Special Issue on Flexible and Wearable Electronics: from Materials to Applications

Oxide-based thin film transistors for flexible electronics

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou and Qing Wan

+ Author Affiliations

 Corresponding author: Qing Wan, Email: wanqing@nju.edu.cn

PDF

Turn off MathJax

Abstract: The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends.

Key words: thin film transistorsflexible electronicsoxide semiconductor



[1]
Cao Q, Kim H S, Pimparkar N, et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature, 2008, 454(7203): 495 doi: 10.1038/nature07110
[2]
Li Y S, He J C, Hsu S M, et al. Flexible complementary oxide–semiconductor-based circuits employing n-channel ZnO and p-channel SnO thin-film transistors. IEEE Electron Device Lett, 2016, 37(1): 46 doi: 10.1109/LED.2015.2501843
[3]
Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9(6): 511 doi: 10.1038/nmat2745
[4]
Bock K. Polymer electronics systems-polytronics. Proc IEEE, 2005, 93(8): 1400 doi: 10.1109/JPROC.2005.851513
[5]
Heremans P. Electronics on plastic foil, for applications in flexible OLED displays, sensor arrays and circuits. IEEE 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2014: 1
[6]
Allen K J. Reel to real: prospects for flexible displays. Proc IEEE, 2005, 93(8): 1394 doi: 10.1109/JPROC.2005.851511
[7]
Jeong J K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond Sci Technol, 2011, 26(3): 034008 doi: 10.1088/0268-1242/26/3/034008
[8]
Xu H, Luo D, Li M, et al. A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J Mater Chem C, 2014, 2(7): 1255 doi: 10.1039/C3TC31710B
[9]
Gelinck G H, Huitema H E A, Van Veenendaal E, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater, 2004, 3(2): 106 doi: 10.1038/nmat1061
[10]
Nathan A, Chalamala B R. Special issue on flexible electronics technology, Part 1: Systems and applications. Proc IEEE, 2005, 93(7): 1235 doi: 10.1109/JPROC.2005.851525
[11]
Ito M, Kon M, Ishizaki M, et al. A flexible active-matrix TFT array with amorphous oxide semiconductors for electronic paper. Proc IDW/AD, 2005, 5: 845
[12]
Rogers J A, Bao Z, Baldwin K, et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci, 2001, 98(9): 4835 doi: 10.1073/pnas.091588098
[13]
Nathan A, Chalamala B R. Special issue on flexible electronics technology, Part II: Materials and devices. Proc IEEE, 2005, 93(8): 1391 doi: 10.1109/JPROC.2005.851509
[14]
Khan Y, Garg M, Gui Q, et al. Flexible Hybrid electronics: direct interfacing of soft and hard electronics for wearable health monitoring. Adv Funct Mater, 2016, 26(47): 8764 doi: 10.1002/adfm.v26.47
[15]
Pu X, Li L, Song H, et al. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv Mater, 2015, 27(15): 2472 doi: 10.1002/adma.201500311
[16]
Nathan A, Ahnood A, Cole M T, et al. Flexible electronics: the next ubiquitous platform. Proc IEEE, 2012, 100(Special Centennial Issue): 1486 doi: 10.1109/JPROC.2012.2190168
[17]
Münzenrieder N, Petti L, Zysset C, et al. Flexible self-aligned amorphous InGaZnO thin-film transistors with submicrometer channel length and a transit frequency of 135 MHz. IEEE Trans Electron Devices, 2013, 60(9): 2815 doi: 10.1109/TED.2013.2274575
[18]
Tripathi A, Smits E P, Van Der Putten J, et al. Low-voltage gallium–indium–zinc–oxide thin film transistors based logic circuits on thin plastic foil: building blocks for radio frequency identification application. Appl Phys Lett, 2011, 98(16): 162102 doi: 10.1063/1.3579529
[19]
Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973): 1603 doi: 10.1126/science.1182383
[20]
Sekitani T, Kaltenbrunner M, Yokota T, et al. Imperceptible Electronic Skin. SID Symp Dig Tech Pap, 2014, 45(1): 122 doi: 10.1002/j.2168-0159.2014.tb00034.x
[21]
Sun Y, Rogers J A. Inorganic semiconductors for flexible electronics. Adv Mater, 2007, 19(15): 1897 doi: 10.1002/(ISSN)1521-4095
[22]
Petti L, Münzenrieder N, Vogt C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev, 2016, 3(2): 021303 doi: 10.1063/1.4953034
[23]
Lee J K, Lim Y S, Park C , et al. a-Si: H thin-film transistor-driven flexible color E-paper display on flexible substrates. IEEE Electron Device Lett, 2010, 31(8): 833 doi: 10.1109/LED.2010.2051531
[24]
Huang J J, Chen Y P, Huang Y S, et al. A 4.1-inch flexible QVGA AMOLED using a microcrystalline-Si:H TFT on a polyimide substrate. SID Symp Dig Tech Pap, 2009, 40(1): 866 doi: 10.1889/1.3256932
[25]
Fukuda K, Takeda Y, Yoshimura Y, et al. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat Commun, 2014, 5: 4147
[26]
Yi H T, Payne M M, Anthony J E, et al. Ultra-flexible solution-processed organic field-effect transistors. Nat Commun, 2012, 3: 1259 doi: 10.1038/ncomms2263
[27]
Guo X, Xu Y, Ogier S, et al. Current status and opportunities of organic thin-film transistor technologies. IEEE Trans Electron Devices, 2017, 64(5): 1906 doi: 10.1109/TED.2017.2677086
[28]
Dimitrakopoulos C D, Mascaro D J. Organic thin-film transistors: a review of recent advances. IBM J Res Dev, 2001, 45(1): 11 doi: 10.1147/rd.451.0011
[29]
Lin P, Yan F. Organic thin-film transistors for chemical and biological sensing. Adv Mater, 2012, 24(1): 34 doi: 10.1002/adma.201103334
[30]
Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488 doi: 10.1038/nature03090
[31]
Nomura K, Takagi A, Kamiya T, et al. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn J Appl Phys, 2006, 45(5S): 4303
[32]
Kamiya T, Hiramatsu H, Nomura K, et al. Device applications of transparent oxide semiconductors: excitonic blue LED and transparent flexible TFT. J Electroceram, 2006, 17(2): 267
[33]
Raja J, Jang K, Nguyen C P T, et al. Improvement of mobility in oxide-based thin film transistors: a brief review. Trans Electr Electron Mater, 2015, 16(5): 234 doi: 10.4313/TEEM.2015.16.5.234
[34]
Kwon J Y, Lee D J, Kim K B. Transparent amorphous oxide semiconductor thin film transistor. Electron Mater Lett, 2011, 7(1): 1 doi: 10.1007/s13391-011-0301-x
[35]
Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012, 24(22): 2945 doi: 10.1002/adma.v24.22
[36]
Lee S, Nathan A. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science, 2016, 354(6310): 302 doi: 10.1126/science.aah5035
[37]
Park J S, Maeng W J, Kim H S, et al. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films, 2012, 520(6): 1679 doi: 10.1016/j.tsf.2011.07.018
[38]
Ahn B D, Jeon H J, Sheng J, et al. A review on the recent developments of solution processes for oxide thin film transistors. Semicond Sci Technol, 2015, 30(6): 064001 doi: 10.1088/0268-1242/30/6/064001
[39]
Kamiya T, Nomura K, Hosono H. Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. J Disp Technol, 2009, 5(7): 273 doi: 10.1109/JDT.2009.2021582
[40]
Liu N, Zhu L Q, Feng P, et al. Flexible sensory platform based on oxide-based neuromorphic transistors. Sci Rep, 2015, 5: 18082
[41]
Shah S, Smith J, Stowell J, et al. Biosensing platform on a flexible substrate. Sens Actuators B, 2015, 210: 197 doi: 10.1016/j.snb.2014.12.075
[42]
Jung S W, Koo J B, Park C W, et al. Flexible nonvolatile memory transistors using indium gallium zinc oxide-channel and ferroelectric polymer poly (vinylidene fluoride-co-trifluoroethylene) fabricated on elastomer substrate. J Vac Sci Technol B, 2015, 33(5): 051201 doi: 10.1116/1.4927367
[43]
Kim S J, Jeon D B, Park J H, et al. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate. ACS Appl Mater Inter, 2015, 7(8): 4869 doi: 10.1021/am508834y
[44]
Tripathi A K, Myny K, Hou B, et al. Electrical characterization of flexible InGaZnO transistors and 8-b transponder chip down to a bending radius of 2 mm. IEEE Trans Electron Devices, 2015, 62(12): 4063 doi: 10.1109/TED.2015.2494694
[45]
Mativenga M, Choi M H, Choi J W, et al. Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 2011, 32(2): 170 doi: 10.1109/LED.2010.2093504
[46]
Dindar A, Kim J, Fuentes-Hernandez C, et al. Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates. Appl Phys Lett, 2011, 99(17): 172104 doi: 10.1063/1.3656974
[47]
Park J S, Kim T W, Stryakhilev D, et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl Phys Lett, 2009, 95(1): 013503 doi: 10.1063/1.3159832
[48]
Nakata M, Motomura G, Nakajima Y, et al. Development of flexible displays using back-channel-etched In–Sn–Zn–O thin-film transistors and air-stable inverted organic light-emitting diodes. J Soc Inf Display, 2016, 24(1): 3 doi: 10.1002/jsid.408
[49]
Nag M, Bhoolokam A, Smout S, et al. Circuits and AMOLED display with self-aligned a-IGZO TFTs on polyimide foil. J Soc Inf Display, 2014, 22(10): 509 doi: 10.1002/jsid.v22.10
[50]
Hatano K, Chida A, Okano T, et al. 3.4-inch quarter high definition flexible active matrix organic light emitting display with oxide thin film transistor. Jpn J Appl Phys, 2011, 50(3S): 03CC06 doi: 10.7567/JJAP.50.03CC06
[51]
Nakajima Y, Nakata M, Takei T, et al. Development of 8-in. oxide-TFT-driven flexible AMOLED display using high-performance red phosphorescent OLED. J Soc Inf Display, 2014, 22(3): 137 doi: 10.1002/jsid.v22.3
[52]
Xu H, Pang J, Xu M, et al. Fabrication of flexible amorphous indium-gallium-zinc-oxide thin-film transistors by a chemical vapor deposition-free process on polyethylene napthalate. ECS J Solid State Sci Technol, 2014, 3(9): Q3035 doi: 10.1149/2.007409jss
[53]
Komatsu R, Nakazato R, Sasaki T, et al. Repeatedly foldable AMOLED display. J Soc Inf Display, 2015, 23(2): 41 doi: 10.1002/jsid.276
[54]
Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604 doi: 10.1002/adfm.201606604
[55]
Tee B C, Wang C, Allen R, et al. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol, 2012, 7(12): 825 doi: 10.1038/nnano.2012.192
[56]
Micera S, Carrozza M C, Beccai L, et al. Hybrid bionic systems for the replacement of hand function. Proc IEEE, 2006, 94(9): 1752 doi: 10.1109/JPROC.2006.881294
[57]
Coyle S, Wu Y, Lau K T, et al. Smart nanotextiles: a review of materials and applications. MRS Bull, 2007, 32(5): 434 doi: 10.1557/mrs2007.67
[58]
Kinkeldei T, Zysset C, Münzenrieder N, et al. An electronic nose on flexible substrates integrated into a smart textile. Senss Actuators B, 2012, 174: 81 doi: 10.1016/j.snb.2012.08.023
[59]
Vervust T, Buyle G, Bossuyt F, et al. Integration of stretchable and washable electronic modules for smart textile applications. J Text I, 2012, 103(10): 1127 doi: 10.1080/00405000.2012.664866
[60]
Cherenack K, Zysset C, Kinkeldei T, et al. Woven electronic fibers with sensing and display functions for smart textiles. Adv Mater, 2010, 22(45): 5178 doi: 10.1002/adma.201002159
[61]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6(5): 296 doi: 10.1038/nnano.2011.36
[62]
Benito-Lopez F, Coyle S, Byrne R, et al. Pump less wearable microfluidic device for real time pH sweat monitoring. Procedia Chemistry, 2009, 1(1): 1103 doi: 10.1016/j.proche.2009.07.275
[63]
Lemey S, Agneessens S, Van Torre P, et al. Wearable flexible lightweight modular RFID tag with integrated energy harvester. IEEE Trans Microwave Theory Tech, 2016, 64(7): 2304 doi: 10.1109/TMTT.2016.2573274
[64]
Yang L, Martin L, Staiculescu D, et al. A novel flexible magnetic composite material for RFID, wearable RF and bio-monitoring applications. IEEE MTT-S International Microwave Symposium Digest, 2008: 963
[65]
Hester J G, Tentzeris M M. Inkjet-printed flexible mm-wave Van-Atta reflectarrays: a solution for ultralong-range dense multitag and multisensing chipless RFID implementations for IoT smart skins. IEEE Trans Microwave Theory Tech, 2016, 64(12): 4763 doi: 10.1109/TMTT.2016.2623790
[66]
Falco A, Salmerón J F, Loghin F C, et al. Fully printed flexible single-chip RFID tag with light detection capabilities. Sensors, 2017, 17(3): 534 doi: 10.3390/s17030534
[67]
Imenes K, Andersen M H, Nguyen A-T T, et al. Implantable MEMS acceleration sensor for heart monitoring recent development and outlook. IEEE 4th Electronic System-Integration Technology Conference (ESTC), 2012: 1
[68]
Lo R, Li P Y, Saati S, et al. A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices, 2009, 11(5): 959 doi: 10.1007/s10544-009-9313-9
[69]
Hwang G T, Im D, Lee S E, et al. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano, 2013, 7(5): 4545 doi: 10.1021/nn401246y
[70]
Martins R F, Ahnood A, Correia N, et al. Recyclable, flexible, low-power oxide electronics. Adv Funct Mater, 2013, 23(17): 2153 doi: 10.1002/adfm.v23.17
[71]
Yang S, Bak J Y, Yoon S M, et al. Low-temperature processed flexible In–Ga–Zn–O thin-film transistors exhibiting high electrical performance. IEEE Electron Device Lett, 2011, 32(12): 1692 doi: 10.1109/LED.2011.2167122
[72]
Yin Y, Sawin H H. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma. J Vac Sci Technol A, 2008, 26(1): 151 doi: 10.1116/1.2821747
[73]
Kim C J, Kim S, Lee J H, et al. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. Appl Phys Lett, 2009, 95(25): 252103 doi: 10.1063/1.3275801
[74]
Jiang J, Sun J, Zhou B, et al. Vertical oxide homojunction TFTs of 0.8 V gated by H3PO4-treated SiO2 nanogranular dielectric. IEEE Electron Device Lett, 2010, 31(11): 1263
[75]
Weimer P K. The TFT a new thin-film transistor. Proc IRE, 1962, 50(6): 1462 doi: 10.1109/JRPROC.1962.288190
[76]
Jeong S, Lee J Y, Ham M H, et al. Bendable thin-film transistors based on sol–gel derived amorphous Ga-doped In2O3 semiconductors. Superlattices Microstruct, 2013, 59: 21 doi: 10.1016/j.spmi.2013.03.026
[77]
Park J H, Yoo Y B, Lee K H, et al. Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl Mater Inter, 2013, 5(16): 8067 doi: 10.1021/am402153g
[78]
Ju S, Facchetti A, Xuan Y, et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat Nanotechnol, 2007, 2(6): 378 doi: 10.1038/nnano.2007.151
[79]
Lee C, Lin M, Wu W, et al. Flexible ZnO transparent thin-film transistors by a solution-based process at various solution concentrations. Semicond Sci Technol, 2010, 25(10): 105008 doi: 10.1088/0268-1242/25/10/105008
[80]
Zeumault A, Ma S, Holbery J. Fully inkjet-printed metal-oxide thin-film transistors on plastic. Phys Status Solidi A, 2016, 213(8): 2189 doi: 10.1002/pssa.v213.8
[81]
Kim S H, Yoon J, Yun S O, et al. Ultrathin sticker-type ZnO thin film transistors formed by transfer printing via topological confinement of water-soluble sacrificial polymer in dimple structure. Adv Funct Mater, 2013, 23(11): 1375 doi: 10.1002/adfm.201202409
[82]
Kim M-G, Kanatzidis M G, Facchetti A, et al. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater, 2011, 10(5): 382 doi: 10.1038/nmat3011
[83]
Dasgupta S, Kruk R, Mechau N, et al. Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature. ACS Nano, 2011, 5(12): 9628 doi: 10.1021/nn202992v
[84]
Lee S, Jeon S, Chaji R, et al. Transparent semiconducting oxide technology for touch free interactive flexible displays. Proc IEEE, 2015, 103(4): 644 doi: 10.1109/JPROC.2015.2405767
[85]
Ginley D S, Bright C. Transparent conducting oxides. MRS Bull, 2000, 25(8): 15 doi: 10.1557/mrs2000.256
[86]
Nomura K, Ohta H, Ueda K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300(5623): 1269 doi: 10.1126/science.1083212
[87]
Libsch F, Kanicki J. Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors. Appl Phys Lett, 1993, 62(11): 1286 doi: 10.1063/1.108709
[88]
Hosono H, Kikuchi N, Ueda N, et al. Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. J Non-Cryst Solids, 1996, 198: 165
[89]
Orita M, Ohta H, Hirano M, et al. Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤4): a Zn4s conductor. Philos Mag B, 2001, 81(5): 501 doi: 10.1080/13642810110045923
[90]
Park J S, Kim K, Park Y G, et al. Novel ZrInZnO thin-film transistor with excellent stability. Adv Mater, 2009, 21(3): 329 doi: 10.1002/adma.v21:3
[91]
Xingqiang L, Jinshui M, Lei L, et al. High-mobility transparent amorphous metal oxide/nanostructure composite thin film transistors with enhanced-current paths for potential high-speed flexible electronics. J Mater Chem C, 2014, 2(7): 1201 doi: 10.1039/C3TC31705F
[92]
Yu X, Zeng L, Zhou N, et al. Ultra-flexible," invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends. Adv Mater, 2015, 27(14): 2390 doi: 10.1002/adma.v27.14
[93]
Özgür Ü, Hofstetter D, Morkoc H. ZnO devices and applications: a review of current status and future prospects. Proc IEEE, 2010, 98(7): 1255 doi: 10.1109/JPROC.2010.2044550
[94]
Wang Z, Nayak P K, Caraveo-Frescas J A, et al. Recent developments in p-type oxide semiconductor materials and devices. Adv Mater, 2016, 28(20): 3831 doi: 10.1002/adma.v28.20
[95]
Liang L Y, Cao H T, Chen X B, et al. Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities. Appl Phys Lett, 2012, 100(26): 263502 doi: 10.1063/1.4731271
[96]
Yao Z, Liu S, Zhang L, et al. Room temperature fabrication of p-channel Cu2O thin-film transistors on flexible polyethylene terephthalate substrates. Appl Phys Lett, 2012, 101(4): 042114 doi: 10.1063/1.4739524
[97]
Yabuta H, Kaji N, Hayashi R, et al. Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits. Appl Phys Lett, 2010, 97(7): 072111 doi: 10.1063/1.3478213
[98]
Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, et al. Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano, 2013, 7(6): 5160 doi: 10.1021/nn400852r
[99]
Martins R, Nathan A, Barros R, et al. Complementary metal oxide semiconductor technology with and on paper. Adv Mater, 2011, 23(39): 4491 doi: 10.1002/adma.201102232
[100]
Caraveo-Frescas J, Khan M, Alshareef H N. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility. Sci Rep, 2014, 4: 5243
[101]
Shiosaki T, Ohnishi S, Hirokawa Y, et al. As-grown CVD ZnO optical waveguides on sapphire. Appl Phys Lett, 1978, 33(5): 406 doi: 10.1063/1.90393
[102]
Tynell T, Karppinen M. Atomic layer deposition of ZnO: a review. Semicond Sci Technol, 2014, 29(4): 043001 doi: 10.1088/0268-1242/29/4/043001
[103]
Diniz A S A C. The effects of various annealing regimes on the microstructure and physical properties of ITO (In2O3:Sn) thin films deposited by electron beam evaporation for solar energy applications. Renew Energ, 2011, 36(4): 1153 doi: 10.1016/j.renene.2010.09.005
[104]
Kim S J, Yoon S, Kim H J. Review of solution-processed oxide thin-film transistors. Jpn J Appl Phys, 2014, 53(2S): 02B
[105]
Thomas S R, Pattanasattayavong P, Anthopoulos T D. Solution-processable metal oxide semiconductors for thin-film transistor applications. Chem Soc Rev, 2013, 42(16): 6910 doi: 10.1039/c3cs35402d
[106]
Seo J S, Jeon J H, Hwang Y H, et al. Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci Rep, 2013, 3: 2085 doi: 10.1038/srep02085
[107]
Kim S Y, Kim K, Hwang Y, et al. High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance. Nanoscale, 2016, 8(39): 17113 doi: 10.1039/C6NR05577J
[108]
Choi C H, Lin L Y, Cheng C C, et al. Printed oxide thin film transistors: a mini review. ECS J Solid State Sci Technol, 2015, 4(4): P3044 doi: 10.1149/2.0071504jss
[109]
Wee D, Yoo S, Kang Y H, et al. Poly (imide-benzoxazole) gate insulators with high thermal resistance for solution-processed flexible indium-zinc oxide thin-film transistors. J Mater Chem C, 2014, 2(31): 6395 doi: 10.1039/C4TC00709C
[110]
Leppäniemi J, Huttunen O H, Majumdar H, et al. Flexography-printed In2O3 semiconductor layers for high-mobility thin-film transistors on flexible plastic substrate. Adv Mater, 2015, 27(44): 7168 doi: 10.1002/adma.201502569
[111]
Nakata M, Takechi K, Eguchi T, et al. Effects of thermal annealing on ZnO thin-film transistor characteristics and the application of excimer laser annealing in plastic-based ZnO thin-film transistors. Jpn J Appl Phys, 2009, 48(8R): 081608
[112]
Zhang J, Wu G D. Ultralow-voltage electric-double-layer oxide-based thin-film transistors with faster switching response on flexible substrates. Chin Phys Lett, 2014, 31(7): 078502 doi: 10.1088/0256-307X/31/7/078502
[113]
Zhang J, Liu Y, Guo L, et al. Flexible oxide-based thin-film transistors on plastic substrates for logic applications. J Mater Sci Technol, 2015, 31(2): 171 doi: 10.1016/j.jmst.2014.07.009
[114]
Sheets W C, Kang S J, Hsieh H H, et al. Organic gate insulator materials for amorphous metal oxide TFTs. IEEE 65th Electronic Components and Technology Conference (ECTC), 2015: 1878
[115]
Gao P, Lan L, Xiao P, et al. Solution-processed flexible zinc-tin oxide thin-film transistors on ultra-thin polyimide substrates. J Soc Inf Display, 2016, 24(4): 211 doi: 10.1002/jsid.438
[116]
Kim Y C, Lee S J, Oh I-K, et al. Bending stability of flexible amorphous IGZO thin film transistors with transparent IZO/Ag/IZO oxide–metal–oxide electrodes. J Alloy Compd, 2016, 688: 1108 doi: 10.1016/j.jallcom.2016.07.169
[117]
Cantarella G, Ishida K, Petti L, et al. Flexible In–Ga–Zn–O-based circuits with two and three metal layers: simulation and fabrication study. IEEE Electron Device Lett, 2016, 37(12): 1582 doi: 10.1109/LED.2016.2619738
[118]
Petti L, Frutiger A, Münzenrieder N, et al. Flexible quasi-vertical In–Ga–Zn–O thin-film transistor with 300-nm channel length. IEEE Electron Device Lett, 2015, 36(5): 475 doi: 10.1109/LED.2015.2418295
[119]
Chen Y, Geng D, Lin T, et al. Full-swing clock generating circuits on plastic using a-IGZO dual-gate TFTs with pseudo-CMOS and bootstrapping. IEEE Electron Device Lett, 2016, 37(7): 882 doi: 10.1109/LED.2016.2571321
[120]
Song K, Noh J, Jun T, et al. Fully flexible solution-deposited ZnO thin-film transistors. Adv Mater, 2010, 22(38): 4308 doi: 10.1002/adma.201002163
[121]
Bong H, Lee W H, Lee D Y, et al. High-mobility low-temperature ZnO transistors with low-voltage operation. Appl Phys Lett, 2010, 96(19): 192115 doi: 10.1063/1.3428357
[122]
Jackson W, Hoffman R, Herman G. High-performance flexible zinc tin oxide field-effect transistors. Appl Phys Lett, 2005, 87(19): 193503 doi: 10.1063/1.2120895
[123]
Cherenack K H, Münzenrieder N S, Troster G. Impact of mechanical bending on ZnO and IGZO thin-film transistors. IEEE Electron Device Lett, 2010, 31(11): 1254
[124]
Petti L, Münzenrieder N, Salvatore G A, et al. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs. IEEE Trans Electron Devices, 2014, 61(4): 1085 doi: 10.1109/TED.2014.2304307
[125]
Petti L, Faber H, Münzenrieder N, et al. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits. Appl Phys Lett, 2015, 106(9): 092105 doi: 10.1063/1.4914085
[126]
Kim I D, Choi Y, Tuller H L. Low-voltage ZnO thin-film transistors with high-k Bi1.0Nb1.5O7 gate insulator for transparent and flexible electronics. Appl Phys Lett, 2005, 87(4): 043509 doi: 10.1063/1.1993762
[127]
Su N C, Wang S J, Huang C C, et al. Low-voltage-driven flexible InGaZnO thin-film transistor with small subthreshold swing. IEEE Electron Device Lett, 2010, 31(7): 680 doi: 10.1109/LED.2010.2047232
[128]
Rim Y S, Jeong W H, Kim D L, et al. Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors. J Mater Chem, 2012, 22(25): 12491 doi: 10.1039/c2jm16846d
[129]
Liao P Y, Chang T C, Su W C, et al. Effect of mechanical-strain-induced defect generation on the performance of flexible amorphous In–Ga–Zn–O thin-film transistors. Appl Phys Express, 2016, 9(12): 124101 doi: 10.7567/APEX.9.124101
[130]
Zhao D, Mourey D A, Jackson T N. Fast flexible plastic substrate ZnO circuits. IEEE Electron Device Lett, 2010, 31(4): 323 doi: 10.1109/LED.2010.2041321
[131]
Hsieh H H, Wu C H, Wu C C, et al. Amorphous In2O3–Ga2O3–ZnO thin film transistors and integrated circuits on flexible and colorless polyimide substrates. SID Symp Dig Tech Pap, 2008, 39(1): 1207 doi: 10.1889/1.3069352
[132]
Sheng J, Lee H J, Oh S, et al. Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS Appl Mater Inter, 2016, 8(49): 33821 doi: 10.1021/acsami.6b11774
[133]
Park J, Kim C S, Ahn B, et al. Flexible In–Ga–Zn–O thin-film transistors fabricated on polyimide substrates and mechanically induced instability under negative bias illumination stress. J Electroceram, 2015, 1(35): 106
[134]
Jo J W, Kim J, Kim K T, et al. Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors. Adv Mater, 2015, 27(7): 1182 doi: 10.1002/adma.201404296
[135]
You H C, Lin Y H. Investigation of the sol–gel method on the flexible ZnO device. Int J Electrochem Sci, 2012, 7: 9085
[136]
Hwang B U, Kim D I, Cho S W, et al. Role of ultrathin Al2O3 layer in organic/inorganic hybrid gate dielectrics for flexibility improvement of InGaZnO thin film transistors. Org Electron, 2014, 15(7): 1458 doi: 10.1016/j.orgel.2014.04.003
[137]
Rim Y S, Chen H, Liu Y, et al. Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS Nano, 2014, 8(9): 9680 doi: 10.1021/nn504420r
[138]
Kinkeldei T, Münzenrieder N, Zysset C, et al. Encapsulation for flexible electronic devices. IEEE Electron Device Lett, 2011, 32(12): 1743 doi: 10.1109/LED.2011.2168378
[139]
Lai H C, Pei Z, Jian J R, et al. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability. Appl Phys Lett, 2014, 105(3): 033510 doi: 10.1063/1.4891426
[140]
Kim J M, Nam T, Lim S, et al. Atomic layer deposition ZnO:N flexible thin film transistors and the effects of bending on device properties. Appl Phys Lett, 2011, 98(14): 142113 doi: 10.1063/1.3577607
[141]
Marrs M A, Moyer C D, Bawolek E J, et al. Control of threshold voltage and saturation mobility using dual-active-layer device based on amorphous mixed metal–oxide–semiconductor on flexible plastic substrates. IEEE Trans Electron Devices, 2011, 58(10): 3428 doi: 10.1109/TED.2011.2161764
[142]
Smith J T, Shah S S, Goryll M, et al. Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer. IEEE Sens J, 2014, 14(4): 937 doi: 10.1109/JSEN.2013.2295057
[143]
Dey A, Indluru A, Venugopal S M, et al. Effect of mechanical and electromechanical stress on a-ZIO TFTs. IEEE Electron Device Lett, 2010, 31(12): 1416 doi: 10.1109/LED.2010.2080350
[144]
Yoon S M, Yang S, Park S H K. Flexible nonvolatile memory thin-film transistor using ferroelectric copolymer gate insulator and oxide semiconducting channel. J Electrochem Soc, 2011, 158(9): H892 doi: 10.1149/1.3609842
[145]
Lujan R, Street R. Flexible X-ray detector array fabricated with oxide thin-film transistors. IEEE Electron Device Lett, 2012, 33(5): 688 doi: 10.1109/LED.2012.2188825
[146]
Kim S J, Park M J, Yun D J, et al. High performance and stable flexible memory thin-film transistors using In–Ga–Zn–O channel and ZnO charge-trap layers on poly (ethylene naphthalate) substrate. IEEE Trans Electron Devices, 2016, 63(4): 1557 doi: 10.1109/TED.2016.2531087
[147]
Xiao P, Dong T, Lan L, et al. High-mobility flexible thin-film transistors with a low-temperature zirconium-doped indium oxide channel layer. Phys Status Solidi R, 2016, 10(6): 493 doi: 10.1002/pssr.201600052
[148]
Kaftanoglu K, Venugopal S M, Marrs M, et al. Stability of IZO and a-Si: H TFTs processed at low temperature (200 ℃). J Disp Technol, 2011, 7(6): 339 doi: 10.1109/JDT.2011.2107879
[149]
Lee G G, Tokumitsu E, Yoon S M, et al. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly (vinylidene fluoride-trifluoroethylene). Appl Phys Lett, 2011, 99(1): 012901 doi: 10.1063/1.3608145
[150]
Smith J, Couture A, Allee D. Charge emission induced transient leakage currents of a-Si: H and IGZO TFTs on flexible plastic substrates. Electron Lett, 2014, 50(2): 105 doi: 10.1049/el.2013.3795
[151]
Lin Y H, Faber H, Zhao K, et al. High-performance ZnO transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80–180 °C. Adv Mater, 2013, 25(31): 4340 doi: 10.1002/adma.v25.31
[152]
Liu J, Buchholz D B, Chang R P, et al. High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel. Adv Mater, 2010, 22(21): 2333 doi: 10.1002/adma.200903761
[153]
Han D, Chen Z, Cong Y, et al. High-performance flexible tin-zinc-oxide thin-film transistors fabricated on plastic substrates. IEEE Trans Electron Devices, 2016, 63(8): 3360
[154]
Liu J, Buchholz D B, Hennek J W, et al. All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics. J Am Chem Soc, 2010, 132(34): 11934 doi: 10.1021/ja9103155
[155]
Huang L, Han D, Chen Z, et al. Flexible nickel-doped zinc oxide thin-film transistors fabricated on plastic substrates at low temperature. Jpn J Appl Phys, 2015, 54(4S): 04D
[156]
Lim W, Jang J H, Kim S H, et al. High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates. Appl Phys Lett, 2008, 93(8): 082102 doi: 10.1063/1.2975959
[157]
Hyung G W, Park J, Wang J X, et al. Amorphous indium gallium zinc oxide thin-film transistors with a low-temperature polymeric gate dielectric on a flexible substrate. Jpn J Appl Phys, 2013, 52(7R): 071102 doi: 10.7567/JJAP.52.071102
[158]
Choi K M, Hyung G W, Yang J W, et al. Fabrication of atomic layer deposited zinc oxide thin film transistors with organic gate insulator on flexible substrate. Mol Cryst Liq Cryst, 2010, 529(1): 131 doi: 10.1080/15421406.2010.495889
[159]
Lee C Y, Chang C, Shih W P, et al. Wet etching rates of InGaZnO for the fabrication of transparent thin-film transistors on plastic substrates. Thin Solid Films, 2010, 518(14): 3992 doi: 10.1016/j.tsf.2009.12.010
[160]
Ha Y G, Everaerts K, Hersam M C, et al. Hybrid gate dielectric materials for unconventional electronic circuitry. Acc Chem Res, 2014, 47(4): 1019 doi: 10.1021/ar4002262
[161]
Han D, Zhang Y, Cong Y, et al. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate. Sci Rep, 2016, 6: 38984 doi: 10.1038/srep38984
[162]
Kumomi H, Nomura K, Kamiya T, et al. Amorphous oxide channel TFTs. Thin Solid Films, 2008, 516(7): 1516 doi: 10.1016/j.tsf.2007.03.161
[163]
Liu Y, Zhou H, Cheng R, et al. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett, 2014, 14(3): 1413 doi: 10.1021/nl404484s
[164]
Vidor F F, Meyers T, Wirth G I, et al. ZnO nanoparticle thin-film transistors on flexible substrate using spray-coating technique. Microelectron Eng, 2016, 159: 155 doi: 10.1016/j.mee.2016.02.059
[165]
Hsu H H, Chang C Y, Cheng C H, et al. High mobility field-effect thin film transistor using room-temperature high-k gate dielectrics. J Disp Technol, 2014, 10(10): 847 doi: 10.1109/JDT.2014.2326175
[166]
Hsu H H, Chang C Y, Cheng C H. A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature. IEEE Electron Device Lett, 2013, 34(6): 768 doi: 10.1109/LED.2013.2258455
[167]
Hsu H H, Chiu Y C, Chiou P, et al. Improvement of dielectric flexibility and electrical properties of mechanically flexible thin film devices using titanium oxide materials fabricated at a very low temperature of 100 °C. J Alloy Compd, 2015, 643: S133 doi: 10.1016/j.jallcom.2014.12.061
[168]
Jun J H, Park B, Cho K, et al. Flexible TFTs based on solution-processed ZnO nanoparticles. Nanotechnology, 2009, 20(50): 505201 doi: 10.1088/0957-4484/20/50/505201
[169]
Kim J, Fuentes-Hernandez C, Kim S J, et al. Flexible hybrid complementary inverters with high gain and balanced noise margins using pentacene and amorphous InGaZnO thin-film transistors. Org Electron, 2010, 11(6): 1074 doi: 10.1016/j.orgel.2010.03.008
[170]
Kim J, Fuentes-Hernandez C, Hwang D, et al. Vertically stacked hybrid organic–inorganic complementary inverters with low operating voltage on flexible substrates. Org Electron, 2011, 12(1): 45 doi: 10.1016/j.orgel.2010.10.012
[171]
Oh H, Cho K, Park S, et al. Electrical characteristics of bendable a-IGZO thin-film transistors with split channels and top-gate structure. Microelectron Eng, 2016, 159: 179 doi: 10.1016/j.mee.2016.03.044
[172]
Park S, Cho K, Yang K, et al. Electrical characteristics of flexible ZnO thin-film transistors annealed by microwave irradiation. J Vac Sci Technol B, 2014, 32(6): 062203 doi: 10.1116/1.4898115
[173]
Park K, Lee D K, Kim B S, et al. Stretchable, transparent zinc oxide thin film transistors. Adv Funct Mater, 2010, 20(20): 3577 doi: 10.1002/adfm.v20:20
[174]
Cantarella G, Münzenrieder N, Petti L, et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain. IEEE Electron Device Lett, 2015, 36(8): 781 doi: 10.1109/LED.2015.2442271
[175]
Cheong W S, Bak J Y, Kim H S. Transparent flexible zinc–indium–tin oxide thin-film transistors fabricated on polyarylate films. Jpn J Appl Phys, 2010, 49(5S1): 05EB10
[176]
Jin S H, Kang S K, Cho I T, et al. Water-soluble thin film transistors and circuits based on amorphous indium–gallium–zinc oxide. ACS Appl Mater Inter, 2015, 7(15): 8268 doi: 10.1021/acsami.5b00086
[177]
Jin J, Ko J H, Yang S, et al. Rollable transparent glass‐fabric reinforced composite substrate for flexible devices. Adv Mater, 2010, 22(40): 4510 doi: 10.1002/adma.v22:40
[178]
Ok K C, Park S H K, Hwang C S, et al. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Appl Phys Lett, 2014, 104(6): 063508 doi: 10.1063/1.4864617
[179]
Chien C W, Wu C H, Tsai Y T, et al. High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates. IEEE Trans Electron Devices, 2011, 58(5): 1440 doi: 10.1109/TED.2011.2109041
[180]
Ok K C, Oh S, Jeong H J, et al. Effect of alumina buffers on the stability of top-gate amorphous InGaZnO thin-film transistors on flexible substrates. IEEE Electron Device Lett, 2015, 36(9): 917 doi: 10.1109/LED.2015.2461003
[181]
Park C B, Na H, Yoo S S, et al. Electrical characteristics of a-IGZO transistors along the in-plane axis during outward bending. Microelectron Reliab, 2016, 59: 37 doi: 10.1016/j.microrel.2016.01.006
[182]
Park S, Kim K H, Jo J W, et al. In-depth studies on rapid photochemical activation of various sol-gel metal oxide films for flexible transparent electronics. Adv Funct Mater, 2015, 25(19): 2807 doi: 10.1002/adfm.201500545
[183]
Mativenga M, Geng D, Kim B, et al. Fully transparent and rollable electronics. ACS Appl Mater Inter, 2015, 7(3): 1578 doi: 10.1021/am506937s
[184]
Lin C Y, Chien C W, Wu C C, et al. Effects of mechanical strains on the characteristics of top-gate staggered a-IGZO thin-film transistors fabricated on polyimide-based nanocomposite substrates. IEEE Trans Electron Devices, 2012, 59(7): 1956 doi: 10.1109/TED.2012.2193585
[185]
Li X, Billah M M, Mativenga M, et al. Highly robust flexible oxide thin-film transistors by bulk accumulation. IEEE Electron Device Lett, 2015, 36(8): 811 doi: 10.1109/LED.2015.2451005
[186]
Münzenrieder N, Salvatore G A, Petti L, et al. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation. Appl Phys Lett, 2014, 105(26): 263504 doi: 10.1063/1.4905015
[187]
Münzenrieder N, Cherenack K H, Troster G. The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Trans Electron Devices, 2011, 58(7): 2041 doi: 10.1109/TED.2011.2143416
[188]
Lee S J, Ko J, Park J H, et al. Effective work function modulation of SWCNT–AZO NP hybrid electrodes in fully solution-processed flexible metal-oxide thin film transistors. J Mater Chem C, 2015, 3(31): 8121 doi: 10.1039/C5TC01481F
[189]
Kim D, Hwang B, Park J, et al. Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors. Org Electron, 2012, 13(11): 2401 doi: 10.1016/j.orgel.2012.06.038
[190]
Münzenrieder N, Petti L, Zysset C, et al. Flexible a-IGZO TFT amplifier fabricated on a free standing polyimide foil operating at 1.2 MHz while bent to a radius of 5 mm. IEEE International Electron Devices Meeting (IEDM), 2012: 5.2. 1
[191]
Ji L W, Wu C Z, Fang T H, et al. Characteristics of flexible thin-film transistors with ZnO channels. IEEE Sens J, 2013, 13(12): 4940 doi: 10.1109/JSEN.2013.2267808
[192]
Münzenrieder N, Zysset C, Petti L, et al. Flexible double gate a-IGZO TFT fabricated on free standing polyimide foil. Solid-State Electron, 2013, 84: 198 doi: 10.1016/j.sse.2013.02.025
[193]
Lim W, Douglas E, Kim S H, et al. Low-temperature-fabricated InGaZnO4 thin film transistors on polyimide clean-room tape. Appl Phys Lett, 2008, 93(25): 252103 doi: 10.1063/1.3054167
[194]
Bak J Y, Yoon S M, Yang S, et al. Effect of In–Ga–Zn–O active layer channel composition on process temperature for flexible oxide thin-film transistors. J Vac Sci Technol B, 2012, 30(4): 041208 doi: 10.1116/1.4731257
[195]
Wu S C, Feng H T, Yu M J, et al. Flexible three-bit-per-cell resistive switching memory using a-IGZO TFTs. IEEE Electron Device Lett, 2013, 34(10): 1265 doi: 10.1109/LED.2013.2278098
[196]
Hwang Y H, Seo J S, Yun J M, et al. An ‘aqueous route’ for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates. NPG Asia Mater, 2013, 5(4): e45 doi: 10.1038/am.2013.11
[197]
Sharma B K, Jang B, Lee J E, et al. Load-controlled roll transfer of oxide transistors for stretchable electronics. Adv Funct Mater, 2013, 23(16): 2024 doi: 10.1002/adfm.v23.16
[198]
Eun K, Hwang W, Sharma B, et al. Mechanical flexibility of zinc oxide thin-film transistors prepared by transfer printing method. Mod Phys Lett B, 2012, 26(12): 1250077 doi: 10.1142/S0217984912500777
[199]
Park M J, Yun D J, Ryu M K, et al. Improvements in the bending performance and bias stability of flexible InGaZnO thin film transistors and optimum barrier structures for plastic poly (ethylene naphthalate) substrates. J Mater Chem C, 2015, 3(18): 4779 doi: 10.1039/C5TC00048C
[200]
Li H U, Jackson T N. Oxide semiconductor thin film transistors on thin solution-cast flexible substrates. IEEE Electron Device Lett, 2015, 36(1): 35 doi: 10.1109/LED.2014.2371011
[201]
Salvatore G A, Münzenrieder N, Kinkeldei T, et al. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat Commun, 2014, 5: 2982
[202]
Petti L, Münzenrieder N, Salvatore G A, et al. Flexible electronics based on oxide semiconductors. IEEE 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2014: 323
[203]
Yuan H, Wang H, Cui Y. Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling. ACC Chem Res, 2015, 48(1): 81 doi: 10.1021/ar5003297
[204]
Fujimoto T, Awaga K. Electric-double-layer field-effect transistors with ionic liquids. Phys Chem Chem Phys, 2013, 15(23): 8983 doi: 10.1039/c3cp50755f
[205]
Du H, Lin X, Xu Z, et al. Electric double-layer transistors: a review of recent progress. J Mater Sci, 2015, 50(17): 5641 doi: 10.1007/s10853-015-9121-y
[206]
Ono S, Seki S, Hirahara R, et al. High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl Phys Lett, 2008, 92(10): 93
[207]
Zhou J, Wu G, Guo L, et al. Flexible transparent junctionless TFTs with oxygen-tuned indium–zinc–oxide channels. IEEE Electron Device Lett, 2013, 34(7): 888 doi: 10.1109/LED.2013.2260819
[208]
Hong K, Kim S H, Lee K H, et al. Printed, sub-2 V ZnO electrolyte gated transistors and inverters on plastic. Adv Mater, 2013, 25(25): 3413 doi: 10.1002/adma.v25.25
[209]
Liu Y H, Zhu L Q, Feng P, et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater, 2015, 27(37): 5599 doi: 10.1002/adma.201502719
[210]
Martins R, Ferreira I, Fortunato E. Electronics with and on paper. Phys Status Solidi-R, 2011, 5(9): 332 doi: 10.1002/pssr.201105247
[211]
Lim W, Douglas E, Norton D, et al. Low-voltage indium gallium zinc oxide thin film transistors on paper substrates. Appl Phys Lett, 2010, 96(5): 053510 doi: 10.1063/1.3309753
[212]
Wu G, Wan X, Yang Y, et al. Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates. J Phys D: Appl Phys, 2014, 47(49): 495101 doi: 10.1088/0022-3727/47/49/495101
[213]
Dou W, Zhu L, Jiang J, et al. Flexible dual-gate oxide TFTs gated by chitosan film on paper substrates. IEEE Electron Device Lett, 2013, 34(2): 259 doi: 10.1109/LED.2012.2231661
[214]
Jiang J, Sun J, Dou W, et al. Junctionless flexible oxide-based thin-film transistors on paper substrates. IEEE Electron Device Lett, 2012, 33(1): 65 doi: 10.1109/LED.2011.2172973
[215]
Jiang J, Sun J, Dou W, et al. In-plane-gate indium–tin–oxide thin-film transistors self-assembled on paper substrates. Appl Phys Lett, 2011, 98(11): 113507 doi: 10.1063/1.3567946
[216]
Lim W, Douglas E, Kim S H, et al. High mobility InGaZnO4 thin-film transistors on paper. Appl Phys Lett, 2009, 94(7): 072103 doi: 10.1063/1.3086394
[217]
Jiang S, Feng P, Yang Y, et al. Flexible low-voltage In–Zn–O homojunction TFTs with beeswax gate dielectric on paper substrates. IEEE Electron Device Lett, 2016, 37(3): 287 doi: 10.1109/LED.2016.2518666
[218]
Lu A, Dai M, Sun J, et al. Flexible low-voltage electric-double-layer TFTs self-assembled on paper substrates. IEEE Electron Device Lett, 2011, 32(4): 518 doi: 10.1109/LED.2011.2107550
[219]
Thiemann S, Sachnov S J, Pettersson F, et al. Cellulose-based ionogels for paper electronics. Adv Funct Mater, 2014, 24(5): 625 doi: 10.1002/adfm.201302026
[220]
Pereira L, Gaspar D, Guerin D, et al. The influence of fibril composition and dimension on the performance of paper gated oxide transistors. Nanotechnology, 2014, 25(9): 094007 doi: 10.1088/0957-4484/25/9/094007
[221]
Martins R, Barquinha P, Pereira L, et al. Write-erase and read paper memory transistor. Appl Phys Lett, 2008, 93(20): 203501 doi: 10.1063/1.3030873
[222]
Gaspar D, Fernandes S, De Oliveira A, et al. Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology, 2014, 25(9): 094008 doi: 10.1088/0957-4484/25/9/094008
[223]
Wu G D, Zhang J, Wan X. Junctionless coplanar-gate oxide-based thin-film transistors gated by Al2O3 proton conducting films on paper substrates. Chin Phys Lett, 2014, 31(10): 108505 doi: 10.1088/0256-307X/31/10/108505
[224]
Sun J, Jiang J, Lu A, et al. One-volt oxide thin-film transistors on paper substrates gated by SiO2-based solid electrolyte with controllable operation modes. IEEE Trans Electron Devices, 2010, 57(9): 2258 doi: 10.1109/TED.2010.2052168
[225]
Choi N, Khan S A, Ma X, et al. Amorphous oxide thin film transistors with methyl siloxane based gate dielectric on paper substrate. Electrochem Solid-State Lett, 2011, 14(6): H247 doi: 10.1149/1.3570612
[226]
Fortunato E, Correia N, Barquinha P, et al. High-performance flexible hybrid field-effect transistors based on cellulose fiber paper. IEEE Electron Device Lett, 2008, 29(9): 988 doi: 10.1109/LED.2008.2001549
[227]
Martins R, Barquinha P, Pereira L, et al. Selective floating gate non-volatile paper memory transistor. Phys Status Solidi R, 2009, 3(9): 308
[228]
Mahmoudabadi F, Ma X, Hatalis M K, et al. Amorphous IGZO TFTs and circuits on conformable aluminum substrates. Solid-State Electron, 2014, 101: 57 doi: 10.1016/j.sse.2014.06.031
[229]
Park I J, Jeong C Y, Cho I T, et al. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors. Semicond Sci Technol, 2012, 27(10): 105019 doi: 10.1088/0268-1242/27/10/105019
[230]
Plichta A, Weber A, Habeck A. Ultra thin flexible glass substrates. Symposium on Flexible Electronics-Materials and Device Technology held at the 2003 MRS Spring Meeting, 2003: 273
[231]
Lee G J, Kim J, Kim J H, et al. High performance, transparent a-IGZO TFTs on a flexible thin glass substrate. Semicond Sci Technol, 2014, 29(3): 035003 doi: 10.1088/0268-1242/29/3/035003
[232]
Yamauchi N, Itoh T, Noguchi T. Low energy-cost TFT technologies using ultra-thin flexible glass substrate. IEEE 19th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2012: 213
[233]
Dai M K, Lian J T, Lin T Y, et al. High-performance transparent and flexible inorganic thin film transistors: a facile integration of graphene nanosheets and amorphous InGaZnO. J Mater Chem C, 2013, 1(33): 5064 doi: 10.1039/c3tc30890a
[234]
Münzenrieder N, Voser P, Petti L, et al. Flexible self-aligned double-gate IGZO TFT. IEEE Electron Device Lett, 2014, 35(1): 69 doi: 10.1109/LED.2013.2286319
[235]
Li Y, Liu Y, Yun F, et al. Self-assembled transparent a-IGZO based TFTs for flexible sensing applications. International Symposium on Photonics and Optoelectronics, 2014: 92332A
[236]
Smith J T, Couture A J, Stowell J R, et al. Optically seamless flexible electronic tiles for ultra large-area digital X-ray imaging. IEEE Trans Compon Packag Manuf Technol, 2014, 4(6): 1109 doi: 10.1109/TCPMT.2014.2316477
[237]
Gelinck G H, Kumar A, Van Der Steen J L P, et al. X-ray detector-on-plastic with high sensitivity using low cost, solution-processed organic photodiodes. IEEE Trans Electron Devices, 2016, 63(1): 197 doi: 10.1109/TED.2015.2432572
[238]
Honda W, Harada S, Ishida S, et al. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv Mater, 2015, 27(32): 4674 doi: 10.1002/adma.v27.32
[239]
Kim J, Kim J, Jo S, et al. Ultrahigh detective heterogeneous photosensor arrays with in-pixel signal boosting capability for large-area and skin-compatible electronics. Adv Mater, 2016, 28(16): 3078 doi: 10.1002/adma.201505149
[240]
Van Breemen A, Kam B, Cobb B, et al. Ferroelectric transistor memory arrays on flexible foils. Org Electron, 2013, 14(8): 1966 doi: 10.1016/j.orgel.2013.04.025
[241]
Myny K, Steudel S. Flexible thin-film nfc transponder chip exhibiting data rates compatible to ISO NFC standards using self-aligned metal-oxide tfts. IEEE International Solid-State Circuits Conference (ISSCC), 2016: 298
[242]
Zhang L R, Huang C Y, Li G M, et al. A low-power high-stability flexible scan driver integrated by IZO TFTs. IEEE Trans Electron Devices, 2016, 63(4): 1779 doi: 10.1109/TED.2016.2529656
[243]
Meister T, Ishida K, Shabanpour R, et al. 20.3 dB 0.39 mW AM detector with single-transistor active inductor in bendable a-IGZO TFT. IEEE 46th European Solid-State Device Research Conference (ESSDERC), 2016: 71
[244]
Huang T C, Fukuda K, Lo C M, et al. Pseudo-CMOS: a design style for low-cost and robust flexible electronics. IEEE Trans Electron Devices, 2011, 58(1): 141 doi: 10.1109/TED.2010.2088127
[245]
Münzenrieder N, Zysset C, Kinkeldei T, et al. Design rules for IGZO logic gates on plastic foil enabling operation at bending radii of 3.5 mm. IEEE Trans Electron Devices, 2012, 59(8): 2153 doi: 10.1109/TED.2012.2198480
[246]
Kim Y H, Heo J S, Kim T H, et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature, 2012, 489(7414): 128 doi: 10.1038/nature11434
[247]
Zysset C, Münzenrieder N, Petti L, et al. IGZO TFT-based all-enhancement operational amplifier bent to a radius of 5 mm. IEEE Electron Device Lett, 2013, 34(11): 1394 doi: 10.1109/LED.2013.2280024
[248]
Perumal C, Ishida K, Shabanpour R, et al. A Compact a-IGZO TFT model based on MOSFET SPICE Level=3 template for analog/RF circuit designs. IEEE Electron Device Lett, 2013, 34(11): 1391 doi: 10.1109/LED.2013.2279940
[249]
Nomura K, Aoki T, Nakamura K, et al. Three-dimensionally stacked flexible integrated circuit: Amorphous oxide/polymer hybrid complementary inverter using n-type a-In–Ga–Zn–O and p-type poly-(9, 9-dioctylfluorene-co-bithiophene) thin-film transistors. Appl Phys Lett, 2010, 96(26): 263509 doi: 10.1063/1.3458799
[250]
Rockelé M, Pham D V, Steiger J, et al. Solution-processed and low-temperature metal oxide n-channel thin-film transistors and low-voltage complementary circuitry on large-area flexible polyimide foil. J Soc Inf Display, 2012, 20(9): 499 doi: 10.1002/jsid.114
[251]
Oh M S, Choi W, Lee K, et al. Flexible high gain complementary inverter using n-ZnO and p-pentacene channels on polyethersulfone substrate. Appl Phys Lett, 2008, 93(3): 033510 doi: 10.1063/1.2956406
[252]
Honda W, Arie T, Akita S, et al. Mechanically flexible and high-performance CMOS logic circuits. Sci Rep, 2015, 5: 15099 doi: 10.1038/srep15099
[253]
Nag M, Chasin A, Rockele M, et al. Single-source dual-layer amorphous IGZO thin-film transistors for display and circuit applications. J Soc Inf Display, 2013, 21(3): 129 doi: 10.1002/jsid.v21.3
[254]
Yamamoto T, Takei T, Nakajima Y, et al. Simple transfer technology for fabrication of TFT backplane for flexible displays. IEEE T Ind Appl, 2012, 48(5): 1662 doi: 10.1109/TIA.2012.2209170
[255]
Oh T. Tunneling phenomenon of amorphous indium-gallium-zinc-oxide thin film transistors for flexible display. Electron Mater Lett, 2015, 11(5): 853
[256]
Kim H, Kim Y J. Influence of external forces on the mechanical characteristics of the a-IGZO and graphene based flexible display. Global Conference on Polymer and Composite Materials (PCM), 2014: 012022
[257]
Genoe J, Obata K, Ameys M, et al. Integrated line driver for digital pulse-width modulation driven AMOLED displays on flex. IEEE J Soild-State Circuits, 2015, 50(1): 282 doi: 10.1109/JSSC.2014.2364268
[258]
Zysset C, Münzenrieder N, Kinkeldei T, et al. Woven active-matrix display. IEEE Trans Electron Devices, 2012, 59(3): 721 doi: 10.1109/TED.2011.2180724
Fig. 1.  (Color online) Possible applications for flexible oxide-based TFTs. The inset images were reproduced from Refs. [15, 25, 30, 45, 5074].

Fig. 2.  (Color online) Schematic orbital drawings of (a) covalent semiconductor, and (b) metal oxide semiconductor in crystalline and amorphous states. Reproduced from Ref. [30].

Fig. 3.  (Color online) (a) The structure of transparent flexible IGZO TFTs. (b) A photograph of the flexible TFT bent at R = 30 mm on the probe station. Reproduced from Ref. [30].

Fig. 4.  (Color online) Device parameters including saturation mobility, threshold voltage, and subthreshold swing versus different bending radii. Reproduced from Ref. [199].

Fig. 5.  (Color online) Transfer characteristics tested before and after separating from glass carrier to PET. Reproduced from Ref. [45].

Fig. 6.  (Color online) Transfer characteristics after repeated bending cycles with bending orientations (a) parallel and (b) perpendicular to the current flow direction. The bending radius is about 3.5 mm. Reproduced from Ref. [200].

Fig. 7.  (Color online) Transfer characteristics while TFTs bent at different radii (a) parallel and (b) perpendicular to the current flow direction. Reproduced from Ref. [44].

Fig. 8.  (Color online) Schematic diagram of the IZO-based junctionless TFT on PET substrate. Reproduced from Ref. [207].

Fig. 9.  (Color online) (a) (b) The schematic diagram and I–V curve of the TFTs. (c) (d) The surface images with and without BCB coating. Reproduced from Ref. [211].

Fig. 10.  (Color online) The schematic of the flexible oxide-based TFT using cellulose paper as both gate dielectric and substrate carrier. Reproduced from Ref. [226].

Fig. 11.  (Color online) Illustration of the device structure with its different layers. The magnified insets show the paper sheet dielectric structure and some of the expected electron paths along the fibers between source and drain electrodes. Reproduced from Ref. [227].

Fig. 12.  (Color online) Photograph of flexible TFTs with metal foil substrate. Reproduced from Ref. [229].

Fig. 13.  (Color online) Optical transmittance versus wavelength of the IGZO TFTs on flexible thin glass, the inset is a photograph of transparent flexible IGZO TFTs fabricated on flexible thin glass under bending status. Reproduced from Ref. [231].

Fig. 14.  (Color online) Flexible electronic tiles for large area digital X-ray imaging. Reproduced from Ref. [236].

Fig. 15.  (Color online) Optical profilometer scan of the SnO-based polymer ferroelectric TFT memory. Reproduced from Ref. [100].

Fig. 16.  (Color online) (Left) Optical microscopic image of ZnO TFT. (Top right) Schematic diagram of ZnO TFT and (bottom right) ZnO TFTs and circuits on flexible plastic substrate. Reproduced from Ref. [130].

Fig. 17.  (Color online) Picture displayed by 6.5 in. flexible full-color top-emission AMOLED panel bent to a curvature radius of approximately 2 cm. Reproduced from Ref. [47].

Table 1.   Bending properties of flexible oxide-based TFTs.

Active layer Substrate and thickness (μm) Bending radius (mm) Bending times Strain type Ref.
a-IGZO PET/200 30 Tensile [30]
a-IGZO PEN/125 5 10000 Tensile [199]
ZnO PI/5 3.5 5000 Tensile and compressive [200]
a-IGZO Parylene/1 0.05 Tensile [201]
InOx PI 1 [182]
In2O3 PI [77]
a-IGZO PC 15 [166]
ZnO PI/50 0.2 100 Tensile [120]
a-IGZO PI/16 10 10000 Tensile [116]
a-IGZO Paper/52 5 Tensile [220]
a-IGZO PI/20 15 10000 [178]
In2O3 PEN/— [83]
a-IGO PI/50 10 [76]
a-IGZO PEN/125 4 100 Tensile [139]
ZnO PI/50 25 Tensile [208]
a-IGZO PEN/25 2 Tensile and compressive [44]
a-IGZO Thin glass/70 40 Tensile [231]
a-IGZO Al/480 19 Tensile [228]
DownLoad: CSV

Table 2.   Applications of flexible oxide-based thin film transistors.

Active layer Dielectric Substrate μFE (cm2V−1s−1) Ion/Ioff Vth(V) SS (V/decade) Application Ref.
IZO SiO2 PET 12 6.4 × 105 −0.3 0.175 PH sensor [40]
a-IGZO SiO-based PEN 10–15 2 0.3 X-ray detector [145]
ZnO Ferroelectric copolymer PEN 33.3 108 0.65 Memory [144]
a-IGZO Ferroelectric copolymer PEN 1 107 0.4 Memory [149]
SnO Poly ferroelectric PI 2.53 0.94 × 102 −11.7 4.35 Memory [100]
SnOx/a-IGZO Paper Paper 1.3/23 104/102 2.1/1.4 3.1/6.9 Complementary circuits [70]
SnO/ZnO HfO2 PI 0.06/1.6 104/106 5/5 1.6/1.6 Ring oscillator [2]
ZnO Al2O3 PI 20 107 2 0.35 Ring oscillator [130]
a-IGZO SiNx PEN 13 108 3.1 0.33 8-b transponder chip [44]
InOx Al2O3 PI 8.02 3.67 Ring oscillator [182]
a-IGZO SiO2 PI 17 1.4 Clock generating circuit [119]
ITZO SiO2 PI 32.9 iOLED [48]
a-IGZO AlOx PEN 12.87 109 2.48 0.20 AMOLED [8]
a-IGZO SiNx PI 15.1 5 × 108 0.9 0.25 AMOLED [47]
a-IGZO Al2O3 PEN 11.2 109 0.5 0.27 AMOLED [52]
DownLoad: CSV
[1]
Cao Q, Kim H S, Pimparkar N, et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature, 2008, 454(7203): 495 doi: 10.1038/nature07110
[2]
Li Y S, He J C, Hsu S M, et al. Flexible complementary oxide–semiconductor-based circuits employing n-channel ZnO and p-channel SnO thin-film transistors. IEEE Electron Device Lett, 2016, 37(1): 46 doi: 10.1109/LED.2015.2501843
[3]
Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9(6): 511 doi: 10.1038/nmat2745
[4]
Bock K. Polymer electronics systems-polytronics. Proc IEEE, 2005, 93(8): 1400 doi: 10.1109/JPROC.2005.851513
[5]
Heremans P. Electronics on plastic foil, for applications in flexible OLED displays, sensor arrays and circuits. IEEE 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2014: 1
[6]
Allen K J. Reel to real: prospects for flexible displays. Proc IEEE, 2005, 93(8): 1394 doi: 10.1109/JPROC.2005.851511
[7]
Jeong J K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond Sci Technol, 2011, 26(3): 034008 doi: 10.1088/0268-1242/26/3/034008
[8]
Xu H, Luo D, Li M, et al. A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J Mater Chem C, 2014, 2(7): 1255 doi: 10.1039/C3TC31710B
[9]
Gelinck G H, Huitema H E A, Van Veenendaal E, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater, 2004, 3(2): 106 doi: 10.1038/nmat1061
[10]
Nathan A, Chalamala B R. Special issue on flexible electronics technology, Part 1: Systems and applications. Proc IEEE, 2005, 93(7): 1235 doi: 10.1109/JPROC.2005.851525
[11]
Ito M, Kon M, Ishizaki M, et al. A flexible active-matrix TFT array with amorphous oxide semiconductors for electronic paper. Proc IDW/AD, 2005, 5: 845
[12]
Rogers J A, Bao Z, Baldwin K, et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci, 2001, 98(9): 4835 doi: 10.1073/pnas.091588098
[13]
Nathan A, Chalamala B R. Special issue on flexible electronics technology, Part II: Materials and devices. Proc IEEE, 2005, 93(8): 1391 doi: 10.1109/JPROC.2005.851509
[14]
Khan Y, Garg M, Gui Q, et al. Flexible Hybrid electronics: direct interfacing of soft and hard electronics for wearable health monitoring. Adv Funct Mater, 2016, 26(47): 8764 doi: 10.1002/adfm.v26.47
[15]
Pu X, Li L, Song H, et al. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv Mater, 2015, 27(15): 2472 doi: 10.1002/adma.201500311
[16]
Nathan A, Ahnood A, Cole M T, et al. Flexible electronics: the next ubiquitous platform. Proc IEEE, 2012, 100(Special Centennial Issue): 1486 doi: 10.1109/JPROC.2012.2190168
[17]
Münzenrieder N, Petti L, Zysset C, et al. Flexible self-aligned amorphous InGaZnO thin-film transistors with submicrometer channel length and a transit frequency of 135 MHz. IEEE Trans Electron Devices, 2013, 60(9): 2815 doi: 10.1109/TED.2013.2274575
[18]
Tripathi A, Smits E P, Van Der Putten J, et al. Low-voltage gallium–indium–zinc–oxide thin film transistors based logic circuits on thin plastic foil: building blocks for radio frequency identification application. Appl Phys Lett, 2011, 98(16): 162102 doi: 10.1063/1.3579529
[19]
Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973): 1603 doi: 10.1126/science.1182383
[20]
Sekitani T, Kaltenbrunner M, Yokota T, et al. Imperceptible Electronic Skin. SID Symp Dig Tech Pap, 2014, 45(1): 122 doi: 10.1002/j.2168-0159.2014.tb00034.x
[21]
Sun Y, Rogers J A. Inorganic semiconductors for flexible electronics. Adv Mater, 2007, 19(15): 1897 doi: 10.1002/(ISSN)1521-4095
[22]
Petti L, Münzenrieder N, Vogt C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev, 2016, 3(2): 021303 doi: 10.1063/1.4953034
[23]
Lee J K, Lim Y S, Park C , et al. a-Si: H thin-film transistor-driven flexible color E-paper display on flexible substrates. IEEE Electron Device Lett, 2010, 31(8): 833 doi: 10.1109/LED.2010.2051531
[24]
Huang J J, Chen Y P, Huang Y S, et al. A 4.1-inch flexible QVGA AMOLED using a microcrystalline-Si:H TFT on a polyimide substrate. SID Symp Dig Tech Pap, 2009, 40(1): 866 doi: 10.1889/1.3256932
[25]
Fukuda K, Takeda Y, Yoshimura Y, et al. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat Commun, 2014, 5: 4147
[26]
Yi H T, Payne M M, Anthony J E, et al. Ultra-flexible solution-processed organic field-effect transistors. Nat Commun, 2012, 3: 1259 doi: 10.1038/ncomms2263
[27]
Guo X, Xu Y, Ogier S, et al. Current status and opportunities of organic thin-film transistor technologies. IEEE Trans Electron Devices, 2017, 64(5): 1906 doi: 10.1109/TED.2017.2677086
[28]
Dimitrakopoulos C D, Mascaro D J. Organic thin-film transistors: a review of recent advances. IBM J Res Dev, 2001, 45(1): 11 doi: 10.1147/rd.451.0011
[29]
Lin P, Yan F. Organic thin-film transistors for chemical and biological sensing. Adv Mater, 2012, 24(1): 34 doi: 10.1002/adma.201103334
[30]
Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488 doi: 10.1038/nature03090
[31]
Nomura K, Takagi A, Kamiya T, et al. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn J Appl Phys, 2006, 45(5S): 4303
[32]
Kamiya T, Hiramatsu H, Nomura K, et al. Device applications of transparent oxide semiconductors: excitonic blue LED and transparent flexible TFT. J Electroceram, 2006, 17(2): 267
[33]
Raja J, Jang K, Nguyen C P T, et al. Improvement of mobility in oxide-based thin film transistors: a brief review. Trans Electr Electron Mater, 2015, 16(5): 234 doi: 10.4313/TEEM.2015.16.5.234
[34]
Kwon J Y, Lee D J, Kim K B. Transparent amorphous oxide semiconductor thin film transistor. Electron Mater Lett, 2011, 7(1): 1 doi: 10.1007/s13391-011-0301-x
[35]
Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012, 24(22): 2945 doi: 10.1002/adma.v24.22
[36]
Lee S, Nathan A. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science, 2016, 354(6310): 302 doi: 10.1126/science.aah5035
[37]
Park J S, Maeng W J, Kim H S, et al. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films, 2012, 520(6): 1679 doi: 10.1016/j.tsf.2011.07.018
[38]
Ahn B D, Jeon H J, Sheng J, et al. A review on the recent developments of solution processes for oxide thin film transistors. Semicond Sci Technol, 2015, 30(6): 064001 doi: 10.1088/0268-1242/30/6/064001
[39]
Kamiya T, Nomura K, Hosono H. Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. J Disp Technol, 2009, 5(7): 273 doi: 10.1109/JDT.2009.2021582
[40]
Liu N, Zhu L Q, Feng P, et al. Flexible sensory platform based on oxide-based neuromorphic transistors. Sci Rep, 2015, 5: 18082
[41]
Shah S, Smith J, Stowell J, et al. Biosensing platform on a flexible substrate. Sens Actuators B, 2015, 210: 197 doi: 10.1016/j.snb.2014.12.075
[42]
Jung S W, Koo J B, Park C W, et al. Flexible nonvolatile memory transistors using indium gallium zinc oxide-channel and ferroelectric polymer poly (vinylidene fluoride-co-trifluoroethylene) fabricated on elastomer substrate. J Vac Sci Technol B, 2015, 33(5): 051201 doi: 10.1116/1.4927367
[43]
Kim S J, Jeon D B, Park J H, et al. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate. ACS Appl Mater Inter, 2015, 7(8): 4869 doi: 10.1021/am508834y
[44]
Tripathi A K, Myny K, Hou B, et al. Electrical characterization of flexible InGaZnO transistors and 8-b transponder chip down to a bending radius of 2 mm. IEEE Trans Electron Devices, 2015, 62(12): 4063 doi: 10.1109/TED.2015.2494694
[45]
Mativenga M, Choi M H, Choi J W, et al. Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 2011, 32(2): 170 doi: 10.1109/LED.2010.2093504
[46]
Dindar A, Kim J, Fuentes-Hernandez C, et al. Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates. Appl Phys Lett, 2011, 99(17): 172104 doi: 10.1063/1.3656974
[47]
Park J S, Kim T W, Stryakhilev D, et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl Phys Lett, 2009, 95(1): 013503 doi: 10.1063/1.3159832
[48]
Nakata M, Motomura G, Nakajima Y, et al. Development of flexible displays using back-channel-etched In–Sn–Zn–O thin-film transistors and air-stable inverted organic light-emitting diodes. J Soc Inf Display, 2016, 24(1): 3 doi: 10.1002/jsid.408
[49]
Nag M, Bhoolokam A, Smout S, et al. Circuits and AMOLED display with self-aligned a-IGZO TFTs on polyimide foil. J Soc Inf Display, 2014, 22(10): 509 doi: 10.1002/jsid.v22.10
[50]
Hatano K, Chida A, Okano T, et al. 3.4-inch quarter high definition flexible active matrix organic light emitting display with oxide thin film transistor. Jpn J Appl Phys, 2011, 50(3S): 03CC06 doi: 10.7567/JJAP.50.03CC06
[51]
Nakajima Y, Nakata M, Takei T, et al. Development of 8-in. oxide-TFT-driven flexible AMOLED display using high-performance red phosphorescent OLED. J Soc Inf Display, 2014, 22(3): 137 doi: 10.1002/jsid.v22.3
[52]
Xu H, Pang J, Xu M, et al. Fabrication of flexible amorphous indium-gallium-zinc-oxide thin-film transistors by a chemical vapor deposition-free process on polyethylene napthalate. ECS J Solid State Sci Technol, 2014, 3(9): Q3035 doi: 10.1149/2.007409jss
[53]
Komatsu R, Nakazato R, Sasaki T, et al. Repeatedly foldable AMOLED display. J Soc Inf Display, 2015, 23(2): 41 doi: 10.1002/jsid.276
[54]
Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604 doi: 10.1002/adfm.201606604
[55]
Tee B C, Wang C, Allen R, et al. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol, 2012, 7(12): 825 doi: 10.1038/nnano.2012.192
[56]
Micera S, Carrozza M C, Beccai L, et al. Hybrid bionic systems for the replacement of hand function. Proc IEEE, 2006, 94(9): 1752 doi: 10.1109/JPROC.2006.881294
[57]
Coyle S, Wu Y, Lau K T, et al. Smart nanotextiles: a review of materials and applications. MRS Bull, 2007, 32(5): 434 doi: 10.1557/mrs2007.67
[58]
Kinkeldei T, Zysset C, Münzenrieder N, et al. An electronic nose on flexible substrates integrated into a smart textile. Senss Actuators B, 2012, 174: 81 doi: 10.1016/j.snb.2012.08.023
[59]
Vervust T, Buyle G, Bossuyt F, et al. Integration of stretchable and washable electronic modules for smart textile applications. J Text I, 2012, 103(10): 1127 doi: 10.1080/00405000.2012.664866
[60]
Cherenack K, Zysset C, Kinkeldei T, et al. Woven electronic fibers with sensing and display functions for smart textiles. Adv Mater, 2010, 22(45): 5178 doi: 10.1002/adma.201002159
[61]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6(5): 296 doi: 10.1038/nnano.2011.36
[62]
Benito-Lopez F, Coyle S, Byrne R, et al. Pump less wearable microfluidic device for real time pH sweat monitoring. Procedia Chemistry, 2009, 1(1): 1103 doi: 10.1016/j.proche.2009.07.275
[63]
Lemey S, Agneessens S, Van Torre P, et al. Wearable flexible lightweight modular RFID tag with integrated energy harvester. IEEE Trans Microwave Theory Tech, 2016, 64(7): 2304 doi: 10.1109/TMTT.2016.2573274
[64]
Yang L, Martin L, Staiculescu D, et al. A novel flexible magnetic composite material for RFID, wearable RF and bio-monitoring applications. IEEE MTT-S International Microwave Symposium Digest, 2008: 963
[65]
Hester J G, Tentzeris M M. Inkjet-printed flexible mm-wave Van-Atta reflectarrays: a solution for ultralong-range dense multitag and multisensing chipless RFID implementations for IoT smart skins. IEEE Trans Microwave Theory Tech, 2016, 64(12): 4763 doi: 10.1109/TMTT.2016.2623790
[66]
Falco A, Salmerón J F, Loghin F C, et al. Fully printed flexible single-chip RFID tag with light detection capabilities. Sensors, 2017, 17(3): 534 doi: 10.3390/s17030534
[67]
Imenes K, Andersen M H, Nguyen A-T T, et al. Implantable MEMS acceleration sensor for heart monitoring recent development and outlook. IEEE 4th Electronic System-Integration Technology Conference (ESTC), 2012: 1
[68]
Lo R, Li P Y, Saati S, et al. A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices, 2009, 11(5): 959 doi: 10.1007/s10544-009-9313-9
[69]
Hwang G T, Im D, Lee S E, et al. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano, 2013, 7(5): 4545 doi: 10.1021/nn401246y
[70]
Martins R F, Ahnood A, Correia N, et al. Recyclable, flexible, low-power oxide electronics. Adv Funct Mater, 2013, 23(17): 2153 doi: 10.1002/adfm.v23.17
[71]
Yang S, Bak J Y, Yoon S M, et al. Low-temperature processed flexible In–Ga–Zn–O thin-film transistors exhibiting high electrical performance. IEEE Electron Device Lett, 2011, 32(12): 1692 doi: 10.1109/LED.2011.2167122
[72]
Yin Y, Sawin H H. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma. J Vac Sci Technol A, 2008, 26(1): 151 doi: 10.1116/1.2821747
[73]
Kim C J, Kim S, Lee J H, et al. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. Appl Phys Lett, 2009, 95(25): 252103 doi: 10.1063/1.3275801
[74]
Jiang J, Sun J, Zhou B, et al. Vertical oxide homojunction TFTs of 0.8 V gated by H3PO4-treated SiO2 nanogranular dielectric. IEEE Electron Device Lett, 2010, 31(11): 1263
[75]
Weimer P K. The TFT a new thin-film transistor. Proc IRE, 1962, 50(6): 1462 doi: 10.1109/JRPROC.1962.288190
[76]
Jeong S, Lee J Y, Ham M H, et al. Bendable thin-film transistors based on sol–gel derived amorphous Ga-doped In2O3 semiconductors. Superlattices Microstruct, 2013, 59: 21 doi: 10.1016/j.spmi.2013.03.026
[77]
Park J H, Yoo Y B, Lee K H, et al. Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl Mater Inter, 2013, 5(16): 8067 doi: 10.1021/am402153g
[78]
Ju S, Facchetti A, Xuan Y, et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat Nanotechnol, 2007, 2(6): 378 doi: 10.1038/nnano.2007.151
[79]
Lee C, Lin M, Wu W, et al. Flexible ZnO transparent thin-film transistors by a solution-based process at various solution concentrations. Semicond Sci Technol, 2010, 25(10): 105008 doi: 10.1088/0268-1242/25/10/105008
[80]
Zeumault A, Ma S, Holbery J. Fully inkjet-printed metal-oxide thin-film transistors on plastic. Phys Status Solidi A, 2016, 213(8): 2189 doi: 10.1002/pssa.v213.8
[81]
Kim S H, Yoon J, Yun S O, et al. Ultrathin sticker-type ZnO thin film transistors formed by transfer printing via topological confinement of water-soluble sacrificial polymer in dimple structure. Adv Funct Mater, 2013, 23(11): 1375 doi: 10.1002/adfm.201202409
[82]
Kim M-G, Kanatzidis M G, Facchetti A, et al. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater, 2011, 10(5): 382 doi: 10.1038/nmat3011
[83]
Dasgupta S, Kruk R, Mechau N, et al. Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature. ACS Nano, 2011, 5(12): 9628 doi: 10.1021/nn202992v
[84]
Lee S, Jeon S, Chaji R, et al. Transparent semiconducting oxide technology for touch free interactive flexible displays. Proc IEEE, 2015, 103(4): 644 doi: 10.1109/JPROC.2015.2405767
[85]
Ginley D S, Bright C. Transparent conducting oxides. MRS Bull, 2000, 25(8): 15 doi: 10.1557/mrs2000.256
[86]
Nomura K, Ohta H, Ueda K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300(5623): 1269 doi: 10.1126/science.1083212
[87]
Libsch F, Kanicki J. Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors. Appl Phys Lett, 1993, 62(11): 1286 doi: 10.1063/1.108709
[88]
Hosono H, Kikuchi N, Ueda N, et al. Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. J Non-Cryst Solids, 1996, 198: 165
[89]
Orita M, Ohta H, Hirano M, et al. Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤4): a Zn4s conductor. Philos Mag B, 2001, 81(5): 501 doi: 10.1080/13642810110045923
[90]
Park J S, Kim K, Park Y G, et al. Novel ZrInZnO thin-film transistor with excellent stability. Adv Mater, 2009, 21(3): 329 doi: 10.1002/adma.v21:3
[91]
Xingqiang L, Jinshui M, Lei L, et al. High-mobility transparent amorphous metal oxide/nanostructure composite thin film transistors with enhanced-current paths for potential high-speed flexible electronics. J Mater Chem C, 2014, 2(7): 1201 doi: 10.1039/C3TC31705F
[92]
Yu X, Zeng L, Zhou N, et al. Ultra-flexible," invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends. Adv Mater, 2015, 27(14): 2390 doi: 10.1002/adma.v27.14
[93]
Özgür Ü, Hofstetter D, Morkoc H. ZnO devices and applications: a review of current status and future prospects. Proc IEEE, 2010, 98(7): 1255 doi: 10.1109/JPROC.2010.2044550
[94]
Wang Z, Nayak P K, Caraveo-Frescas J A, et al. Recent developments in p-type oxide semiconductor materials and devices. Adv Mater, 2016, 28(20): 3831 doi: 10.1002/adma.v28.20
[95]
Liang L Y, Cao H T, Chen X B, et al. Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities. Appl Phys Lett, 2012, 100(26): 263502 doi: 10.1063/1.4731271
[96]
Yao Z, Liu S, Zhang L, et al. Room temperature fabrication of p-channel Cu2O thin-film transistors on flexible polyethylene terephthalate substrates. Appl Phys Lett, 2012, 101(4): 042114 doi: 10.1063/1.4739524
[97]
Yabuta H, Kaji N, Hayashi R, et al. Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits. Appl Phys Lett, 2010, 97(7): 072111 doi: 10.1063/1.3478213
[98]
Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, et al. Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano, 2013, 7(6): 5160 doi: 10.1021/nn400852r
[99]
Martins R, Nathan A, Barros R, et al. Complementary metal oxide semiconductor technology with and on paper. Adv Mater, 2011, 23(39): 4491 doi: 10.1002/adma.201102232
[100]
Caraveo-Frescas J, Khan M, Alshareef H N. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility. Sci Rep, 2014, 4: 5243
[101]
Shiosaki T, Ohnishi S, Hirokawa Y, et al. As-grown CVD ZnO optical waveguides on sapphire. Appl Phys Lett, 1978, 33(5): 406 doi: 10.1063/1.90393
[102]
Tynell T, Karppinen M. Atomic layer deposition of ZnO: a review. Semicond Sci Technol, 2014, 29(4): 043001 doi: 10.1088/0268-1242/29/4/043001
[103]
Diniz A S A C. The effects of various annealing regimes on the microstructure and physical properties of ITO (In2O3:Sn) thin films deposited by electron beam evaporation for solar energy applications. Renew Energ, 2011, 36(4): 1153 doi: 10.1016/j.renene.2010.09.005
[104]
Kim S J, Yoon S, Kim H J. Review of solution-processed oxide thin-film transistors. Jpn J Appl Phys, 2014, 53(2S): 02B
[105]
Thomas S R, Pattanasattayavong P, Anthopoulos T D. Solution-processable metal oxide semiconductors for thin-film transistor applications. Chem Soc Rev, 2013, 42(16): 6910 doi: 10.1039/c3cs35402d
[106]
Seo J S, Jeon J H, Hwang Y H, et al. Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci Rep, 2013, 3: 2085 doi: 10.1038/srep02085
[107]
Kim S Y, Kim K, Hwang Y, et al. High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance. Nanoscale, 2016, 8(39): 17113 doi: 10.1039/C6NR05577J
[108]
Choi C H, Lin L Y, Cheng C C, et al. Printed oxide thin film transistors: a mini review. ECS J Solid State Sci Technol, 2015, 4(4): P3044 doi: 10.1149/2.0071504jss
[109]
Wee D, Yoo S, Kang Y H, et al. Poly (imide-benzoxazole) gate insulators with high thermal resistance for solution-processed flexible indium-zinc oxide thin-film transistors. J Mater Chem C, 2014, 2(31): 6395 doi: 10.1039/C4TC00709C
[110]
Leppäniemi J, Huttunen O H, Majumdar H, et al. Flexography-printed In2O3 semiconductor layers for high-mobility thin-film transistors on flexible plastic substrate. Adv Mater, 2015, 27(44): 7168 doi: 10.1002/adma.201502569
[111]
Nakata M, Takechi K, Eguchi T, et al. Effects of thermal annealing on ZnO thin-film transistor characteristics and the application of excimer laser annealing in plastic-based ZnO thin-film transistors. Jpn J Appl Phys, 2009, 48(8R): 081608
[112]
Zhang J, Wu G D. Ultralow-voltage electric-double-layer oxide-based thin-film transistors with faster switching response on flexible substrates. Chin Phys Lett, 2014, 31(7): 078502 doi: 10.1088/0256-307X/31/7/078502
[113]
Zhang J, Liu Y, Guo L, et al. Flexible oxide-based thin-film transistors on plastic substrates for logic applications. J Mater Sci Technol, 2015, 31(2): 171 doi: 10.1016/j.jmst.2014.07.009
[114]
Sheets W C, Kang S J, Hsieh H H, et al. Organic gate insulator materials for amorphous metal oxide TFTs. IEEE 65th Electronic Components and Technology Conference (ECTC), 2015: 1878
[115]
Gao P, Lan L, Xiao P, et al. Solution-processed flexible zinc-tin oxide thin-film transistors on ultra-thin polyimide substrates. J Soc Inf Display, 2016, 24(4): 211 doi: 10.1002/jsid.438
[116]
Kim Y C, Lee S J, Oh I-K, et al. Bending stability of flexible amorphous IGZO thin film transistors with transparent IZO/Ag/IZO oxide–metal–oxide electrodes. J Alloy Compd, 2016, 688: 1108 doi: 10.1016/j.jallcom.2016.07.169
[117]
Cantarella G, Ishida K, Petti L, et al. Flexible In–Ga–Zn–O-based circuits with two and three metal layers: simulation and fabrication study. IEEE Electron Device Lett, 2016, 37(12): 1582 doi: 10.1109/LED.2016.2619738
[118]
Petti L, Frutiger A, Münzenrieder N, et al. Flexible quasi-vertical In–Ga–Zn–O thin-film transistor with 300-nm channel length. IEEE Electron Device Lett, 2015, 36(5): 475 doi: 10.1109/LED.2015.2418295
[119]
Chen Y, Geng D, Lin T, et al. Full-swing clock generating circuits on plastic using a-IGZO dual-gate TFTs with pseudo-CMOS and bootstrapping. IEEE Electron Device Lett, 2016, 37(7): 882 doi: 10.1109/LED.2016.2571321
[120]
Song K, Noh J, Jun T, et al. Fully flexible solution-deposited ZnO thin-film transistors. Adv Mater, 2010, 22(38): 4308 doi: 10.1002/adma.201002163
[121]
Bong H, Lee W H, Lee D Y, et al. High-mobility low-temperature ZnO transistors with low-voltage operation. Appl Phys Lett, 2010, 96(19): 192115 doi: 10.1063/1.3428357
[122]
Jackson W, Hoffman R, Herman G. High-performance flexible zinc tin oxide field-effect transistors. Appl Phys Lett, 2005, 87(19): 193503 doi: 10.1063/1.2120895
[123]
Cherenack K H, Münzenrieder N S, Troster G. Impact of mechanical bending on ZnO and IGZO thin-film transistors. IEEE Electron Device Lett, 2010, 31(11): 1254
[124]
Petti L, Münzenrieder N, Salvatore G A, et al. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs. IEEE Trans Electron Devices, 2014, 61(4): 1085 doi: 10.1109/TED.2014.2304307
[125]
Petti L, Faber H, Münzenrieder N, et al. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits. Appl Phys Lett, 2015, 106(9): 092105 doi: 10.1063/1.4914085
[126]
Kim I D, Choi Y, Tuller H L. Low-voltage ZnO thin-film transistors with high-k Bi1.0Nb1.5O7 gate insulator for transparent and flexible electronics. Appl Phys Lett, 2005, 87(4): 043509 doi: 10.1063/1.1993762
[127]
Su N C, Wang S J, Huang C C, et al. Low-voltage-driven flexible InGaZnO thin-film transistor with small subthreshold swing. IEEE Electron Device Lett, 2010, 31(7): 680 doi: 10.1109/LED.2010.2047232
[128]
Rim Y S, Jeong W H, Kim D L, et al. Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors. J Mater Chem, 2012, 22(25): 12491 doi: 10.1039/c2jm16846d
[129]
Liao P Y, Chang T C, Su W C, et al. Effect of mechanical-strain-induced defect generation on the performance of flexible amorphous In–Ga–Zn–O thin-film transistors. Appl Phys Express, 2016, 9(12): 124101 doi: 10.7567/APEX.9.124101
[130]
Zhao D, Mourey D A, Jackson T N. Fast flexible plastic substrate ZnO circuits. IEEE Electron Device Lett, 2010, 31(4): 323 doi: 10.1109/LED.2010.2041321
[131]
Hsieh H H, Wu C H, Wu C C, et al. Amorphous In2O3–Ga2O3–ZnO thin film transistors and integrated circuits on flexible and colorless polyimide substrates. SID Symp Dig Tech Pap, 2008, 39(1): 1207 doi: 10.1889/1.3069352
[132]
Sheng J, Lee H J, Oh S, et al. Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS Appl Mater Inter, 2016, 8(49): 33821 doi: 10.1021/acsami.6b11774
[133]
Park J, Kim C S, Ahn B, et al. Flexible In–Ga–Zn–O thin-film transistors fabricated on polyimide substrates and mechanically induced instability under negative bias illumination stress. J Electroceram, 2015, 1(35): 106
[134]
Jo J W, Kim J, Kim K T, et al. Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors. Adv Mater, 2015, 27(7): 1182 doi: 10.1002/adma.201404296
[135]
You H C, Lin Y H. Investigation of the sol–gel method on the flexible ZnO device. Int J Electrochem Sci, 2012, 7: 9085
[136]
Hwang B U, Kim D I, Cho S W, et al. Role of ultrathin Al2O3 layer in organic/inorganic hybrid gate dielectrics for flexibility improvement of InGaZnO thin film transistors. Org Electron, 2014, 15(7): 1458 doi: 10.1016/j.orgel.2014.04.003
[137]
Rim Y S, Chen H, Liu Y, et al. Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS Nano, 2014, 8(9): 9680 doi: 10.1021/nn504420r
[138]
Kinkeldei T, Münzenrieder N, Zysset C, et al. Encapsulation for flexible electronic devices. IEEE Electron Device Lett, 2011, 32(12): 1743 doi: 10.1109/LED.2011.2168378
[139]
Lai H C, Pei Z, Jian J R, et al. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability. Appl Phys Lett, 2014, 105(3): 033510 doi: 10.1063/1.4891426
[140]
Kim J M, Nam T, Lim S, et al. Atomic layer deposition ZnO:N flexible thin film transistors and the effects of bending on device properties. Appl Phys Lett, 2011, 98(14): 142113 doi: 10.1063/1.3577607
[141]
Marrs M A, Moyer C D, Bawolek E J, et al. Control of threshold voltage and saturation mobility using dual-active-layer device based on amorphous mixed metal–oxide–semiconductor on flexible plastic substrates. IEEE Trans Electron Devices, 2011, 58(10): 3428 doi: 10.1109/TED.2011.2161764
[142]
Smith J T, Shah S S, Goryll M, et al. Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer. IEEE Sens J, 2014, 14(4): 937 doi: 10.1109/JSEN.2013.2295057
[143]
Dey A, Indluru A, Venugopal S M, et al. Effect of mechanical and electromechanical stress on a-ZIO TFTs. IEEE Electron Device Lett, 2010, 31(12): 1416 doi: 10.1109/LED.2010.2080350
[144]
Yoon S M, Yang S, Park S H K. Flexible nonvolatile memory thin-film transistor using ferroelectric copolymer gate insulator and oxide semiconducting channel. J Electrochem Soc, 2011, 158(9): H892 doi: 10.1149/1.3609842
[145]
Lujan R, Street R. Flexible X-ray detector array fabricated with oxide thin-film transistors. IEEE Electron Device Lett, 2012, 33(5): 688 doi: 10.1109/LED.2012.2188825
[146]
Kim S J, Park M J, Yun D J, et al. High performance and stable flexible memory thin-film transistors using In–Ga–Zn–O channel and ZnO charge-trap layers on poly (ethylene naphthalate) substrate. IEEE Trans Electron Devices, 2016, 63(4): 1557 doi: 10.1109/TED.2016.2531087
[147]
Xiao P, Dong T, Lan L, et al. High-mobility flexible thin-film transistors with a low-temperature zirconium-doped indium oxide channel layer. Phys Status Solidi R, 2016, 10(6): 493 doi: 10.1002/pssr.201600052
[148]
Kaftanoglu K, Venugopal S M, Marrs M, et al. Stability of IZO and a-Si: H TFTs processed at low temperature (200 ℃). J Disp Technol, 2011, 7(6): 339 doi: 10.1109/JDT.2011.2107879
[149]
Lee G G, Tokumitsu E, Yoon S M, et al. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly (vinylidene fluoride-trifluoroethylene). Appl Phys Lett, 2011, 99(1): 012901 doi: 10.1063/1.3608145
[150]
Smith J, Couture A, Allee D. Charge emission induced transient leakage currents of a-Si: H and IGZO TFTs on flexible plastic substrates. Electron Lett, 2014, 50(2): 105 doi: 10.1049/el.2013.3795
[151]
Lin Y H, Faber H, Zhao K, et al. High-performance ZnO transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80–180 °C. Adv Mater, 2013, 25(31): 4340 doi: 10.1002/adma.v25.31
[152]
Liu J, Buchholz D B, Chang R P, et al. High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel. Adv Mater, 2010, 22(21): 2333 doi: 10.1002/adma.200903761
[153]
Han D, Chen Z, Cong Y, et al. High-performance flexible tin-zinc-oxide thin-film transistors fabricated on plastic substrates. IEEE Trans Electron Devices, 2016, 63(8): 3360
[154]
Liu J, Buchholz D B, Hennek J W, et al. All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics. J Am Chem Soc, 2010, 132(34): 11934 doi: 10.1021/ja9103155
[155]
Huang L, Han D, Chen Z, et al. Flexible nickel-doped zinc oxide thin-film transistors fabricated on plastic substrates at low temperature. Jpn J Appl Phys, 2015, 54(4S): 04D
[156]
Lim W, Jang J H, Kim S H, et al. High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates. Appl Phys Lett, 2008, 93(8): 082102 doi: 10.1063/1.2975959
[157]
Hyung G W, Park J, Wang J X, et al. Amorphous indium gallium zinc oxide thin-film transistors with a low-temperature polymeric gate dielectric on a flexible substrate. Jpn J Appl Phys, 2013, 52(7R): 071102 doi: 10.7567/JJAP.52.071102
[158]
Choi K M, Hyung G W, Yang J W, et al. Fabrication of atomic layer deposited zinc oxide thin film transistors with organic gate insulator on flexible substrate. Mol Cryst Liq Cryst, 2010, 529(1): 131 doi: 10.1080/15421406.2010.495889
[159]
Lee C Y, Chang C, Shih W P, et al. Wet etching rates of InGaZnO for the fabrication of transparent thin-film transistors on plastic substrates. Thin Solid Films, 2010, 518(14): 3992 doi: 10.1016/j.tsf.2009.12.010
[160]
Ha Y G, Everaerts K, Hersam M C, et al. Hybrid gate dielectric materials for unconventional electronic circuitry. Acc Chem Res, 2014, 47(4): 1019 doi: 10.1021/ar4002262
[161]
Han D, Zhang Y, Cong Y, et al. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate. Sci Rep, 2016, 6: 38984 doi: 10.1038/srep38984
[162]
Kumomi H, Nomura K, Kamiya T, et al. Amorphous oxide channel TFTs. Thin Solid Films, 2008, 516(7): 1516 doi: 10.1016/j.tsf.2007.03.161
[163]
Liu Y, Zhou H, Cheng R, et al. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett, 2014, 14(3): 1413 doi: 10.1021/nl404484s
[164]
Vidor F F, Meyers T, Wirth G I, et al. ZnO nanoparticle thin-film transistors on flexible substrate using spray-coating technique. Microelectron Eng, 2016, 159: 155 doi: 10.1016/j.mee.2016.02.059
[165]
Hsu H H, Chang C Y, Cheng C H, et al. High mobility field-effect thin film transistor using room-temperature high-k gate dielectrics. J Disp Technol, 2014, 10(10): 847 doi: 10.1109/JDT.2014.2326175
[166]
Hsu H H, Chang C Y, Cheng C H. A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature. IEEE Electron Device Lett, 2013, 34(6): 768 doi: 10.1109/LED.2013.2258455
[167]
Hsu H H, Chiu Y C, Chiou P, et al. Improvement of dielectric flexibility and electrical properties of mechanically flexible thin film devices using titanium oxide materials fabricated at a very low temperature of 100 °C. J Alloy Compd, 2015, 643: S133 doi: 10.1016/j.jallcom.2014.12.061
[168]
Jun J H, Park B, Cho K, et al. Flexible TFTs based on solution-processed ZnO nanoparticles. Nanotechnology, 2009, 20(50): 505201 doi: 10.1088/0957-4484/20/50/505201
[169]
Kim J, Fuentes-Hernandez C, Kim S J, et al. Flexible hybrid complementary inverters with high gain and balanced noise margins using pentacene and amorphous InGaZnO thin-film transistors. Org Electron, 2010, 11(6): 1074 doi: 10.1016/j.orgel.2010.03.008
[170]
Kim J, Fuentes-Hernandez C, Hwang D, et al. Vertically stacked hybrid organic–inorganic complementary inverters with low operating voltage on flexible substrates. Org Electron, 2011, 12(1): 45 doi: 10.1016/j.orgel.2010.10.012
[171]
Oh H, Cho K, Park S, et al. Electrical characteristics of bendable a-IGZO thin-film transistors with split channels and top-gate structure. Microelectron Eng, 2016, 159: 179 doi: 10.1016/j.mee.2016.03.044
[172]
Park S, Cho K, Yang K, et al. Electrical characteristics of flexible ZnO thin-film transistors annealed by microwave irradiation. J Vac Sci Technol B, 2014, 32(6): 062203 doi: 10.1116/1.4898115
[173]
Park K, Lee D K, Kim B S, et al. Stretchable, transparent zinc oxide thin film transistors. Adv Funct Mater, 2010, 20(20): 3577 doi: 10.1002/adfm.v20:20
[174]
Cantarella G, Münzenrieder N, Petti L, et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain. IEEE Electron Device Lett, 2015, 36(8): 781 doi: 10.1109/LED.2015.2442271
[175]
Cheong W S, Bak J Y, Kim H S. Transparent flexible zinc–indium–tin oxide thin-film transistors fabricated on polyarylate films. Jpn J Appl Phys, 2010, 49(5S1): 05EB10
[176]
Jin S H, Kang S K, Cho I T, et al. Water-soluble thin film transistors and circuits based on amorphous indium–gallium–zinc oxide. ACS Appl Mater Inter, 2015, 7(15): 8268 doi: 10.1021/acsami.5b00086
[177]
Jin J, Ko J H, Yang S, et al. Rollable transparent glass‐fabric reinforced composite substrate for flexible devices. Adv Mater, 2010, 22(40): 4510 doi: 10.1002/adma.v22:40
[178]
Ok K C, Park S H K, Hwang C S, et al. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Appl Phys Lett, 2014, 104(6): 063508 doi: 10.1063/1.4864617
[179]
Chien C W, Wu C H, Tsai Y T, et al. High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates. IEEE Trans Electron Devices, 2011, 58(5): 1440 doi: 10.1109/TED.2011.2109041
[180]
Ok K C, Oh S, Jeong H J, et al. Effect of alumina buffers on the stability of top-gate amorphous InGaZnO thin-film transistors on flexible substrates. IEEE Electron Device Lett, 2015, 36(9): 917 doi: 10.1109/LED.2015.2461003
[181]
Park C B, Na H, Yoo S S, et al. Electrical characteristics of a-IGZO transistors along the in-plane axis during outward bending. Microelectron Reliab, 2016, 59: 37 doi: 10.1016/j.microrel.2016.01.006
[182]
Park S, Kim K H, Jo J W, et al. In-depth studies on rapid photochemical activation of various sol-gel metal oxide films for flexible transparent electronics. Adv Funct Mater, 2015, 25(19): 2807 doi: 10.1002/adfm.201500545
[183]
Mativenga M, Geng D, Kim B, et al. Fully transparent and rollable electronics. ACS Appl Mater Inter, 2015, 7(3): 1578 doi: 10.1021/am506937s
[184]
Lin C Y, Chien C W, Wu C C, et al. Effects of mechanical strains on the characteristics of top-gate staggered a-IGZO thin-film transistors fabricated on polyimide-based nanocomposite substrates. IEEE Trans Electron Devices, 2012, 59(7): 1956 doi: 10.1109/TED.2012.2193585
[185]
Li X, Billah M M, Mativenga M, et al. Highly robust flexible oxide thin-film transistors by bulk accumulation. IEEE Electron Device Lett, 2015, 36(8): 811 doi: 10.1109/LED.2015.2451005
[186]
Münzenrieder N, Salvatore G A, Petti L, et al. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation. Appl Phys Lett, 2014, 105(26): 263504 doi: 10.1063/1.4905015
[187]
Münzenrieder N, Cherenack K H, Troster G. The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Trans Electron Devices, 2011, 58(7): 2041 doi: 10.1109/TED.2011.2143416
[188]
Lee S J, Ko J, Park J H, et al. Effective work function modulation of SWCNT–AZO NP hybrid electrodes in fully solution-processed flexible metal-oxide thin film transistors. J Mater Chem C, 2015, 3(31): 8121 doi: 10.1039/C5TC01481F
[189]
Kim D, Hwang B, Park J, et al. Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors. Org Electron, 2012, 13(11): 2401 doi: 10.1016/j.orgel.2012.06.038
[190]
Münzenrieder N, Petti L, Zysset C, et al. Flexible a-IGZO TFT amplifier fabricated on a free standing polyimide foil operating at 1.2 MHz while bent to a radius of 5 mm. IEEE International Electron Devices Meeting (IEDM), 2012: 5.2. 1
[191]
Ji L W, Wu C Z, Fang T H, et al. Characteristics of flexible thin-film transistors with ZnO channels. IEEE Sens J, 2013, 13(12): 4940 doi: 10.1109/JSEN.2013.2267808
[192]
Münzenrieder N, Zysset C, Petti L, et al. Flexible double gate a-IGZO TFT fabricated on free standing polyimide foil. Solid-State Electron, 2013, 84: 198 doi: 10.1016/j.sse.2013.02.025
[193]
Lim W, Douglas E, Kim S H, et al. Low-temperature-fabricated InGaZnO4 thin film transistors on polyimide clean-room tape. Appl Phys Lett, 2008, 93(25): 252103 doi: 10.1063/1.3054167
[194]
Bak J Y, Yoon S M, Yang S, et al. Effect of In–Ga–Zn–O active layer channel composition on process temperature for flexible oxide thin-film transistors. J Vac Sci Technol B, 2012, 30(4): 041208 doi: 10.1116/1.4731257
[195]
Wu S C, Feng H T, Yu M J, et al. Flexible three-bit-per-cell resistive switching memory using a-IGZO TFTs. IEEE Electron Device Lett, 2013, 34(10): 1265 doi: 10.1109/LED.2013.2278098
[196]
Hwang Y H, Seo J S, Yun J M, et al. An ‘aqueous route’ for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates. NPG Asia Mater, 2013, 5(4): e45 doi: 10.1038/am.2013.11
[197]
Sharma B K, Jang B, Lee J E, et al. Load-controlled roll transfer of oxide transistors for stretchable electronics. Adv Funct Mater, 2013, 23(16): 2024 doi: 10.1002/adfm.v23.16
[198]
Eun K, Hwang W, Sharma B, et al. Mechanical flexibility of zinc oxide thin-film transistors prepared by transfer printing method. Mod Phys Lett B, 2012, 26(12): 1250077 doi: 10.1142/S0217984912500777
[199]
Park M J, Yun D J, Ryu M K, et al. Improvements in the bending performance and bias stability of flexible InGaZnO thin film transistors and optimum barrier structures for plastic poly (ethylene naphthalate) substrates. J Mater Chem C, 2015, 3(18): 4779 doi: 10.1039/C5TC00048C
[200]
Li H U, Jackson T N. Oxide semiconductor thin film transistors on thin solution-cast flexible substrates. IEEE Electron Device Lett, 2015, 36(1): 35 doi: 10.1109/LED.2014.2371011
[201]
Salvatore G A, Münzenrieder N, Kinkeldei T, et al. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat Commun, 2014, 5: 2982
[202]
Petti L, Münzenrieder N, Salvatore G A, et al. Flexible electronics based on oxide semiconductors. IEEE 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2014: 323
[203]
Yuan H, Wang H, Cui Y. Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling. ACC Chem Res, 2015, 48(1): 81 doi: 10.1021/ar5003297
[204]
Fujimoto T, Awaga K. Electric-double-layer field-effect transistors with ionic liquids. Phys Chem Chem Phys, 2013, 15(23): 8983 doi: 10.1039/c3cp50755f
[205]
Du H, Lin X, Xu Z, et al. Electric double-layer transistors: a review of recent progress. J Mater Sci, 2015, 50(17): 5641 doi: 10.1007/s10853-015-9121-y
[206]
Ono S, Seki S, Hirahara R, et al. High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl Phys Lett, 2008, 92(10): 93
[207]
Zhou J, Wu G, Guo L, et al. Flexible transparent junctionless TFTs with oxygen-tuned indium–zinc–oxide channels. IEEE Electron Device Lett, 2013, 34(7): 888 doi: 10.1109/LED.2013.2260819
[208]
Hong K, Kim S H, Lee K H, et al. Printed, sub-2 V ZnO electrolyte gated transistors and inverters on plastic. Adv Mater, 2013, 25(25): 3413 doi: 10.1002/adma.v25.25
[209]
Liu Y H, Zhu L Q, Feng P, et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater, 2015, 27(37): 5599 doi: 10.1002/adma.201502719
[210]
Martins R, Ferreira I, Fortunato E. Electronics with and on paper. Phys Status Solidi-R, 2011, 5(9): 332 doi: 10.1002/pssr.201105247
[211]
Lim W, Douglas E, Norton D, et al. Low-voltage indium gallium zinc oxide thin film transistors on paper substrates. Appl Phys Lett, 2010, 96(5): 053510 doi: 10.1063/1.3309753
[212]
Wu G, Wan X, Yang Y, et al. Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates. J Phys D: Appl Phys, 2014, 47(49): 495101 doi: 10.1088/0022-3727/47/49/495101
[213]
Dou W, Zhu L, Jiang J, et al. Flexible dual-gate oxide TFTs gated by chitosan film on paper substrates. IEEE Electron Device Lett, 2013, 34(2): 259 doi: 10.1109/LED.2012.2231661
[214]
Jiang J, Sun J, Dou W, et al. Junctionless flexible oxide-based thin-film transistors on paper substrates. IEEE Electron Device Lett, 2012, 33(1): 65 doi: 10.1109/LED.2011.2172973
[215]
Jiang J, Sun J, Dou W, et al. In-plane-gate indium–tin–oxide thin-film transistors self-assembled on paper substrates. Appl Phys Lett, 2011, 98(11): 113507 doi: 10.1063/1.3567946
[216]
Lim W, Douglas E, Kim S H, et al. High mobility InGaZnO4 thin-film transistors on paper. Appl Phys Lett, 2009, 94(7): 072103 doi: 10.1063/1.3086394
[217]
Jiang S, Feng P, Yang Y, et al. Flexible low-voltage In–Zn–O homojunction TFTs with beeswax gate dielectric on paper substrates. IEEE Electron Device Lett, 2016, 37(3): 287 doi: 10.1109/LED.2016.2518666
[218]
Lu A, Dai M, Sun J, et al. Flexible low-voltage electric-double-layer TFTs self-assembled on paper substrates. IEEE Electron Device Lett, 2011, 32(4): 518 doi: 10.1109/LED.2011.2107550
[219]
Thiemann S, Sachnov S J, Pettersson F, et al. Cellulose-based ionogels for paper electronics. Adv Funct Mater, 2014, 24(5): 625 doi: 10.1002/adfm.201302026
[220]
Pereira L, Gaspar D, Guerin D, et al. The influence of fibril composition and dimension on the performance of paper gated oxide transistors. Nanotechnology, 2014, 25(9): 094007 doi: 10.1088/0957-4484/25/9/094007
[221]
Martins R, Barquinha P, Pereira L, et al. Write-erase and read paper memory transistor. Appl Phys Lett, 2008, 93(20): 203501 doi: 10.1063/1.3030873
[222]
Gaspar D, Fernandes S, De Oliveira A, et al. Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology, 2014, 25(9): 094008 doi: 10.1088/0957-4484/25/9/094008
[223]
Wu G D, Zhang J, Wan X. Junctionless coplanar-gate oxide-based thin-film transistors gated by Al2O3 proton conducting films on paper substrates. Chin Phys Lett, 2014, 31(10): 108505 doi: 10.1088/0256-307X/31/10/108505
[224]
Sun J, Jiang J, Lu A, et al. One-volt oxide thin-film transistors on paper substrates gated by SiO2-based solid electrolyte with controllable operation modes. IEEE Trans Electron Devices, 2010, 57(9): 2258 doi: 10.1109/TED.2010.2052168
[225]
Choi N, Khan S A, Ma X, et al. Amorphous oxide thin film transistors with methyl siloxane based gate dielectric on paper substrate. Electrochem Solid-State Lett, 2011, 14(6): H247 doi: 10.1149/1.3570612
[226]
Fortunato E, Correia N, Barquinha P, et al. High-performance flexible hybrid field-effect transistors based on cellulose fiber paper. IEEE Electron Device Lett, 2008, 29(9): 988 doi: 10.1109/LED.2008.2001549
[227]
Martins R, Barquinha P, Pereira L, et al. Selective floating gate non-volatile paper memory transistor. Phys Status Solidi R, 2009, 3(9): 308
[228]
Mahmoudabadi F, Ma X, Hatalis M K, et al. Amorphous IGZO TFTs and circuits on conformable aluminum substrates. Solid-State Electron, 2014, 101: 57 doi: 10.1016/j.sse.2014.06.031
[229]
Park I J, Jeong C Y, Cho I T, et al. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors. Semicond Sci Technol, 2012, 27(10): 105019 doi: 10.1088/0268-1242/27/10/105019
[230]
Plichta A, Weber A, Habeck A. Ultra thin flexible glass substrates. Symposium on Flexible Electronics-Materials and Device Technology held at the 2003 MRS Spring Meeting, 2003: 273
[231]
Lee G J, Kim J, Kim J H, et al. High performance, transparent a-IGZO TFTs on a flexible thin glass substrate. Semicond Sci Technol, 2014, 29(3): 035003 doi: 10.1088/0268-1242/29/3/035003
[232]
Yamauchi N, Itoh T, Noguchi T. Low energy-cost TFT technologies using ultra-thin flexible glass substrate. IEEE 19th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2012: 213
[233]
Dai M K, Lian J T, Lin T Y, et al. High-performance transparent and flexible inorganic thin film transistors: a facile integration of graphene nanosheets and amorphous InGaZnO. J Mater Chem C, 2013, 1(33): 5064 doi: 10.1039/c3tc30890a
[234]
Münzenrieder N, Voser P, Petti L, et al. Flexible self-aligned double-gate IGZO TFT. IEEE Electron Device Lett, 2014, 35(1): 69 doi: 10.1109/LED.2013.2286319
[235]
Li Y, Liu Y, Yun F, et al. Self-assembled transparent a-IGZO based TFTs for flexible sensing applications. International Symposium on Photonics and Optoelectronics, 2014: 92332A
[236]
Smith J T, Couture A J, Stowell J R, et al. Optically seamless flexible electronic tiles for ultra large-area digital X-ray imaging. IEEE Trans Compon Packag Manuf Technol, 2014, 4(6): 1109 doi: 10.1109/TCPMT.2014.2316477
[237]
Gelinck G H, Kumar A, Van Der Steen J L P, et al. X-ray detector-on-plastic with high sensitivity using low cost, solution-processed organic photodiodes. IEEE Trans Electron Devices, 2016, 63(1): 197 doi: 10.1109/TED.2015.2432572
[238]
Honda W, Harada S, Ishida S, et al. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv Mater, 2015, 27(32): 4674 doi: 10.1002/adma.v27.32
[239]
Kim J, Kim J, Jo S, et al. Ultrahigh detective heterogeneous photosensor arrays with in-pixel signal boosting capability for large-area and skin-compatible electronics. Adv Mater, 2016, 28(16): 3078 doi: 10.1002/adma.201505149
[240]
Van Breemen A, Kam B, Cobb B, et al. Ferroelectric transistor memory arrays on flexible foils. Org Electron, 2013, 14(8): 1966 doi: 10.1016/j.orgel.2013.04.025
[241]
Myny K, Steudel S. Flexible thin-film nfc transponder chip exhibiting data rates compatible to ISO NFC standards using self-aligned metal-oxide tfts. IEEE International Solid-State Circuits Conference (ISSCC), 2016: 298
[242]
Zhang L R, Huang C Y, Li G M, et al. A low-power high-stability flexible scan driver integrated by IZO TFTs. IEEE Trans Electron Devices, 2016, 63(4): 1779 doi: 10.1109/TED.2016.2529656
[243]
Meister T, Ishida K, Shabanpour R, et al. 20.3 dB 0.39 mW AM detector with single-transistor active inductor in bendable a-IGZO TFT. IEEE 46th European Solid-State Device Research Conference (ESSDERC), 2016: 71
[244]
Huang T C, Fukuda K, Lo C M, et al. Pseudo-CMOS: a design style for low-cost and robust flexible electronics. IEEE Trans Electron Devices, 2011, 58(1): 141 doi: 10.1109/TED.2010.2088127
[245]
Münzenrieder N, Zysset C, Kinkeldei T, et al. Design rules for IGZO logic gates on plastic foil enabling operation at bending radii of 3.5 mm. IEEE Trans Electron Devices, 2012, 59(8): 2153 doi: 10.1109/TED.2012.2198480
[246]
Kim Y H, Heo J S, Kim T H, et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature, 2012, 489(7414): 128 doi: 10.1038/nature11434
[247]
Zysset C, Münzenrieder N, Petti L, et al. IGZO TFT-based all-enhancement operational amplifier bent to a radius of 5 mm. IEEE Electron Device Lett, 2013, 34(11): 1394 doi: 10.1109/LED.2013.2280024
[248]
Perumal C, Ishida K, Shabanpour R, et al. A Compact a-IGZO TFT model based on MOSFET SPICE Level=3 template for analog/RF circuit designs. IEEE Electron Device Lett, 2013, 34(11): 1391 doi: 10.1109/LED.2013.2279940
[249]
Nomura K, Aoki T, Nakamura K, et al. Three-dimensionally stacked flexible integrated circuit: Amorphous oxide/polymer hybrid complementary inverter using n-type a-In–Ga–Zn–O and p-type poly-(9, 9-dioctylfluorene-co-bithiophene) thin-film transistors. Appl Phys Lett, 2010, 96(26): 263509 doi: 10.1063/1.3458799
[250]
Rockelé M, Pham D V, Steiger J, et al. Solution-processed and low-temperature metal oxide n-channel thin-film transistors and low-voltage complementary circuitry on large-area flexible polyimide foil. J Soc Inf Display, 2012, 20(9): 499 doi: 10.1002/jsid.114
[251]
Oh M S, Choi W, Lee K, et al. Flexible high gain complementary inverter using n-ZnO and p-pentacene channels on polyethersulfone substrate. Appl Phys Lett, 2008, 93(3): 033510 doi: 10.1063/1.2956406
[252]
Honda W, Arie T, Akita S, et al. Mechanically flexible and high-performance CMOS logic circuits. Sci Rep, 2015, 5: 15099 doi: 10.1038/srep15099
[253]
Nag M, Chasin A, Rockele M, et al. Single-source dual-layer amorphous IGZO thin-film transistors for display and circuit applications. J Soc Inf Display, 2013, 21(3): 129 doi: 10.1002/jsid.v21.3
[254]
Yamamoto T, Takei T, Nakajima Y, et al. Simple transfer technology for fabrication of TFT backplane for flexible displays. IEEE T Ind Appl, 2012, 48(5): 1662 doi: 10.1109/TIA.2012.2209170
[255]
Oh T. Tunneling phenomenon of amorphous indium-gallium-zinc-oxide thin film transistors for flexible display. Electron Mater Lett, 2015, 11(5): 853
[256]
Kim H, Kim Y J. Influence of external forces on the mechanical characteristics of the a-IGZO and graphene based flexible display. Global Conference on Polymer and Composite Materials (PCM), 2014: 012022
[257]
Genoe J, Obata K, Ameys M, et al. Integrated line driver for digital pulse-width modulation driven AMOLED displays on flex. IEEE J Soild-State Circuits, 2015, 50(1): 282 doi: 10.1109/JSSC.2014.2364268
[258]
Zysset C, Münzenrieder N, Kinkeldei T, et al. Woven active-matrix display. IEEE Trans Electron Devices, 2012, 59(3): 721 doi: 10.1109/TED.2011.2180724
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 7244 Times PDF downloads: 266 Times Cited by: 0 Times

    History

    Received: 05 August 2017 Revised: 29 September 2017 Online: Accepted Manuscript: 27 December 2017Published: 01 January 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics[J]. Journal of Semiconductors, 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005 Y L He, X Y Wang, Y Gao, Y H Hou, Q Wan, Oxide-based thin film transistors for flexible electronics[J]. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005.Export: BibTex EndNote
      Citation:
      Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics[J]. Journal of Semiconductors, 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005

      Y L He, X Y Wang, Y Gao, Y H Hou, Q Wan, Oxide-based thin film transistors for flexible electronics[J]. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005.
      Export: BibTex EndNote

      Oxide-based thin film transistors for flexible electronics

      doi: 10.1088/1674-4926/39/1/011005
      Funds:

      Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).

      More Information
      • Corresponding author: Email: wanqing@nju.edu.cn
      • Received Date: 2017-08-05
      • Revised Date: 2017-09-29
      • Published Date: 2018-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return