol method. Chem Mater, 2008, 20(5): 1699 doi: 10.1021/cm7022554
[45]
Johan M R, Aznan N A K, Yee S T, et al. Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl2 and NaCl) polyol process. J Nanomater, 2014(2014): 54
[46]
Li S J, Chen Y Y, Huang L J, et al. Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks. Inorg Chem, 2014, 53(9): 4440 doi: 10.1021/ic500094b
[47]
Huo Z, Tsung C K, Huang W, et al. Sub-two nanometer single crystal Au nanowires. Nano Lett, 2008, 8(7): 2041 doi: 10.1021/nl8013549
[48]
Chen Y, Ouyang Z, Gu M, et al. Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv Mater, 2013, 25(1): 80 doi: 10.1002/adma.201202241
[49]
Sun S, Zhang G, Zhong Y. Ultrathin single crystal Pt nanowires grown on N-doped carbon nanotubes. Chem Commun, 2009, 45: 7048
[50]
El-Nour K M M A, Eftaiha A A, Al-Warthan A, et al. Synthesis and applications of silver nanoparticles. Arab J Chem, 2010, 3(3): 135 doi: 10.1016/j.arabjc.2010.04.008
[51]
Gurav A S, Kodas T T, Wang L M, et al. Generation of nanometer-size fullerene particles via vapor condensation. Chem Phys Lett, 1994, 218(4): 304 doi: 10.1016/0009-2614(93)E1491-X
[52]
Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem, 2006, 45(28): 4597 doi: 10.1002/(ISSN)1521-3773
[53]
Mayer A B R, Grebner W, Wannemacher R. Preparation of silver-latex composites. J Phys Chem B, 2000, 104(31): 7278 doi: 10.1021/jp000568u
[54]
Peng P, Hu A, Zhou Y. Laser sintering of silver nanoparticle thin films: microstructure and optical properties. Appl Phys A, 2012, 108(3): 685 doi: 10.1007/s00339-012-6951-1
[55]
Zhang Z, Zhang X, Xin Z, et al. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology, 2011, 22(42): 425601 doi: 10.1088/0957-4484/22/42/425601
[56]
Kamyshny A. Metal-based inkjet inks for printed electronics. Open Appl Phys J, 2011, 4(19): 19
[57]
Wang Z, Yi P, Peng L, et al. Continuous fabrication of highly conductive and transparent ag mesh electrodes for flexible electronics. IEEE Trans Nanotechnol, 2017, 4(16): 687
[58]
Zhang Z, Zhu W. Controllable fabrication of a flexible transparent metallic grid conductor based on the coffee ring effect. J Mater Chem C, 2014, 2(45): 9587 doi: 10.1039/C4TC01908C
[59]
Hong S, Yeo J, Kim G, et al. Nonvacuum maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano, 2013, 7(6): 5024 doi: 10.1021/nn400432z
[60]
Jung S, Lee S, Song M, et al. Extremely flexible transparent conducting electrodes for organic devices. Adv Energy Mater, 2014, 4(1): 1
[61]
Zhang Y, Zhu P, Li G, et al. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink. ACS Appl Mater Inter, 2014, 6(1): 560 doi: 10.1021/am404620y
[62]
Murphy C J, San T K, Gole A M, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B, 2005, 109(29): 13857 doi: 10.1021/jp0516846
[63]
Xu L, Yang Y, Hu Z, et al. Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid. ACS Nano, 2016, 10(3): 3823 doi: 10.1021/acsnano.6b00704
[64]
Lee Y, Choi J, Lee K J, et al. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology, 2008, 41(19): 415604
[65]
Jeong S, Woo K, Kim D, et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv Funct Mater, 2008, 18(5): 679 doi: 10.1002/(ISSN)1616-3028
[66]
Zain N M, Stapley A G F, Shama G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohyd Polym, 2014, 112: 195 doi: 10.1016/j.carbpol.2014.05.081
[67]
Umer A, Naveed S, Ramzan N, et al. A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Matéria (Rio de Janeiro), 2014, 19(3): 197 doi: 10.1590/S1517-70762014000300002
[68]
Wu C, Sheng Y, Tsao H. Copper conductive lines on flexible substrates fabricated at room temperature. J Mater Chem C, 2016, 4(15): 3274 doi: 10.1039/C6TC00234J
[69]
Athanassiou E K, Grass R N, Stark W J. Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology, 2006, 6(17): 1668
[70]
Luechinger N A, Athanassiou E K, Stark W J. Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology, 2008, 19(44): 445201 doi: 10.1088/0957-4484/19/44/445201
[71]
Grouchko M, Kamyshny A, Magdassi S. Formation of air-stable copper-" silver core-" shell nanoparticles for inkjet printing. Nanotechnology, 2009, 19(19): 3057
[72]
Grouchko M, Kamyshny A, Magdassi S. Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing. J Mater Chem, 2009, 19(19): 3057 doi: 10.1039/b821327e
[73]
Tsuji M, Hikino S, Sano Y, et al. Preparation of Cu@Ag core-" shell nanoparticles using a two-step polyol process under bubbling of N2 gas. Chem Lett, 2009, 6(38): 518
[74]
Wu X, Shao S, Chen Z, et al. Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate. Nanotechnology, 2017, 28(3): 35203 doi: 10.1088/1361-6528/28/3/035203
[75]
Wang X, Wang R, Shi L, et al. Synthesis of metal/bimetal nanowires and their applications as flexible transparent electrodes. Small, 2015, 11(36): 4737 doi: 10.1002/smll.201501314
[76]
Kim Y, Ryu T I, Ok K, et al. Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv Funct Mater, 2015, 25(29): 4580 doi: 10.1002/adfm.201501046
[77]
Angmo D, Andersen T R, Bentzen J J, et al. Roll-to-roll printed silver nanowire semitransparent electrodes for fully ambient solution-processed tandem polymer solar cells. Adv Funct Mater, 2015, 25(28): 4539 doi: 10.1002/adfm.v25.28
[78]
Jiu J, Araki T, Wang J, et al. Facile synthesis of very-long silver nanowires for transparent electrodes. J Mater Chem A, 2014, 2(18): 6326 doi: 10.1039/C4TA00502C
[79]
Bergin S M, Chen Y, Rathmell A R, et al. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale, 2012, 4(6): 1996 doi: 10.1039/c2nr30126a
[80]
Tokuno T, Nogi M, Karakawa M, et al. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res, 2011, 4(12): 1215 doi: 10.1007/s12274-011-0172-3
[81]
Wang Z, Liu J, Chen X, et al. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chemistry, 2004, 11(1): 160
[82]
Zou K, Zhang X H, Duan X F, et al. Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation. J Cryst Growth, 2004, 273(1/2): 285
[83]
Riveros G, Green S, Cortes A, et al. Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Nanotechnology, 2006, 17(2): 561 doi: 10.1088/0957-4484/17/2/037
[84]
Choi J, Sauer G, Nielsch K, et al. Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem Mater, 2003, 15(3): 776 doi: 10.1021/cm0208758
[85]
Tsuji M, Matsumoto K, Jiang P, et al. Roles of Pt seeds and chloride anions in the preparation of silver nanorods and nanowires by microwave-polyol method. Colloids Surf A, 2008, 316(1): 266
[86]
Yang Y, Hu Y, Xiong X, et al. Impact of microwave power on the preparation of silver nanowires via a microwave-assisted method. RSC Adv, 2013, 3(22): 8431 doi: 10.1039/c3ra00117b
[87]
Sun Y G, Yin Y D, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chem Mater, 2002, 14(11): 4736 doi: 10.1021/cm020587b
[88]
Li Z, Gu A, Guan M, et al. Large-scale synthesis of silver nanowires and platinum nanotubes. Colloid Polym Sci, 2010, 288(10/11): 1185
[89]
Jiu J, Murai K, Kim D, et al. Preparation of Ag nanorods with high yield by polyol process. Mater Chem Phys, 2009, 114(1): 333 doi: 10.1016/j.matchemphys.2008.09.028
[90]
Tsuji M, Hashimoto M, Nishizawa Y, et al. Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry, 2005, 11(2): 440 doi: 10.1002/(ISSN)1521-3765
[91]
Chen D, Qiao X, Qiu X, et al. Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method. J Colloid Interf Sci, 2010, 344(2): 286 doi: 10.1016/j.jcis.2009.12.055
[92]
Sun Y G, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Lett, 2002, 2(2): 165 doi: 10.1021/nl010093y
[93]
Korte K E, Skrabalak S E, Xia Y. Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J Mater Chem, 2008, 18(4): 437 doi: 10.1039/B714072J
[94]
Sun Y G, Xia Y N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. 3.0.CO;2-K">Adv Mater, 2002, 14(11): 833 doi: 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K
[95]
Wiley B, Sun Y G, Xia Y N. Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir, 2005, 21(18): 8077 doi: 10.1021/la050887i
[96]
Shobin L R, Sastikumar D, Manivannan S. Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing. Sens Actuators A, 2014, 214: 74 doi: 10.1016/j.sna.2014.04.017
[97]
Shobin L R, Manivannan S. One pot rapid synthesis of silver nanowires using NaCl assisted glycerol mediated polyol process. Electron Mater Lett, 2014, 10(6): 1027 doi: 10.1007/s13391-014-4013-x
[98]
Lai X, Feng X, Zhang M, et al. Large-scale synthesis and surface plasmon resonance properties of angled silver/silver homojunction nanowires. J Nanopart Res, 2014, 16(3): 1
[99]
Liang X, Zhao T, Hu Y, et al. CuCl2 and stainless steel synergistically assisted synthesis of high-purity silver nanowires on a large scale. RSC Adv, 2014, 4(88): 47536 doi: 10.1039/C4RA09317H
[100]
Li Z C, Shang T M, Zhou Q F, et al. Sodium chloride assisted synthesis of silver nanowires. Micro Nano Lett, 2011, 6(2): 90 doi: 10.1049/mnl.2010.0183
[101]
Chen C, Wang L, Jiang G, et al. Study on the synthesis of silver nanowires with adjustable diameters through the polyol process. Nanotechnology, 2006, 17(15): 3933 doi: 10.1088/0957-4484/17/15/054
[102]
Chen C, Wang L, Jiang G H, et al. The influence of seeding conditions and shielding gas atmosphere on the synthesis of silver nanowires through the polyol process. Nanotechnology, 2006, 17(2): 466 doi: 10.1088/0957-4484/17/2/021
[103]
Chen C, Wang L, Yu H, et al. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process. Nanotechnology, 2007, 18(11): 115612 doi: 10.1088/0957-4484/18/11/115612
[104]
Ma J, Zhan M. Rapid production of silver nanowires based on high concentration of AgNO3 precursor and use of FeCl3 as reaction promoter. RSC Adv, 2014, 4(40): 21060 doi: 10.1039/c4ra00711e
[105]
Coskun S, Aksoy B, Unalan H E. Polyol synthesis of silver nanowires: an extensive parametric study. Cryst Growth Des, 2011, 11(11): 4963 doi: 10.1021/cg200874g
[106]
Li Y, Wang Y, Chen L, et al. Controlled synthesis on ag nanowires for conductive transparent electrodes. Mater Manuf Process, 2015, 30(1): 30 doi: 10.1080/10426914.2014.965318
[107]
Lin J, Hsueh Y, Huang J. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method. J Solid State Chem, 2014, 214(214): 2
[108]
Xue J, Song J, Dong Y, et al. Nanowire-based transparent conductors for flexible electronics and optoelectronics. Sci Bull, 2017, 62(2): 143 doi: 10.1016/j.scib.2016.11.009
[109]
Lee J H, Lee P, Lee D, et al. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst Growth Des, 2012, 12(11): 5598 doi: 10.1021/cg301119d
[110]
Moon H, Won P, Lee J, et al. Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel. Nanotechnology, 2016, 27(27): 295201
[111]
Hong S, Lee H, Lee J, et al. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater, 2015, 27(32): 4744 doi: 10.1002/adma.v27.32
[112]
Yeo J, Kim G, Hong S. Single nanowire resistive nano-heater for highly localized thermo-chemical reactions: localized hierarchical heterojunction nanowire growth. Small, 2014, 10(24): 5015
[113]
Lee H, Hong S, Lee J. Highly stretchable and transparent supercapacitor by Ag-Au core-shell nanowire network with high electrochemical stability. ACS Appl Mater Inter, 2016, 8(24): 15449 doi: 10.1021/acsami.6b04364
[114]
Hong S, Yeo J, Lee J, et al. Selective laser direct patterning of silver nanowire percolation network transparent conductor for capacitive touch panel. J Nanosci Nanotechnol, 2015, 15(3): 2317 doi: 10.1166/jnn.2015.9493
[115]
Oh M, Jin W, Jeong H J, et al. Silver nanowire transparent conductive electrodes for high-efficiency III-nitride light-emitting diodes. Sci Rep, 2015, 5: 13483 doi: 10.1038/srep13483
[116]
Kim K K, Hong S, Cho H M, et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett, 2015, 15(8): 5240 doi: 10.1021/acs.nanolett.5b01505
[117]
Binh N V, Daeho L. Copper nanowires and their applications for flexible, transparent conducting films: a review. Nanomaterials, 2016, 6(3): 47 doi: 10.3390/nano6030047
[118]
Zhang D, Wang R, Wen M. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J Am Chem Soc, 2012, 134(35): 14283 doi: 10.1021/ja3050184
[119]
Kumar D V R, K W, J M. Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications. Nanoscale, 2015, 7(41): 17195 doi: 10.1039/C5NR05138J
[120]
Ah C S, Do Hong S, Jang D J. Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances. J Phys Chem B, 2001, 105(33): 7871 doi: 10.1021/jp0113578
[121]
Stewart I E, Ye S, Chen Z, et al. Synthesis of Cu-Ag, Cu-Au, and Cu-Pt core-shell nanowires and their use in transparent conducting films. Chem Mater, 2015, 27(22): 7788 doi: 10.1021/acs.chemmater.5b03709
[122]
Xue J, Song J, Zou Y, et al. Nickel concentration-dependent opto-electrical performances and stability of Cu@CuNi nanowire transparent conductors. RSC Adv, 2016, 6(94): 91394 doi: 10.1039/C6RA19577F
[123]
Kholmanov I N, Domingues S H, Chou H. Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano, 2013, 7(2): 1811 doi: 10.1021/nn3060175
[124]
Won Y, Kim A, Lee D. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics. NPG Asia Mater, 2014, 6(6): 105 doi: 10.1038/am.2014.36
[125]
Niu Z, Cui F, Yu Y, et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors. J Am Chem Soc, 2017, 139(21): 7348 doi: 10.1021/jacs.7b02884
[126]
Han S, Hong S, Yeo J, et al. Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction. Adv Mater, 2015, 27(41): 6396 doi: 10.1002/adma.201570279
[127]
Song J, Li J, Xu J, et al. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Lett, 2014, 14(11): 6298 doi: 10.1021/nl502647k
[128]
Han S, Hong S, Ham J, et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater, 2014, 26(33): 5808 doi: 10.1002/adma.v26.33
[129]
Zhang Y, Su L, Manuzzi D. Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens Bioelectron, 2012, 31(1): 426 doi: 10.1016/j.bios.2011.11.006
[130]
Stewart I E, Rathmell A R, Yan L, et al. Solution-processed copper-" nickel nanowire anodes for organic solar cells. Nanoscale, 2014, 6(11): 5980 doi: 10.1039/c4nr01024h
[131]
Feng H, Yang Y, You Y. Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem Commun, 2009, 15(15): 1984
[132]
Lyons P E, De S, Elias J, et al. High-performance transparent conductors from networks of gold nanowires. J Phys Chem Lett, 2011, 2(24): 3058 doi: 10.1021/jz201401e
[133]
Dawson K, Strutwolf J, Rodgers K P. Single nanoskived nanowires for electrochemical applications. Analytical Chemistry, 2011, 83(14): 5535 doi: 10.1021/ac2004086
[134]
Gonzalez-Garcia L, Maurer J H M, Reiser B, et al. Ultrathin gold nanowires for transparent electronics: breaking barriers. Procedia Eng, 2016, 141: 152 doi: 10.1016/j.proeng.2015.08.1120
[135]
Bao C, Zhu W, Yang J, et al. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Appl Mater Inter, 2016, 8(36): 23868 doi: 10.1021/acsami.6b08318
[136]
Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun, 2014, 5(2): 3132
[137]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
[138]
Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312 doi: 10.1126/science.1171245
[139]
Wang Y, Xu X, Lu J, et al. Toward high throughput interconvertible graphane-to-graphene growth and patterning. ACS Nano, 2010, 4(10): 6146 doi: 10.1021/nn1017389
[140]
Xu X, Zhang Z, Qiu L, et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat Nanotechnol, 2016, 11(11): 930 doi: 10.1038/nnano.2016.132
[141]
Zhu Y, Ji H, Cheng H M, et al. Mass production and industrial applications of graphene materials. National Science Review, 2017
[142]
Yang W, Wang C. Graphene and the related conductive inks for flexible electronics. J Mater Chem C, 2016, 4(30): 7193 doi: 10.1039/C6TC01625A
[143]
Secor E B, Ahn B Y, Gao T Z, et al. Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv Mater, 2015, 27(42): 6683 doi: 10.1002/adma.201502866
[144]
Du J, Pei S, Ma L, et al. Carbon nanotube- and graphene- based transparent conductive films for optoelectronic devices. Adv Mater, 2014, 26(13): 1958 doi: 10.1002/adma.201304135
[145]
Torrisi F, Hasan T, Wu W, et al. Inkjet-printed graphene electronics. ACS Nano, 2012, 6(4): 2992 doi: 10.1021/nn2044609
[146]
Hyun W J, Secor E B, Hersam M C, et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater, 2015, 27(1): 109 doi: 10.1002/adma.v27.1
[147]
Finn D J, Lotya M, Cunningham G, et al. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J Mater Chem C, 2014, 2(5): 925 doi: 10.1039/C3TC31993H
[148]
Hyun W J, Secor E B, Rojas G A, et al. All-printed, foldable organic thin-film transistors on glassine paper. Adv Mater, 2015, 27(44): 7058 doi: 10.1002/adma.201503478
[149]
Casaluci S, Gemmi M, Pellegrini V, et al. Graphene-based large area dye-sensitized solar cell modules. Nanoscale, 2016, 8(9): 5368 doi: 10.1039/C5NR07971C
[150]
He D, Shen L, Zhang X, et al. An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. AIChE J, 2014, 60(8): 2757 doi: 10.1002/aic.14499
[151]
Kong D, Le L T, Li Y, et al. Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir, 2012, 28(37): 13467 doi: 10.1021/la301775d
[152]
Wei D, Li H, Han D, et al. Properties of graphene inks stabilized by different functional groups. Nanotechnology, 2011, 22(24): 1
[153]
Georgakilas V, Demeslis A, Ntararas E, et al. Hydrophilic nanotube supported graphene-water dispersible carbon superstructure with excellent conductivity. Adv Funct Mater, 2015, 25(10): 1481 doi: 10.1002/adfm.201403801
[154]
Yadav S, Kaur I. Low temperature processed graphene thin film transparent electrodes for supercapacitor applications. RSC Adv, 2016, 6(82): 78702 doi: 10.1039/C6RA17668B
[155]
Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics, 2012, 6(2): 105 doi: 10.1038/nphoton.2011.318
[156]
Yu W J, Lee S Y, Chae S H, et al. Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett, 2011, 11(3): 1344 doi: 10.1021/nl104488z
[157]
Lee S K, Kim B J, Jang H, et al. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett, 2011, 11(11): 4642 doi: 10.1021/nl202134z
[158]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574 doi: 10.1038/nnano.2010.132
[159]
IIJIMA S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56 doi: 10.1038/354056a0
[160]
Hu L, Hecht D S, Gruener G. Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev, 2010, 110(10): 5790 doi: 10.1021/cr9002962
[161]
Jia X, Wei F. Advances in production and applications of carbon nanotubes. Topics in Current Chemistry, 2017, 375(1): 18 doi: 10.1007/s41061-017-0102-2
[162]
Park S, Vosguerichian M, Bao Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, 5(5): 1727 doi: 10.1039/c3nr33560g
[163]
Li Y, Kim W, Zhang Y, et al. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J Phys Chem B, 2001, 105(46): 11424 doi: 10.1021/jp012085b
[164]
Qian W, Liu T, Wei F, et al. Carbon nanotubes with large cores produced by adding sodium carbonate to the catalyst. Carbon, 2003, 41(13): 2683 doi: 10.1016/S0008-6223(03)00382-8
[165]
Lv R, Kang F, Wang W. Effect of using chlorine-containing precursors in the synthesis of FeNi-filled carbon nanotubes. Carbon, 2007, 45(7): 1433 doi: 10.1016/j.carbon.2007.03.032
[166]
Arnold M S, Green A A, Hulvat J F, et al. Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol, 2006, 1(1): 60 doi: 10.1038/nnano.2006.52
[167]
Liu H, Nishide D, Tanaka T, et al. Large-scale single-chirality separation of single-wall nanotubes by simple gel chromatography. Nat Commun, 2011, 2(1): 309
[168]
Bahr J L, Mickelson E T, Bronikowski M J, et al. Dissolution of small diameter single-wall carbon nanotubes in organic solvents. Chem Commun, 2001(2): 193 doi: 10.1039/b008042j
[169]
Cheng Q, Debnath S, O'Neill L, et al. Systematic study of the dispersion of SWNTs in organic solvents. J Phys Chem C, 2010, 114(11): 4857 doi: 10.1021/jp911202d
[170]
Wang J, Sun J, Gao L, et al. Removal of the residual surfactants in transparent and conductive single-walled carbon nanotube films. J Phys Chem C, 2009, 113(41): 17685 doi: 10.1021/jp905353c
[171]
Park C, Ounaies Z, Watson K A, et al. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett, 2002, 364(3/4): 303
[172]
Bandyopadhyaya R, Nativ-Roth E, Regev O, et al. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett, 2002, 2(1): 25 doi: 10.1021/nl010065f
[173]
Star A, Joshi V, Han T R, et al. Electronic detection of the enzymatic degradation of starch. Org Lett, 2004, 6(13): 2089 doi: 10.1021/ol0495826
[174]
Hecht D S, Ramirez R J A, Briman M, et al. Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Lett, 2006, 6(9): 2031 doi: 10.1021/nl061231s
[175]
Zheng M, Jagota A, Semke E D, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater, 2003, 2(5): 338 doi: 10.1038/nmat877
[176]
Chen X, Qiu M, Ding H, et al. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale, 2016, 8(10): 5696 doi: 10.1039/C5NR08697C
[177]
Li H, Zheng N, Liang N, et al. Adsorption mechanism of different organic chemicals on fluorinated carbon nanotubes. Chemosphere, 2016, 154: 258 doi: 10.1016/j.chemosphere.2016.03.099
[178]
Qiu X, Ke F, Timsina R, et al. Attractive interactions between DNA-carbon nanotube hybrids in monovalent salts. J Phys Chem C, 2016, 120(25): 13831 doi: 10.1021/acs.jpcc.6b04623
[179]
Meng Y, Xu X, Li H, et al. Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon, 2014, 70: 103 doi: 10.1016/j.carbon.2013.12.078
[180]
Wan Q, Tian J, Liu M, et al. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization. Appl Surf Sci, 2015, 346: 335 doi: 10.1016/j.apsusc.2015.04.012
[181]
Cui H, Du L, Guo P, et al. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J Power Sources, 2015, 283: 46 doi: 10.1016/j.jpowsour.2015.02.088
[182]
Wan Q, Liu M, Tian J, et al. Surface modification of carbon nanotubes by combination of mussel inspired chemistry and SET-LRP. Polym Chem-UK, 2015, 6(10): 1786 doi: 10.1039/C4PY01565G
[183]
Huang W J, Lin Y, Taylor S, et al. Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Lett, 2002, 2(3): 231 doi: 10.1021/nl010083x
[184]
Hecht D, Hu L, Gruner G. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl Phys Lett, 2006, 89(13): 425
[185]
Kaempgen M, Lebert M, Haluska M, et al. Sonochemical optimization of the conductivity of single wall carbon nanotube networks. Adv Mater, 2008, 20(3): 616 doi: 10.1002/(ISSN)1521-4095
[186]
Hu L, Hecht D S, Gruner G. Infrared transparent carbon nanotube thin films. Appl Phys Lett, 2009, 94(8): 1273
[187]
Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453): 622 doi: 10.1126/science.287.5453.622
[188]
Hamon M A, Sorci G A, Sugar M A, et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282(5386): 95 doi: 10.1126/science.282.5386.95
[189]
Geng H, Kim K K, So K P, et al. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J Am Chem Soc, 2007, 129(25): 7758 doi: 10.1021/ja0722224
[190]
Skakalova V, Kaiser A B, Dettlaff-Weglikowska U, et al. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes. J Phys Chem B, 2005, 109(15): 7174 doi: 10.1021/jp044741o
[191]
Yang S B, Kong B, Geng J, et al. Enhanced electrical conductivities of transparent double-walled carbon nanotube network films by post-treatment. J Phys Chem C, 2009, 113(31): 13658 doi: 10.1021/jp903605p
[192]
Han J T, Kim J S, Jo S B, et al. Graphene oxide as a multi-functional p-dopant of transparent single-walled carbon nanotube films for optoelectronic devices. Nanoscale, 2012, 4(24): 7735 doi: 10.1039/c2nr31923c
[193]
Fuhrer M S, Nygard J, Shih L, et al. Crossed nanotube junctions. Science, 2000, 288(5465): 494 doi: 10.1126/science.288.5465.494
[194]
Barrau S, Demont P, Peigney A, et al. DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules, 2003, 36(14): 5187 doi: 10.1021/ma021263b
[195]
Mallakpour S, Soltanian S. Surface functionalization of carbon nanotubes: fabrication and applications. RSC Adv, 2016, 6(111): 109916 doi: 10.1039/C6RA24522F
[196]
Zhou Y, Azumi R. Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci Technol Adv Mater, 2016, 17(1): 493 doi: 10.1080/14686996.2016.1214526
[197]
Li S D, Yu Z, Rutherglen C, et al. Electrical properties of 0.4 cm long single-walled carbon nanotubes. Nano Lett, 2004, 4(10): 2003 doi: 10.1021/nl048687z
[198]
Kane C L, Mele E J. Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett, 1997, 78(10): 1932 doi: 10.1103/PhysRevLett.78.1932
[199]
Wang Y, Yang H, Geng H, et al. Fabrication and evaluation of adhesion enhanced flexible carbon nanotube transparent conducting films. J Mater Chem C, 2015, 3(15): 3796 doi: 10.1039/C5TC00138B
[200]
Pei T, Xu H, Zhang Z, et al. Electronic transport in single-walled carbon nanotube/graphene junction. Appl Phys Lett, 2011, 99(11): 787
[201]
Sarker B K, Kang N, Khondaker S I. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes. Nanoscale, 2014, 6(9): 4896 doi: 10.1039/c3nr06470k
[202]
Shin D H, Shim H C, Song J, et al. Conductivity of films made from single-walled carbon nanotubes in terms of bundle diameter. Scripta Mater, 2009, 60(8): 607 doi: 10.1016/j.scriptamat.2008.12.019
[203]
Geng H, Kim K K, Lee K, et al. Dependence of material quality on performance of flexible transparent conducting films with single-walled carbon nanotubes. Nano, 2007, 2(3): 157 doi: 10.1142/S1793292007000532
[204]
Kim D, Zhu L, Jeong D, et al. Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon, 2013, 63: 530 doi: 10.1016/j.carbon.2013.07.030
[205]
Chae S H, Yu W J, Bae J J, et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat Mater, 2013, 12(5): 403 doi: 10.1038/nmat3572
[206]
Wu X, Liu J, Wu D, et al. Highly conductive and uniform graphene oxide modified PEDOT:PSS electrodes for ITO-Free organic light emitting diodes. J Mater Chem C, 2014, 2(20): 4044 doi: 10.1039/C4TC00305E
[207]
Rowell M W, Topinka M A, McGehee M D, et al. Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett, 2006, 88(23): 233506 doi: 10.1063/1.2209887
[208]
Hecht D S, Thomas D, Hu L, et al. Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. J Soc Inf Display, 2009, 17(11): 941 doi: 10.1889/JSID17.11.941
[209]
Cao Q, Hur S H, Zhu Z T, et al. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater, 2006, 18(3): 304 doi: 10.1002/(ISSN)1521-4095
[210]
Hu L, Li J, Liu J, et al. Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions. Nanotechnology, 2010, 21(15): 155202 doi: 10.1088/0957-4484/21/15/155202
[211]
Schindler A, Schau P, Fruehauf N. Active-matrix and flexible liquid-crystal displays with carbon-nanotube pixel electrodes. J Soc Inf Display, 2009, 17(10): 853 doi: 10.1889/JSID17.10.853
[212]
Degraff J, Liang R, Le M Q, et al. Printable low-cost and flexible carbon nanotube buckypaper motion sensors. Mater Design, 2017, 133: 47 doi: 10.1016/j.matdes.2017.07.048
[213]
Guan W J, Li Y, Chen Y Q, et al. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosens Bioelectron, 2005, 21(3): 508 doi: 10.1016/j.bios.2004.10.030
[214]
Pandit B, Dhakate S R, Singh B P, et al. Free-standing flexible MWCNTs bucky paper: Extremely stable and energy efficient supercapacitive electrode. Electrochim Acta, 2017, 249: 395 doi: 10.1016/j.electacta.2017.08.013
[215]
Nasibulin A G, Pikhitsa P V, Jiang H, et al. A novel hybrid carbon material. Nat Nanotechnol, 2007, 2(3): 156 doi: 10.1038/nnano.2007.37
[216]
Moisala A, Nasibulin A G, Shandakov S D. On-line detection of single-walled carbon nanotube formation during aerosol synthesis method. Carbon, 2005, 43: 2047
[217]
Nasibulin A G, Moisala A, Brown D P, et al. A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett, 2005, 402: 227 doi: 10.1016/j.cplett.2004.12.040
[218]
Reddy B P N, Gupta B, Gacche R N. An arsenal for 21st century noxious diseases: carbon nanomaterials. Int J Nanotechnol Appl, 2009, 3(2): 61
[219]
Graff R A, Swanson J P, Barone P W, et al. Achieving individual-nanotube dispersion at high loading in single-walled carbon nanotube composites. Adv Mater, 2005, 17(15): 1820 doi: 10.1002/(ISSN)1521-4095
[220]
Wu X, Zeng X C. First-principles study of a carbon nanobud. ACS Nano, 2008, 2(7): 1459 doi: 10.1021/nn800256d
[221]
He H Y, Pan B C. Electronic structures and Raman features of a carbon nanobud. J Phys Chem C, 2013, 113(49): 20822
[222]
Zhu X, Su H. Magnetism in hybrid carbon nanostructures: Nanobuds. Phys Rev B, 2009, 22(16): 70
[223]
Ahangari M G, Ganji M D, Montazar F. Mechanical and electronic properties of carbon nanobuds: first-principles study. Solid State Commun, 2015, 203: 58 doi: 10.1016/j.ssc.2014.11.019
[224]
Zhao P, Wang P J, Zhang Z, et al. First-principles study of the electronic transport properties of the carbon nanobuds. Phys B, 2010, 405(8): 2097 doi: 10.1016/j.physb.2010.01.110
[225]
Anisimov A S, Brown D P, Mikladal B F, et al. Printed touch sensors using carbon NanoBud® material. Sid Symposium Digest of Technical Papers, 2015, 45(1): 200
[226]
Kaskela A, Nasibulin A G, Timmermans M Y. Aerosol synthesized SWCNT networks with tuneable conductivity and transparency by dry transfer technique. Nano Lett, 2010, 10(11): 4349 doi: 10.1021/nl101680s
[227]
Gonzalez D, Nasibulin A G, Baklanov A M. A new thermophoretic precipitator for collection of nanometer-sized aerosol particles. Aerosol Sci Tech, 2005, 39(11): 1064 doi: 10.1080/02786820500385569
[228]
Lee M, Kim J, Park J, et al. Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Nanoscale Res Lett, 2015, 10(1): 27 doi: 10.1186/s11671-015-0748-z
[229]
Kholmanov I N, Magnuson C W, Aliev A E, et al. Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett, 2012, 12(11): 5679 doi: 10.1021/nl302870x
[230]
Ye T, Jun L, Kun L, et al. Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics. Org Electron, 2017, 41: 179 doi: 10.1016/j.orgel.2016.10.046
[231]
Hu D, Zhu W, Peng Y, et al. Flexible carbon nanotube-enriched silver electrode films with high electrical conductivity and reliability prepared by facile screen printing. J Mater Sci Technol, 2017, 33: 1113 doi: 10.1016/j.jmst.2017.06.008
[232]
Morgenstern F S F, Kabra D, Massip S, et al. Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells. Appl Phys Lett, 2011, 99(18): 242
[233]
Kang H, Jung S, Jeong S, et al. Polymer-metal hybrid transparent electrodes for flexible electronics. Nat Commun, 2015, 6: 6503 doi: 10.1038/ncomms7503
[234]
Won Y, Kim A, Lee D, et al. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaic. NPG Asia Mater, 2014, 6(6): e105 doi: 10.1038/am.2014.36
[235]
Moon I K, Kim J I, Lee H, et al. 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci Rep, 2013, 3(1): 1112 doi: 10.1038/srep01112
[236]
Lee H J, Hwang J H, Choi K B, et al. Effective indium-doped zinc oxide buffer layer on silver nanowires for electrically highly stable, flexible, transparent, and conductive composite electrodes. ACS Appl Mater Inter, 2013, 5(21): 10397 doi: 10.1021/am4025802
[237]
Liu Z, Parvez K, Li R, et al. Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors. Adv Mater, 2015, 27(4): 669 doi: 10.1002/adma.201403826
[238]
Lee J, Lee P, Lee H B, et al. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv Funct Mater, 2013, 23(34): 4171 doi: 10.1002/adfm.v23.34
[239]
Gaynor W, Burkhard G F, McGehee M D, et al. Smooth nanowire/polymer composite transparent electrodes. Adv Mater, 2011, 23(26): 2905 doi: 10.1002/adma.v23.26
[240]
Khan Y, Ostfeld A E, Lochner C M, et al. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater, 2016, 28(22): 4373 doi: 10.1002/adma.v28.22
[241]
Kulkarni G U, Kiruthika S, Gupta R, et al. Towards low cost materials and methods for transparent electrodes. Curr Opin Chem Eng, 2015, 8: 60 doi: 10.1016/j.coche.2015.03.001
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 6479 Times PDF downloads: 138 Times Cited by: 0 Times

    History

    Received: 02 August 2017 Revised: 18 November 2017 Online: Accepted Manuscript: 27 December 2017Published: 01 January 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dingrun Wang, Yongfeng Mei, Gaoshan Huang. Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application[J]. Journal of Semiconductors, 2018, 39(1): 011002. doi: 10.1088/1674-4926/39/1/011002 D R Wang, Y F Mei, G S Huang, Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application[J]. J. Semicond., 2018, 39(1): 011002. doi: 10.1088/1674-4926/39/1/011002.Export: BibTex EndNote
      Citation:
      Dingrun Wang, Yongfeng Mei, Gaoshan Huang. Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application[J]. Journal of Semiconductors, 2018, 39(1): 011002. doi: 10.1088/1674-4926/39/1/011002

      D R Wang, Y F Mei, G S Huang, Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application[J]. J. Semicond., 2018, 39(1): 011002. doi: 10.1088/1674-4926/39/1/011002.
      Export: BibTex EndNote

      Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application

      doi: 10.1088/1674-4926/39/1/011002
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 51475093, U1632115), the Science and Technology Commission of Shanghai Municipality (No. 14JC1400200), the National Key Technologies R&D Program of China (No. 2015ZX02102-003), and the Changjiang Young Scholars Programme of China.

      More Information
      • Corresponding author: Email: gshuang@fudan.edu.cn
      • Received Date: 2017-08-02
      • Revised Date: 2017-11-18
      • Published Date: 2018-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return