Special Issue on Flexible and Wearable Electronics: from Materials to Applications

Graphene-based flexible and wearable electronics

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar and Jong-Hyun Ahn

+ Author Affiliations

 Corresponding author: Authors to whom correspondence should be addressed to. Electronic addresses: ahnj@yonsei.ac.kr

PDF

Turn off MathJax

Abstract: Graphene with an exceptional combination of electronic, optical and outstanding mechanical features has been proved to lead a completely different kind of 2-D electronics. The most exciting feature of graphene is its ultra-thin thickness, that can be conformally contacted to any kind of rough surface without losing much of its transparency and conductivity. Graphene has been explored demonstrating various prototype flexible electronic applications, however, its potentiality has been proven wherever transparent conductive electrodes (TCEs) are needed in a flexible, stretchable format. Graphene-based TCEs in flexible electronic applications showed greatly superior performance over their conventionally available competitor indium tin oxide (ITO). Moreover, enormous applications have been emerging, especially in wearable devices that can be potentially used in our daily life as well as in biomedical areas. However, the production of high-quality, defect-free large area graphene is still a challenge and the main hurdle in the commercialization of flexible and wearable products. The objective of the present review paper is to summarize the progress made so far in graphene-based flexible and wearable applications. The current developments including challenges and future perspectives are also highlighted.

Key words: grapheneflexible electronicswearable electronicstransparent conductive electrode



[1]
Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature, 2013, 499(7459): 458 doi: 10.1038/nature12314
[2]
Drack M, Graz I, Sekitani T, et al. An imperceptible plastic electronic wrap. Adv Mater, 2014, 27(1): 34
[3]
Keum H, Mccormick M, Liu P, et al. Epidermal Electronics. Science, 2011, 333: 838 doi: 10.1126/science.1206157
[4]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6(5): 296 doi: 10.1038/nnano.2011.36
[5]
Norton J J S, Lee D S, Lee J W, et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc Natl Acad Sci, 2015, 112(13): 3920 doi: 10.1073/pnas.1424875112
[6]
Yeo W H, Kim Y S, Lee J, et al. Multifunctional epidermal electronics printed directly onto the skin. Adv Mater, 2013, 25(20): 2773 doi: 10.1002/adma.201204426
[7]
Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81(1): 109 doi: 10.1103/RevModPhys.81.109
[8]
Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530 doi: 10.1126/science.1158877
[9]
Akinwande D, Brennan C J, Bunch J S, et al. A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extrem Mech Lett, 2017, 13: 42 doi: 10.1016/j.eml.2017.01.008
[10]
Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385 doi: 10.1126/science.1157996
[11]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3): 183 doi: 10.1038/nmat1849
[12]
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9/10): 351
[13]
Sprinkle M, Ruan M, Hu Y, et al. Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol, 2010, 5: 727 doi: 10.1038/nnano.2010.192
[14]
Wassei J K, Kaner R B. Graphene, a promising transparent conductor. Mater Today, 2010, 13(3): 52 doi: 10.1016/S1369-7021(10)70034-1
[15]
Stylianakis M M, Konios D, Petridis K, et al. Solution-processed graphene-based transparent conductive electrodes as ideal ITO alternatives for organic solar cells. Graphene Materials - Advanced Applications, 2017
[16]
Novoselov K S. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
[17]
Berger C. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777): 1191 doi: 10.1126/science.1125925
[18]
Ohta T. Controlling the electronic structure of bilayer graphene. Science, 2006, 313(5789): 951 doi: 10.1126/science.1130681
[19]
Sutter P W, Flege J I, Sutter E. Epitaxial graphene on ruthenium. Nat Mater, 2008, 7(5): 406 doi: 10.1038/nmat2166
[20]
Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol, 2008, 3(5): 270 doi: 10.1038/nnano.2008.83
[21]
Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 2008, 3(9): 1
[22]
Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312 doi: 10.1126/science.1171245
[23]
Muñoz R, Gómez-Aleixandre C. Review of CVD synthesis of graphene. Chem Vap Depos, 2013, 19(10-12): 297
[24]
Fang W, Hsu A L, Song Y, et al. A review of large-area bilayer graphene synthesis by chemical vapor deposition. Nanoscale, 2015, 7(48): 20335 doi: 10.1039/C5NR04756K
[25]
Lee S M, Kim J H, Ahn J H. Graphene as a flexible electronic material: mechanical limitations by defect formation and efforts to overcome. Mater Today, 2015, 18(6): 336 doi: 10.1016/j.mattod.2015.01.017
[26]
Katsnelson M I. Graphene: carbon in two dimensions. Mater Today, 2007, 10(1/2): 20
[27]
Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312 doi: 10.1126/science.1171245
[28]
Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 2009, 9(1): 30 doi: 10.1021/nl801827v
[29]
Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442(7100): 282 doi: 10.1038/nature04969
[30]
Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558 doi: 10.1016/j.carbon.2007.02.034
[31]
Sun Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources. Nature, 2010, 468(7323): 549 doi: 10.1038/nature09579
[32]
Byun S, Lim H, Shin G, et al. Graphenes converted from polymers. J Phys Chem Lett, 2011, 2(5): 493 doi: 10.1021/jz200001g
[33]
Chen S, Brown L, Levendorf M, et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano, 2011, 5(2): 1321 doi: 10.1021/nn103028d
[34]
Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett, 2010, 10(2): 490 doi: 10.1021/nl903272n
[35]
Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706 doi: 10.1038/nature07719
[36]
Li X, Zhu Y, Cai W, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett, 2009, 9(12): 4359 doi: 10.1021/nl902623y
[37]
Kang, J, Shin, D, Bae, S, et al. Graphene transfer: key for applications. Nanoscale, 2012, 4(18): 5527 doi: 10.1039/c2nr31317k
[38]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574 doi: 10.1038/nnano.2010.132
[39]
Suk J W, Kitt A, Magnuson C W, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano, 2011, 5(9): 6916 doi: 10.1021/nn201207c
[40]
Suk J W, Lee W H, Lee J, et al. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett, 2013, 13(4): 1462 doi: 10.1021/nl304420b
[41]
Gao L, Ni G X, Liu Y, et al. Face-to-face transfer of wafer-scale graphene films. Nature, 2013, 505(7482): 190 doi: 10.1038/nature12763
[42]
Kobayashi T, Bando M, Kimura N, et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett, 2013, 102(2): 23112 doi: 10.1063/1.4776707
[43]
Kobayashi, T, Bando M, Kimura N, et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett, 2013, 102(2): 1
[44]
Biswas C, Lee Y H. Graphene versus carbon nanotubes in electronic devices. Adv Funct Mater, 2011, 21(20): 3806 doi: 10.1002/adfm.v21.20
[45]
Sharma B K, Ahn J H. Graphene based field effect transistors: efforts made towards flexible electronics. Solid. State. Electron, 2013, 89: 177 doi: 10.1016/j.sse.2013.08.007
[46]
Schwierz F. Graphene transistors. Nat Nanotechnol, 2010, 5(7): 487 doi: 10.1038/nnano.2010.89
[47]
Matyba P, Yamaguchi H, Eda G, et al. Graphene and mobile ions: the key to all plastic, solution processed light emitting devices. ACS Nano, 2010, 4(2): 637 doi: 10.1021/nn9018569
[48]
Park H, Chang S, Zhou X, et al. Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Lett, 2014, 14(9): 5148 doi: 10.1021/nl501981f
[49]
Park S J, Kwon O S, Lee S H, et al. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett, 2012, 12(10): 5082 doi: 10.1021/nl301714x
[50]
Sire C, Ardiaca F, Lepilliet S, et al. Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett, 2012, 12(3): 1184 doi: 10.1021/nl203316r
[51]
Lu C, Lin Y, Yeh C, et al. High Mobility flexible graphene field-effect transistors with self-healing gate dielectrics. ACS Nano, 2012, 6(5): 4469 doi: 10.1021/nn301199j
[52]
Yan L, Zhang Y, Zhang X, et al. Single layer graphene electrodes for quantum dot-light emitting diodes. Nanotechnology, 2015, 26(13): 135201 doi: 10.1088/0957-4484/26/13/135201
[53]
Yeh C H, Lain Y W, Chiu Y C, et al. Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano, 2014, 8(8): 7663 doi: 10.1021/nn5036087
[54]
Lee S, Lee K, Liu C H, et al. Flexible and transparent all-graphene circuits for quaternary digital modulations. Nat Commun, 2012, 3(V): 1018
[55]
Lee J, Ha T J, Li H, et al. 25 GHz embedded-gate graphene transistors with high-k dielectrics on extremely flexible plastic sheets. ACS Nano, 2013, 7(9): 7744 doi: 10.1021/nn403487y
[56]
Kim B J, Jang H, Lee S K, et al. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett, 2010, 10(9): 3464 doi: 10.1021/nl101559n
[57]
Lee S K, Kim B J, Jang H, et al. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett, 2011, 11(11): 4642 doi: 10.1021/nl202134z
[58]
Kim B J, Lee S K, Kang M S, et al. Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano, 2012, 6(10): 8646 doi: 10.1021/nn3020486
[59]
Lee S K, Jang H Y, Jang S, et al. All graphene-based thin film transistors on flexible plastic substrates. Nano Lett, 2012, 12(7): 3472 doi: 10.1021/nl300948c
[60]
Lee S K, Kabir S M H, Sharma B K, et al. Photo-patternable ion gel-gated graphene transistors and inverters on plastic. Nanotechnology, 2014, 25(1): 14002 doi: 10.1088/0957-4484/25/1/014002
[61]
Lin Y M, Dimitrakopoulos, C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 2010, 327(5966): 662 doi: 10.1126/science.1184289
[62]
Liao L, Lin Y C, Bao M, et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature, 2010, 467(7313): 305 doi: 10.1038/nature09405
[63]
Wu Y, Lin Y, Bol A A, et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 472(7341): 74 doi: 10.1038/nature09979
[64]
Hamberg I, Granqvist C G. Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J Appl Phys, 1986, 60(11): R123 doi: 10.1063/1.337534
[65]
Minami T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol, 2005, 20(4): S35 doi: 10.1088/0268-1242/20/4/004
[66]
Granqvist C G. Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells, 2007, 91(17): 1529 doi: 10.1016/j.solmat.2007.04.031
[67]
De S, Higgins T M, Lyons P E, et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano, 2009, 3(7): 1767 doi: 10.1021/nn900348c
[68]
Kou P, Yang L, Chang C, et al. Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach. Sci Rep, 2017, 7: 42052 doi: 10.1038/srep42052
[69]
Cui Z, Gao Y. Hybrid printing of high resolution metal mesh as a transparent conductor for touch panels and OLED displays. SID Symp Dig Tech Pap, 2015, 46(1): 398 doi: 10.1002/sdtp.10366
[70]
Zhou Y, Azumi R. Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci Technol Adv Mater, 2016, 17(1): 493 doi: 10.1080/14686996.2016.1214526
[71]
Luo M, Liu Y, Huang W, et al. Towards flexible transparent electrodes based on carbon and metallic materials. Micromachines, 2017, 8(1): 12
[72]
Pang S, Hernandez Y, Feng X, et al. Graphene as transparent electrode material for organic electronics. Adv Mater, 2011, 23(25): 2779 doi: 10.1002/adma.201100304
[73]
Pickering J A. Touch-sensitive screens: the technologies and their application. Int J Man Mach Stud, 1986, 25: 249 doi: 10.1016/S0020-7373(86)80060-8
[74]
Ryu J, Kim Y, Won D, et al. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano, 2014, 8(1): 950 doi: 10.1021/nn405754d
[75]
Wu J, Agrawal M, Becerril H A, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano, 2010, 4(1): 43 doi: 10.1021/nn900728d
[76]
Chang H, Wang G, Yang A, et al. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Adv Funct Mater, 2010, 20(17): 2893 doi: 10.1002/adfm.201000900
[77]
Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics, 2012, 6(2): 105 doi: 10.1038/nphoton.2011.318
[78]
Lee J, Han T H, Park M H, et al. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nat Commun, 2016, 7: 11791 doi: 10.1038/ncomms11791
[79]
Gather M C, Reineke S. Recent advances in light outcoupling from white organic light-emitting diodes. J Photonics Energy, 2015, 5(1): 57607 doi: 10.1117/1.JPE.5.057607
[80]
Kim S Y, Kim J J. Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness. Org Electron, 2010, 11(6): 1010
[81]
Furno M, Meerheim R, Hofmann S, et al. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys Rev B, 2012, 85(11): 115205
[82]
Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 2008, 8(1): 323 doi: 10.1021/nl072838r
[83]
Eda G, Lin Y Y, Miller S, et al. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett, 2008, 92(23): 233305 doi: 10.1063/1.2937846
[84]
Valentini L, Cardinali M, Bon S B, et al. Use of butylamine modified graphene sheets in polymer solar cells. J Mater Chem, 2010, 20(5): 995 doi: 10.1039/B919327H
[85]
Kalita G, Matsushima M, Uchida H, et al. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. J Mater Chem, 2010, 20(43): 9713 doi: 10.1039/c0jm01352h
[86]
Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys, 1954, 25(5): 676 doi: 10.1063/1.1721711
[87]
Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables(version 49). Prog Photovolt Res Appl, 2017, 25(1): 3 doi: 10.1002/pip.2855
[88]
Wang Y, Chen X, Zhong Y, et al. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett, 2009, 95(6): 63302 doi: 10.1063/1.3204698
[89]
Park H, Rowehl J A, Kim K K, et al. Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21(50): 505204 doi: 10.1088/0957-4484/21/50/505204
[90]
De Arco L G, Zhang Y, Schlenker C W, et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 2010, 4(5): 2865 doi: 10.1021/nn901587x
[91]
Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano, 2010, 4(6): 3169 doi: 10.1021/nn100551j
[92]
Kymakis E, Savva K, Stylianakis M M, et al. Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Adv Funct Mater, 2013, 23(21): 2742 doi: 10.1002/adfm.v23.21
[93]
Lee S, Yeo J S, Ji Y, et al. Flexible organic solar cells composed of P3HT:PCBM using chemically doped graphene electrodes. Nanotechnology, 2012, 23(34): 344013 doi: 10.1088/0957-4484/23/34/344013
[94]
Liu Z, Li J, Yan F. Package-free flexible organic solar cells with graphene top electrodes. Adv Mater, 2013, 25(31): 4296 doi: 10.1002/adma.v25.31
[95]
Kim H, Bae S H, Han T H, et al. Organic solar cells using CVD-grown graphene electrodes. Nanotechnology, 2014, 25(1): 14012 doi: 10.1088/0957-4484/25/1/014012
[96]
Kim K, Bae S H, Toh C T, et al. Ultrathin organic solar cells with graphene doped by ferroelectric polarization. ACS Appl Mater Interfaces, 2014, 6(5): 3299 doi: 10.1021/am405270y
[97]
Yan C, Wang J, Kang W, et al. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv Mater, 2014, 26(13): 2022 doi: 10.1002/adma.201304742
[98]
Tian H, Shu Y, Wang X F, et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci Rep, 2015, 5(1): 8603 doi: 10.1038/srep08603
[99]
Chun S, Hong A, Choi Y, et al. A tactile sensor using a conductive graphene-sponge composite. Nanoscale, 2016, 8(17): 9185 doi: 10.1039/C6NR00774K
[100]
Bae S, Lee Y, Sharma B K, et al. Graphene-based transparent strain sensor. Carbon, 2013, 51: 236 doi: 10.1016/j.carbon.2012.08.048
[101]
Park Y J, Lee S K, Kim M S, et al. Graphene-based conformal devices. ACS Nano, 2014, 8(8): 7655 doi: 10.1021/nn503446f
[102]
Yang T, Wang W, Zhang H, et al. Tactile sensing system based on arrays of graphene woven microfabrics: electromechanical behavior and electronic skin application. ACS Nano, 2015, 9(11): 10867 doi: 10.1021/acsnano.5b03851
[103]
Kang M, Kim J, Jang B, et al. Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano, 2017, 11(8): 7950 doi: 10.1021/acsnano.7b02474
[104]
Ameri S K, Ho R, Jang H, et al. Graphene electronic tattoo sensors. ACS Nano, 2017, 11(8): 7634 doi: 10.1021/acsnano.7b02182
[105]
Lee H, Choi T K, Lee Y B, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol, 2016, 11(6): 566 doi: 10.1038/nnano.2016.38
[106]
Kim J, Kim M, Lee M S, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun, 2017, 8: 14997 doi: 10.1038/ncomms14997
[107]
Wang Z L. Self-powered nanotech. Sci Am, 2008, 1: 82
[108]
Wang Z L. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242 doi: 10.1126/science.1124005
[109]
Wang Z L, Chen J, Lin L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci, 2015, 8(8): 2250 doi: 10.1039/C5EE01532D
[110]
Grande L, Chundi V T, Wei D, et al. Graphene for energy harvesting/storage devices and printed electronics. Particuology, 2012, 10(1): 1 doi: 10.1016/j.partic.2011.12.001
[111]
Zheng Q, Shi B, Li Z, et al. Recent Progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv Sci, 2017, 4(7): 1700029 doi: 10.1002/advs.v4.7
[112]
Nam G H, Baek S H, Cho C H, et al. A flexible and transparent graphene/ZnO nanorod hybrid structure fabricated by exfoliating a graphite substrate. Nanoscale, 2014, 6(20): 11653 doi: 10.1039/C4NR02318H
[113]
Song R, Jin H, Li X, et al. A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J Mater Chem A, 2015, 3(29): 14963 doi: 10.1039/C5TA03349G
[114]
Kumar B, Lee K Y, Park H K, et al. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano, 2011, 5(5): 4197 doi: 10.1021/nn200942s
[115]
Bae S H, Kahya O, Sharma B K, et al. Graphene-P (VDF-TrFE) multilayer film for flexible applications. ACS Nano, 2013, 7(4): 3130 doi: 10.1021/nn400848j
[116]
Lee J H, Lee K Y, Kumar B, et al. Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ Sci, 2013, 6(1): 169 doi: 10.1039/C2EE23530G
[117]
Lee J H, Lee K Y, Gupta M K, et al. Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv Mater, 2014, 26(5): 765 doi: 10.1002/adma.201303570
[118]
He X, Guo H, Yue X, et al. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale, 2015, 7(5): 1896 doi: 10.1039/C4NR05512H
[119]
Liu C, Hua B, You S, et al. Self-amplified piezoelectric nanogenerator with enhanced output performance: the synergistic effect of micropatterned polymer film and interweaved silver nanowires. Appl Phys Lett, 2015, 106: 163901 doi: 10.1063/1.4918986
[120]
Bae J, Park Y J, Lee M, et al. Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv. Mater, 2011, 23(30): 3446 doi: 10.1002/adma.201101345
[121]
Kwon J, Seung W, Sharma B K, et al. A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ Sci, 2012, 5(10): 8970 doi: 10.1039/c2ee22251e
[122]
Khan U, Kim T H, Ryu H, et al. Graphene tribotronics for electronic skin and touch screen applications. Adv Mater, 2017, 29(1): 1603544 doi: 10.1002/adma.201603544
[123]
Chu H, Jang H, Lee Y, et al. Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy, 2016, 27: 298 doi: 10.1016/j.nanoen.2016.07.009
[124]
Kim S, Gupta M. Transparent flexible graphene triboelectric nanogenerators. Adv Mater, 2014, 26(23): 3918 doi: 10.1002/adma.201400172
Fig. 1.  (Color online) (a) The tuning of charge carrier from electrons to holes under opposite bias indicating the ambipolar electric field effect in monolayer graphene. Insets show the conical low-energy spectrum, representing the changes in Fermi energy position with applied gate voltage[11]. (b) Measured resistivity and mobility of suspended graphene device as a function of gate voltage before (blue) and after (red) current annealing. Gray dotted line shows the data of the device fabricated on the substrate[12]. (c) The conductance of a single layer graphene-based top-gate FET as a function of the bias voltage under different back-gate voltages. The inset shows the schematic structure of the fabricated device. (d) An array of transistors fabricated on graphene wafer produced by thermal desorption of Si from the c-face of a SiC wafer. The inset shows the enlarged view of an individual transistor. (e) High-frequency performance of a 240 nm gate length graphene transistor[13].

Fig. 2.  (Color online) (a) Schematic diagrams of the growth kinetics of CVD-produced graphene via precipitation and surface-mediated reaction[23, 24]. (b) A photographic image of as-grown 3 inch graphene film on 300 nm thick Ni on a SiO2/Si substrate. (c) Raman spectra of the large-area graphene layers grown on Cu (blue and red lines) and Ni (black line) films, which subsequently transferred on PDMS substrate (green line)[34]. (d) TEM images of as-grown graphene films on thin(300-nm) nickel layers of different thicknesses[35]. (e) Optical microscope image of transferred monolayer CVD graphene on SiO2/Si, which was grown on Cu foil also showing wrinkles and two-and three-layer regions[22].

Fig. 3.  (Color online) (a) Illustration of the roll-based production of graphene films grown on a copper foil[38]. (b) Schematic illustration of a face-to-face method for transferring graphene mediated by capillary bridges. (c) Image of a partially submerged 8-inch PMMA/graphene/water layer/SiO2/Si wafer in water during face-to-face transfer[41]. (d) Demonstration of transparent ultra-large 35-inch graphene film transferred on PET[38]. (e) Image of the graphene/epoxy/PET roll with a width of 230 mm PET base[42].

Fig. 4.  (Color online) (a) Transfer (IdsVgs) characteristics of graphene FETs on a plastic substrate and the inset showing the images of an array of devices on a plastic substrate[56]. (b) Photographic image of stretchable ion-gel gated graphene FETs on a balloon (top): with images of graphene transistors on PDMS substrate (inset) and the normalized hole/electron mobility of graphene FET as a function of the stretching level (bottom)[57]. (c) Typical transfer characteristics (ID versus VG) of a coplanar-gate graphene transistor and photograph of the coplanar-gate graphene transistor array (inset)[58]. (d) Transfer characteristic of graphene/GO transistors, indicating the hole and electron mobilities are 300 and 250 cm2/(V·s) at VD = −0.1 V, respectively. The inset shows the schematic bottom-gated all-graphene-based transistor[59].(e) Photograph of large-area flexible graphene transistor array (scale bar: 5 mm). The inset shows the optical image of a completed device unit[60]. (f) The de-embedded current gain with an intrinsic fT of 25 GHz for flexible GFET. VG is biased at the peak transconductance and VD = 0.5 V. Schematic of water-resistant flexible multi-finger embedded gate FET (upper inset) and flexible GFETs attached to the bending set up shown in the lower inset[55].

Fig. 5.  (Color online) (a) The screen printing process utilized in fabricating touch screen. (b) Electrotechnical behavior of graphene and ITO based touch screens against the applied tensile strain. (c) Photograph of graphene-based during its operation. (d) Photograph of graphene-based touch screen in bending form[38]. (e) Photograph of graphene films based multi-touch screen integrated into a mobile phone (left side) whereas the right side shows the ITO based touch screen in a mobile phone for comparison purposes[74].

Fig. 6.  (Color online) (a) Schematic representation of a hole-injection process through a self-organized HIL having a tunable work-function (GraHIL) from a graphene anode to the NPB layer. (b) Schematic flow of the fabrication steps of OLED. (c) Variation of luminous efficiency of OLED devices using various graphene layers (doped with HNO3 or AuCl3) or ITO as an anode. (d) Photograph of green fluorescent OLED in the bent form using 4 layers doped graphene films showing its flexible behavior[77].

Fig. 7.  (Color online) (a) Schematic device structure showing the graphene sandwiched between low index hole injecting layer (HIL) and high index TiO2 for making the high-efficiency graphene-based OLEDs. (b) Photograph of the fabricated OLED device. (c) & (d) Variation of EQE and PE with respect to luminance for flexible OLED, respectively. (e) Variation of luminance with respect to current density under bending cycles. (f) Photograph of flexible OLED during its operation mode [78].

Fig. 8.  (Color online) (a) Schematic representation of the electrostatically doped organic solar cell. (b) Shows the variation of current density (square) and PCE (triangle) for different numbers of graphene layers. The filled and open symbols represent the characteristics of undoped and with electrostatically doped devices, respectively. (c) Photograph of the flexible organic solar cell attached to the rolling machine. (d) & (e) Variation of current density with voltage and normalized parameters of solar cell device, respectively in a flexible format. (f) Photograph of the fabricated flexible solar cell. The inset shows the schematic representation of device assembly. (g) & (h) Show the solar cell performance parameters such as fill factor (FF), open circuit voltage ( Voc), short-circuit current density (Jsc), and PCE under flexible test[96].

Fig. 9.  (Color online) (a) Graphene-based strain sensor showing the significant change in resistance upon stretching. The inset shows the photograph of a sensor mounted conformally on wearable gloves[100]. (b) Shows the variation in pressure map when a tactile sensor is subjected to a gentle touch of 9 kPa[101]. (c) The fabricated tactile sensor shows the response from the wrist pulse[102]. (d) Photograph (upper panel) of graphene-based capacitive touch sensor mounted on the human hand and its responses are shown in the lower panel upon multi-touch, spreading and scrolling[103]. (e) & (f) Response of graphene electronic tattoo (GFT) based skin hydration sensor and temperature sensors, respectively [104].

Fig. 10.  (Color online) (a) The schematic representation of a transparent glucose sensor mounted on a contact lens. (b) The wireless sensing behavior of glucose concentration with and without wearing the contact lens on a rabbit eye. (c) The frequency response of the sensor during a pressure cycle[106]. (d) Optical image of the diabetes patch under mechanical deformation. (e) Monitoring of glucose and pH in vitro measurement under hyperglycemia in artificial sweat. (f) Photograph of graphene-hybrid electrochemical device array on the human skin. (g) Monitoring of glucose concentrations with time in the sweat and blood of a human. (h) Comparison of the average glucose concentrations with the commercial glucose before and after correction using the measured pH was carried out[105].

Fig. 11.  (Color online) (a) Photographic image of graphene-based triboelectric touch sensor mounted on the wrist (top) and the spatial mapping image of current modulated by two-finger touch[122]. (b) Photograph of the conformal TENGs attached on the palm (top) and the bottom panel shows optical images of the self-powered contact sensors with contact to the different number of fingers and corresponding raw data[123]. (c) The stretchability of graphene is shown (upper) and the output voltage from GTNGs with various numbers of graphene layers under a vertical compressive force, with the inset which shows a captured image of three LED arrays that are simultaneously lit up by the power output generated from the GTNG[124].

[1]
Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature, 2013, 499(7459): 458 doi: 10.1038/nature12314
[2]
Drack M, Graz I, Sekitani T, et al. An imperceptible plastic electronic wrap. Adv Mater, 2014, 27(1): 34
[3]
Keum H, Mccormick M, Liu P, et al. Epidermal Electronics. Science, 2011, 333: 838 doi: 10.1126/science.1206157
[4]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6(5): 296 doi: 10.1038/nnano.2011.36
[5]
Norton J J S, Lee D S, Lee J W, et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc Natl Acad Sci, 2015, 112(13): 3920 doi: 10.1073/pnas.1424875112
[6]
Yeo W H, Kim Y S, Lee J, et al. Multifunctional epidermal electronics printed directly onto the skin. Adv Mater, 2013, 25(20): 2773 doi: 10.1002/adma.201204426
[7]
Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81(1): 109 doi: 10.1103/RevModPhys.81.109
[8]
Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530 doi: 10.1126/science.1158877
[9]
Akinwande D, Brennan C J, Bunch J S, et al. A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extrem Mech Lett, 2017, 13: 42 doi: 10.1016/j.eml.2017.01.008
[10]
Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385 doi: 10.1126/science.1157996
[11]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3): 183 doi: 10.1038/nmat1849
[12]
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9/10): 351
[13]
Sprinkle M, Ruan M, Hu Y, et al. Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol, 2010, 5: 727 doi: 10.1038/nnano.2010.192
[14]
Wassei J K, Kaner R B. Graphene, a promising transparent conductor. Mater Today, 2010, 13(3): 52 doi: 10.1016/S1369-7021(10)70034-1
[15]
Stylianakis M M, Konios D, Petridis K, et al. Solution-processed graphene-based transparent conductive electrodes as ideal ITO alternatives for organic solar cells. Graphene Materials - Advanced Applications, 2017
[16]
Novoselov K S. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
[17]
Berger C. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777): 1191 doi: 10.1126/science.1125925
[18]
Ohta T. Controlling the electronic structure of bilayer graphene. Science, 2006, 313(5789): 951 doi: 10.1126/science.1130681
[19]
Sutter P W, Flege J I, Sutter E. Epitaxial graphene on ruthenium. Nat Mater, 2008, 7(5): 406 doi: 10.1038/nmat2166
[20]
Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol, 2008, 3(5): 270 doi: 10.1038/nnano.2008.83
[21]
Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 2008, 3(9): 1
[22]
Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312 doi: 10.1126/science.1171245
[23]
Muñoz R, Gómez-Aleixandre C. Review of CVD synthesis of graphene. Chem Vap Depos, 2013, 19(10-12): 297
[24]
Fang W, Hsu A L, Song Y, et al. A review of large-area bilayer graphene synthesis by chemical vapor deposition. Nanoscale, 2015, 7(48): 20335 doi: 10.1039/C5NR04756K
[25]
Lee S M, Kim J H, Ahn J H. Graphene as a flexible electronic material: mechanical limitations by defect formation and efforts to overcome. Mater Today, 2015, 18(6): 336 doi: 10.1016/j.mattod.2015.01.017
[26]
Katsnelson M I. Graphene: carbon in two dimensions. Mater Today, 2007, 10(1/2): 20
[27]
Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312 doi: 10.1126/science.1171245
[28]
Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 2009, 9(1): 30 doi: 10.1021/nl801827v
[29]
Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442(7100): 282 doi: 10.1038/nature04969
[30]
Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558 doi: 10.1016/j.carbon.2007.02.034
[31]
Sun Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources. Nature, 2010, 468(7323): 549 doi: 10.1038/nature09579
[32]
Byun S, Lim H, Shin G, et al. Graphenes converted from polymers. J Phys Chem Lett, 2011, 2(5): 493 doi: 10.1021/jz200001g
[33]
Chen S, Brown L, Levendorf M, et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano, 2011, 5(2): 1321 doi: 10.1021/nn103028d
[34]
Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett, 2010, 10(2): 490 doi: 10.1021/nl903272n
[35]
Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706 doi: 10.1038/nature07719
[36]
Li X, Zhu Y, Cai W, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett, 2009, 9(12): 4359 doi: 10.1021/nl902623y
[37]
Kang, J, Shin, D, Bae, S, et al. Graphene transfer: key for applications. Nanoscale, 2012, 4(18): 5527 doi: 10.1039/c2nr31317k
[38]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574 doi: 10.1038/nnano.2010.132
[39]
Suk J W, Kitt A, Magnuson C W, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano, 2011, 5(9): 6916 doi: 10.1021/nn201207c
[40]
Suk J W, Lee W H, Lee J, et al. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett, 2013, 13(4): 1462 doi: 10.1021/nl304420b
[41]
Gao L, Ni G X, Liu Y, et al. Face-to-face transfer of wafer-scale graphene films. Nature, 2013, 505(7482): 190 doi: 10.1038/nature12763
[42]
Kobayashi T, Bando M, Kimura N, et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett, 2013, 102(2): 23112 doi: 10.1063/1.4776707
[43]
Kobayashi, T, Bando M, Kimura N, et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett, 2013, 102(2): 1
[44]
Biswas C, Lee Y H. Graphene versus carbon nanotubes in electronic devices. Adv Funct Mater, 2011, 21(20): 3806 doi: 10.1002/adfm.v21.20
[45]
Sharma B K, Ahn J H. Graphene based field effect transistors: efforts made towards flexible electronics. Solid. State. Electron, 2013, 89: 177 doi: 10.1016/j.sse.2013.08.007
[46]
Schwierz F. Graphene transistors. Nat Nanotechnol, 2010, 5(7): 487 doi: 10.1038/nnano.2010.89
[47]
Matyba P, Yamaguchi H, Eda G, et al. Graphene and mobile ions: the key to all plastic, solution processed light emitting devices. ACS Nano, 2010, 4(2): 637 doi: 10.1021/nn9018569
[48]
Park H, Chang S, Zhou X, et al. Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Lett, 2014, 14(9): 5148 doi: 10.1021/nl501981f
[49]
Park S J, Kwon O S, Lee S H, et al. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett, 2012, 12(10): 5082 doi: 10.1021/nl301714x
[50]
Sire C, Ardiaca F, Lepilliet S, et al. Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett, 2012, 12(3): 1184 doi: 10.1021/nl203316r
[51]
Lu C, Lin Y, Yeh C, et al. High Mobility flexible graphene field-effect transistors with self-healing gate dielectrics. ACS Nano, 2012, 6(5): 4469 doi: 10.1021/nn301199j
[52]
Yan L, Zhang Y, Zhang X, et al. Single layer graphene electrodes for quantum dot-light emitting diodes. Nanotechnology, 2015, 26(13): 135201 doi: 10.1088/0957-4484/26/13/135201
[53]
Yeh C H, Lain Y W, Chiu Y C, et al. Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano, 2014, 8(8): 7663 doi: 10.1021/nn5036087
[54]
Lee S, Lee K, Liu C H, et al. Flexible and transparent all-graphene circuits for quaternary digital modulations. Nat Commun, 2012, 3(V): 1018
[55]
Lee J, Ha T J, Li H, et al. 25 GHz embedded-gate graphene transistors with high-k dielectrics on extremely flexible plastic sheets. ACS Nano, 2013, 7(9): 7744 doi: 10.1021/nn403487y
[56]
Kim B J, Jang H, Lee S K, et al. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett, 2010, 10(9): 3464 doi: 10.1021/nl101559n
[57]
Lee S K, Kim B J, Jang H, et al. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett, 2011, 11(11): 4642 doi: 10.1021/nl202134z
[58]
Kim B J, Lee S K, Kang M S, et al. Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano, 2012, 6(10): 8646 doi: 10.1021/nn3020486
[59]
Lee S K, Jang H Y, Jang S, et al. All graphene-based thin film transistors on flexible plastic substrates. Nano Lett, 2012, 12(7): 3472 doi: 10.1021/nl300948c
[60]
Lee S K, Kabir S M H, Sharma B K, et al. Photo-patternable ion gel-gated graphene transistors and inverters on plastic. Nanotechnology, 2014, 25(1): 14002 doi: 10.1088/0957-4484/25/1/014002
[61]
Lin Y M, Dimitrakopoulos, C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 2010, 327(5966): 662 doi: 10.1126/science.1184289
[62]
Liao L, Lin Y C, Bao M, et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature, 2010, 467(7313): 305 doi: 10.1038/nature09405
[63]
Wu Y, Lin Y, Bol A A, et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 472(7341): 74 doi: 10.1038/nature09979
[64]
Hamberg I, Granqvist C G. Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J Appl Phys, 1986, 60(11): R123 doi: 10.1063/1.337534
[65]
Minami T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol, 2005, 20(4): S35 doi: 10.1088/0268-1242/20/4/004
[66]
Granqvist C G. Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells, 2007, 91(17): 1529 doi: 10.1016/j.solmat.2007.04.031
[67]
De S, Higgins T M, Lyons P E, et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano, 2009, 3(7): 1767 doi: 10.1021/nn900348c
[68]
Kou P, Yang L, Chang C, et al. Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach. Sci Rep, 2017, 7: 42052 doi: 10.1038/srep42052
[69]
Cui Z, Gao Y. Hybrid printing of high resolution metal mesh as a transparent conductor for touch panels and OLED displays. SID Symp Dig Tech Pap, 2015, 46(1): 398 doi: 10.1002/sdtp.10366
[70]
Zhou Y, Azumi R. Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci Technol Adv Mater, 2016, 17(1): 493 doi: 10.1080/14686996.2016.1214526
[71]
Luo M, Liu Y, Huang W, et al. Towards flexible transparent electrodes based on carbon and metallic materials. Micromachines, 2017, 8(1): 12
[72]
Pang S, Hernandez Y, Feng X, et al. Graphene as transparent electrode material for organic electronics. Adv Mater, 2011, 23(25): 2779 doi: 10.1002/adma.201100304
[73]
Pickering J A. Touch-sensitive screens: the technologies and their application. Int J Man Mach Stud, 1986, 25: 249 doi: 10.1016/S0020-7373(86)80060-8
[74]
Ryu J, Kim Y, Won D, et al. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano, 2014, 8(1): 950 doi: 10.1021/nn405754d
[75]
Wu J, Agrawal M, Becerril H A, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano, 2010, 4(1): 43 doi: 10.1021/nn900728d
[76]
Chang H, Wang G, Yang A, et al. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Adv Funct Mater, 2010, 20(17): 2893 doi: 10.1002/adfm.201000900
[77]
Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics, 2012, 6(2): 105 doi: 10.1038/nphoton.2011.318
[78]
Lee J, Han T H, Park M H, et al. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nat Commun, 2016, 7: 11791 doi: 10.1038/ncomms11791
[79]
Gather M C, Reineke S. Recent advances in light outcoupling from white organic light-emitting diodes. J Photonics Energy, 2015, 5(1): 57607 doi: 10.1117/1.JPE.5.057607
[80]
Kim S Y, Kim J J. Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness. Org Electron, 2010, 11(6): 1010
[81]
Furno M, Meerheim R, Hofmann S, et al. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys Rev B, 2012, 85(11): 115205
[82]
Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 2008, 8(1): 323 doi: 10.1021/nl072838r
[83]
Eda G, Lin Y Y, Miller S, et al. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett, 2008, 92(23): 233305 doi: 10.1063/1.2937846
[84]
Valentini L, Cardinali M, Bon S B, et al. Use of butylamine modified graphene sheets in polymer solar cells. J Mater Chem, 2010, 20(5): 995 doi: 10.1039/B919327H
[85]
Kalita G, Matsushima M, Uchida H, et al. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. J Mater Chem, 2010, 20(43): 9713 doi: 10.1039/c0jm01352h
[86]
Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys, 1954, 25(5): 676 doi: 10.1063/1.1721711
[87]
Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables(version 49). Prog Photovolt Res Appl, 2017, 25(1): 3 doi: 10.1002/pip.2855
[88]
Wang Y, Chen X, Zhong Y, et al. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett, 2009, 95(6): 63302 doi: 10.1063/1.3204698
[89]
Park H, Rowehl J A, Kim K K, et al. Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21(50): 505204 doi: 10.1088/0957-4484/21/50/505204
[90]
De Arco L G, Zhang Y, Schlenker C W, et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 2010, 4(5): 2865 doi: 10.1021/nn901587x
[91]
Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano, 2010, 4(6): 3169 doi: 10.1021/nn100551j
[92]
Kymakis E, Savva K, Stylianakis M M, et al. Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Adv Funct Mater, 2013, 23(21): 2742 doi: 10.1002/adfm.v23.21
[93]
Lee S, Yeo J S, Ji Y, et al. Flexible organic solar cells composed of P3HT:PCBM using chemically doped graphene electrodes. Nanotechnology, 2012, 23(34): 344013 doi: 10.1088/0957-4484/23/34/344013
[94]
Liu Z, Li J, Yan F. Package-free flexible organic solar cells with graphene top electrodes. Adv Mater, 2013, 25(31): 4296 doi: 10.1002/adma.v25.31
[95]
Kim H, Bae S H, Han T H, et al. Organic solar cells using CVD-grown graphene electrodes. Nanotechnology, 2014, 25(1): 14012 doi: 10.1088/0957-4484/25/1/014012
[96]
Kim K, Bae S H, Toh C T, et al. Ultrathin organic solar cells with graphene doped by ferroelectric polarization. ACS Appl Mater Interfaces, 2014, 6(5): 3299 doi: 10.1021/am405270y
[97]
Yan C, Wang J, Kang W, et al. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv Mater, 2014, 26(13): 2022 doi: 10.1002/adma.201304742
[98]
Tian H, Shu Y, Wang X F, et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci Rep, 2015, 5(1): 8603 doi: 10.1038/srep08603
[99]
Chun S, Hong A, Choi Y, et al. A tactile sensor using a conductive graphene-sponge composite. Nanoscale, 2016, 8(17): 9185 doi: 10.1039/C6NR00774K
[100]
Bae S, Lee Y, Sharma B K, et al. Graphene-based transparent strain sensor. Carbon, 2013, 51: 236 doi: 10.1016/j.carbon.2012.08.048
[101]
Park Y J, Lee S K, Kim M S, et al. Graphene-based conformal devices. ACS Nano, 2014, 8(8): 7655 doi: 10.1021/nn503446f
[102]
Yang T, Wang W, Zhang H, et al. Tactile sensing system based on arrays of graphene woven microfabrics: electromechanical behavior and electronic skin application. ACS Nano, 2015, 9(11): 10867 doi: 10.1021/acsnano.5b03851
[103]
Kang M, Kim J, Jang B, et al. Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano, 2017, 11(8): 7950 doi: 10.1021/acsnano.7b02474
[104]
Ameri S K, Ho R, Jang H, et al. Graphene electronic tattoo sensors. ACS Nano, 2017, 11(8): 7634 doi: 10.1021/acsnano.7b02182
[105]
Lee H, Choi T K, Lee Y B, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol, 2016, 11(6): 566 doi: 10.1038/nnano.2016.38
[106]
Kim J, Kim M, Lee M S, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun, 2017, 8: 14997 doi: 10.1038/ncomms14997
[107]
Wang Z L. Self-powered nanotech. Sci Am, 2008, 1: 82
[108]
Wang Z L. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242 doi: 10.1126/science.1124005
[109]
Wang Z L, Chen J, Lin L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci, 2015, 8(8): 2250 doi: 10.1039/C5EE01532D
[110]
Grande L, Chundi V T, Wei D, et al. Graphene for energy harvesting/storage devices and printed electronics. Particuology, 2012, 10(1): 1 doi: 10.1016/j.partic.2011.12.001
[111]
Zheng Q, Shi B, Li Z, et al. Recent Progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv Sci, 2017, 4(7): 1700029 doi: 10.1002/advs.v4.7
[112]
Nam G H, Baek S H, Cho C H, et al. A flexible and transparent graphene/ZnO nanorod hybrid structure fabricated by exfoliating a graphite substrate. Nanoscale, 2014, 6(20): 11653 doi: 10.1039/C4NR02318H
[113]
Song R, Jin H, Li X, et al. A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J Mater Chem A, 2015, 3(29): 14963 doi: 10.1039/C5TA03349G
[114]
Kumar B, Lee K Y, Park H K, et al. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano, 2011, 5(5): 4197 doi: 10.1021/nn200942s
[115]
Bae S H, Kahya O, Sharma B K, et al. Graphene-P (VDF-TrFE) multilayer film for flexible applications. ACS Nano, 2013, 7(4): 3130 doi: 10.1021/nn400848j
[116]
Lee J H, Lee K Y, Kumar B, et al. Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ Sci, 2013, 6(1): 169 doi: 10.1039/C2EE23530G
[117]
Lee J H, Lee K Y, Gupta M K, et al. Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv Mater, 2014, 26(5): 765 doi: 10.1002/adma.201303570
[118]
He X, Guo H, Yue X, et al. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale, 2015, 7(5): 1896 doi: 10.1039/C4NR05512H
[119]
Liu C, Hua B, You S, et al. Self-amplified piezoelectric nanogenerator with enhanced output performance: the synergistic effect of micropatterned polymer film and interweaved silver nanowires. Appl Phys Lett, 2015, 106: 163901 doi: 10.1063/1.4918986
[120]
Bae J, Park Y J, Lee M, et al. Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv. Mater, 2011, 23(30): 3446 doi: 10.1002/adma.201101345
[121]
Kwon J, Seung W, Sharma B K, et al. A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ Sci, 2012, 5(10): 8970 doi: 10.1039/c2ee22251e
[122]
Khan U, Kim T H, Ryu H, et al. Graphene tribotronics for electronic skin and touch screen applications. Adv Mater, 2017, 29(1): 1603544 doi: 10.1002/adma.201603544
[123]
Chu H, Jang H, Lee Y, et al. Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy, 2016, 27: 298 doi: 10.1016/j.nanoen.2016.07.009
[124]
Kim S, Gupta M. Transparent flexible graphene triboelectric nanogenerators. Adv Mater, 2014, 26(23): 3918 doi: 10.1002/adma.201400172
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 8023 Times PDF downloads: 202 Times Cited by: 0 Times

    History

    Received: 07 August 2017 Revised: 27 September 2017 Online: Accepted Manuscript: 27 December 2017Published: 01 January 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics[J]. Journal of Semiconductors, 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007 T Das, Bhupendra K. Sharma, Ajit K. Katiyar, J Ahn, Graphene-based flexible and wearable electronics[J]. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007.Export: BibTex EndNote
      Citation:
      Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics[J]. Journal of Semiconductors, 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

      T Das, Bhupendra K. Sharma, Ajit K. Katiyar, J Ahn, Graphene-based flexible and wearable electronics[J]. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007.
      Export: BibTex EndNote

      Graphene-based flexible and wearable electronics

      doi: 10.1088/1674-4926/39/1/011007
      Funds:

      Project supported by the National Research Foundation of Korea (No. NRF-2015R1A3A2066337).

      More Information
      • Corresponding author: Authors to whom correspondence should be addressed to. Electronic addresses: ahnj@yonsei.ac.kr
      • Received Date: 2017-08-07
      • Revised Date: 2017-09-27
      • Available Online: 2017-01-01
      • Published Date: 2018-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return