Special Issue on Flexible and Wearable Electronics: from Materials to Applications

Flexible devices: from materials, architectures to applications

Mingzhi Zou1, Yue Ma1, Xin Yuan1, Yi Hu1, Jie Liu1, 2 and Zhong Jin1,

+ Author Affiliations

 Corresponding author: Zhong Jin, Email: zhongjin@nju.edu.cn

PDF

Turn off MathJax

Abstract: Flexible devices, such as flexible electronic devices and flexible energy storage devices, have attracted a significant amount of attention in recent years for their potential applications in modern human lives. The development of flexible devices is moving forward rapidly, as the innovation of methods and manufacturing processes has greatly encouraged the research of flexible devices. This review focuses on advanced materials, architecture designs and abundant applications of flexible devices, and discusses the problems and challenges in current situations of flexible devices. We summarize the discovery of novel materials and the design of new architectures for improving the performance of flexible devices. Finally, we introduce the applications of flexible devices as key components in real life.

Key words: flexible devicesflexible architecturesnanomaterialsstretchability



[1]
Hammock M L, Chortos A, Tee B C, et al. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25(42): 5997 doi: 10.1002/adma.201302240
[2]
Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973): 1603 doi: 10.1126/science.1182383
[3]
Someya T. Stretchable electronics. Weinheim: Wiley-VCH , 2012
[4]
Someya T, Sekitani T, Iba S, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci, 2004, 101(27): 9966 doi: 10.1073/pnas.0401918101
[5]
Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 2014, 8(5): 4689 doi: 10.1021/nn500441k
[6]
Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater, 2016, 15(9): 937 doi: 10.1038/nmat4671
[7]
Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604 doi: 10.1002/adfm.201606604
[8]
Mannsfeld S C, Tee B C, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010, 9(10): 859 doi: 10.1038/nmat2834
[9]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat nanotechnol, 2011, 6(5): 296 doi: 10.1038/nnano.2011.36
[10]
Kim D H, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333(6044): 838 doi: 10.1126/science.1206157
[11]
Ying M, Bonifas A P, Lu N, et al. Silicon nanomembranes for fingertip electronics. Nanotechnology, 2012, 23(34): 344004 doi: 10.1088/0957-4484/23/34/344004
[12]
Schwartz G, Tee B C K, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013, 4: 1859 doi: 10.1038/ncomms2832
[13]
Choong C L, Shim M B, Lee B S, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater, 2014, 26(21): 3451 doi: 10.1002/adma.v26.21
[14]
Trung T Q, Lee N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv Mater, 2016, 28(22): 4338 doi: 10.1002/adma.v28.22
[15]
Yang Y, Yang X, Zou X, et al. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv Funct Mater, 2017, 27(19): 1604096 doi: 10.1002/adfm.v27.19
[16]
Kenry, Yeo J C, Lim C T. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst Nanoeng, 2016, 2: 16043 doi: 10.1038/micronano.2016.43
[17]
Lacour S P, Benmerah S, Tarte E, et al. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med Biolog Eng Comput, 2010, 48(10): 945 doi: 10.1007/s11517-010-0644-8
[18]
Jeong J W, Kim M K, Cheng H, et al. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv Healthcare Mater, 2014, 3(5): 642 doi: 10.1002/adhm.201300334
[19]
Chen Z, To J W F, Wang C, et al. A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv Energy Mater, 2014, 4(12)
[20]
Lin H, Weng W, Ren J, et al. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv Mater, 2014, 26(8): 1217 doi: 10.1002/adma.v26.8
[21]
Gwon H, Hong J, Kim H, et al. Recent progress on flexible lithium rechargeable batteries. Energy Environm Sci, 2014, 7(2): 538 doi: 10.1039/C3EE42927J
[22]
Chen L, Zhou G, Liu Z, et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv Mater, 2016, 28(3): 510 doi: 10.1002/adma.v28.3
[23]
Mo R, Rooney D, Sun K, et al. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat Commun, 2017, 8: 13949
[24]
Pu J, Yomogida Y, Liu K K, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett, 2012, 12(8): 4013 doi: 10.1021/nl301335q
[25]
Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9): 7931 doi: 10.1021/nn402954e
[26]
Chortos A, Lim J, To J W F, et al. Highly stretchable transistors using a microcracked organic semiconductor. Adv Mater, 2014, 26(25): 4253 doi: 10.1002/adma.v26.25
[27]
Park S, Shin S H, Yogeesh M N, et al. Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett, 2016, 37(4): 512 doi: 10.1109/LED.2016.2535484
[28]
Kim Y H, Lee E Y, Lee H H, et al. Characteristics of reduced graphene oxide quantum dots for a flexible memory thin film transistor. ACS Appl Mater Interfaces, 2017, 9(19): 16375 doi: 10.1021/acsami.7b00714
[29]
Dong S, Xi J, Wu Y, et al. High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. Anal Chim Acta, 2015, 853: 200 doi: 10.1016/j.aca.2014.08.004
[30]
Nagaraju G, Raju G S R, Ko Y H, et al. Hierarchical Ni–Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale, 2016, 8(2): 812 doi: 10.1039/C5NR05643H
[31]
Liang J, Li L, Niu X, et al. Elastomeric polymer light-emitting devices and displays. Nat Photonics, 2013, 7(10): 817 doi: 10.1038/nphoton.2013.242
[32]
Jung M, Kim J, Noh J, et al. All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans Electron Devices, 2010, 57(3): 571 doi: 10.1109/TED.2009.2039541
[33]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574 doi: 10.1038/nnano.2010.132
[34]
Xia M, Cheng Z, Han J, et al. Extremely stretchable all-carbon-nanotube transistor on flexible and transparent substrates. Appl Phy Lett, 2014, 105(14): 143504 doi: 10.1063/1.4897528
[35]
Chortos A, Koleilat G I, Pfattner R, et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv Mater, 2016, 28(22): 4441 doi: 10.1002/adma.v28.22
[36]
Xu F, Wu M Y, Safron N S, et al. Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. Nano Lett, 2014, 14(2): 682 doi: 10.1021/nl403941a
[37]
Ota H, Chen K, Lin Y, et al. Highly deformable liquid-state heterojunction sensors. Nat Commun, 2014, 5: 5032 doi: 10.1038/ncomms6032
[38]
Chen J, Liu Y, Minett A I, et al. Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery. Chem Mater, 2007, 19(15): 3595 doi: 10.1021/cm070991g
[39]
Oh J Y, Kim S, Baik H K, et al. Conducting polymer dough for deformable electronics. Adv Mater, 2016, 28(22): 4455 doi: 10.1002/adma.v28.22
[40]
Vosgueritchian M, Lipomi D J, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater, 2012, 22(2): 421 doi: 10.1002/adfm.201101775
[41]
Lee K, Park J, Tchoe Y, et al. Flexible resistive random access memory devices by using NiOx/GaN microdisk arrays fabricated on graphene films. Nanotechnology, 2017, 28(20): 205202 doi: 10.1088/1361-6528/aa6763
[42]
Sun Y, Rogers J A. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett, 2004, 4(10): 1953 doi: 10.1021/nl048835l
[43]
Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428(6986): 911 doi: 10.1038/nature02498
[44]
Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun, 2014, 5: 5678 doi: 10.1038/ncomms6678
[45]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3): 183 doi: 10.1038/nmat1849
[46]
Wu X, Sprinkle M, Li X, et al. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys Rev Lett, 2008, 101(2): 026801 doi: 10.1103/PhysRevLett.101.026801
[47]
Eda G, Mattevi C, Yamaguchi H, et al. Insulator to semimetal transition in graphene oxide. J Phys Chem C, 2009, 113(35): 15768 doi: 10.1021/jp9051402
[48]
Kim J, Cote L J, Huang J. Two-dimensional soft material: new faces of graphene oxide. ACC Chem Res, 2012, 45(8): 1356 doi: 10.1021/ar300047s
[49]
Jeong H Y, Kim J Y, Kim J W, et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett, 2010, 10(11): 4381 doi: 10.1021/nl101902k
[50]
Rupprecht L. Conductive polymers and plastics: in industrial applications. William Andrew, 1999
[51]
Parman C E, Israeloff N E, Kakalios J. Conductance fluctuations in doped hydrogenated amorphous silicon. Phys Rev B, 1993, 47(19): 12578 doi: 10.1103/PhysRevB.47.12578
[52]
Liu Y, Zhang A, Shen C, et al. Red phosphorus nano-dots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano, 2017, 11: 5530
[53]
Georgiou T, Jalil R, Belle B D, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol, 2013, 8(2): 100
[54]
Park S, Vosguerichian M, Bao Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, 5(5): 1727 doi: 10.1039/c3nr33560g
[55]
Yakobson B I, Brabec C J, Bernholc J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett, 1996, 76(14): 2511 doi: 10.1103/PhysRevLett.76.2511
[56]
Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996, 381(6584): 678 doi: 10.1038/381678a0
[57]
Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277(5334): 1971 doi: 10.1126/science.277.5334.1971
[58]
Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306(5700): 1358 doi: 10.1126/science.1104276
[59]
Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber. Science, 2007, 318(5858): 1892 doi: 10.1126/science.1147635
[60]
Shang Y, He X, Li Y, et al. Super-stretchable spring-like carbon nanotube ropes. Adv Mater, 2012, 24(21): 2896 doi: 10.1002/adma.v24.21
[61]
Menard E, Nuzzo R G, Rogers J A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl Phys Lett, 2005, 86(9): 093507 doi: 10.1063/1.1866637
[62]
Hecht D S, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater, 2011, 23(13): 1482 doi: 10.1002/adma.201003188
[63]
Kumar A, Zhou C. The race to replace tin-doped indium oxide: which material will win. ACS Nano, 2010, 4(1): 11 doi: 10.1021/nn901903b
[64]
Lee P, Lee J, Lee H, et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater, 2012, 24(25): 3326 doi: 10.1002/adma.v24.25
[65]
Onorato J, Pakhnyuk V, Luscombe C K. Structure and design of polymers for durable, stretchable organic electronics. Polym J, 2017, 49(1): 41 doi: 10.1038/pj.2016.76
[66]
Oh J Y, Rondeau-Gagné S, Chiu Y C, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539(7629): 411 doi: 10.1038/nature20102
[67]
Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc, Chem Commun, 1977(16): 578 doi: 10.1039/c39770000578
[68]
Na S I, Wang G, Kim S S, et al. Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells. J Mater Chem, 2009, 19(47): 9045 doi: 10.1039/b915756e
[69]
Nardes A M, Kemerink M, De Kok M M, et al. Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Org Electron, 2008, 9(5): 727 doi: 10.1016/j.orgel.2008.05.006
[70]
Vosgueritchian M, Lipomi D J, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater, 2012, 22(2): 421 doi: 10.1002/adfm.201101775
[71]
Chortos A, Koleilat G I, Pfattner R, et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv Mater, 2016, 28(22): 4441 doi: 10.1002/adma.v28.22
[72]
Park S I, Ahn J H, Feng X, et al. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv Funct Mater, 2008, 18(18): 2673 doi: 10.1002/adfm.v18:18
[73]
Khang D Y,Rogers J A,Lee H H. Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv Funct Mater, 2009, 19(10): 1526 doi: 10.1002/adfm.v19:10
[74]
Kim D H,Rogers J. A stretchable electronics: materials strategies and devices. Adv Mater, 2008, 20(24): 4887 doi: 10.1002/adma.v20:24
[75]
Khang D Y, Jiang H, Huang Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311(5758): 208 doi: 10.1126/science.1121401
[76]
Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA, 2005, 102(35): 12321 doi: 10.1073/pnas.0807476105
[77]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6(5): 296 doi: 10.1038/nnano.2011.36
[78]
Guo C F, Sun T, Liu Q, et al. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat Commun, 2014, 5: 3121
[79]
Kim D H, Xiao J, Song J, et al. Stretchable, curvilinear electronics based on inorganic materials. Adv Mater, 2010, 22(19): 2108 doi: 10.1002/adma.v22:19
[80]
Ko H C, Stoykovich M P, Song J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454(7205): 748 doi: 10.1038/nature07113
[81]
Kim D H, Song J, Choi W M, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad of Sci, 2008, 105(48): 18675 doi: 10.1073/pnas.0807476105
[82]
Hung P J, Jeong K, Liu G L, et al. Microfabricated suspensions for electrical connections on the tunable elastomer membrane. Appl Phys Lett, 2004, 85(24): 6051 doi: 10.1063/1.1835553
[83]
Huang K, Dinyari R, Lanzara G, et al. An approach to cost-effective, robust, large-area electronics using monolithic silicon. IEEE Electron Devices Meeting, 2007: 217
[84]
Gonzalez M, Axisa F, Bulcke M V, et al. Design of metal interconnects for stretchable electronic circuits. Microelectron Reliab, 2008, 48(6): 825 doi: 10.1016/j.microrel.2008.03.025
[85]
Gonzalez M, Axisa F, Bossuyt F, et al. Design and performance of metal conductors for stretchable electronic circuits. Circuit World, 2009, 35(1): 22 doi: 10.1108/03056120910928699
[86]
Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013, 4: 1543 doi: 10.1038/ncomms2553
[87]
Zhang Y, Fu H, Su Y, et al. Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater, 2013, 61(20): 7816 doi: 10.1016/j.actamat.2013.09.020
[88]
Jang K I, Chung H U, Xu S, et al. Soft network composite materials with deterministic and bio-inspired designs. Nat Commun, 2015, 6: 6566
[89]
Qiu L, Deng J, Lu X, et al. Integrating perovskite solar cells into a flexible fiber. Angew Chem Int Edit, 2014, 53(39): 10425 doi: 10.1002/anie.201404973
[90]
Pan S, Yang Z, Li H, et al. Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte. J Am Chem Soc, 2013, 135(29): 10622 doi: 10.1021/ja405012w
[91]
Peng H, Sun X, Cai F, et al. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nat Nanotechnol, 2009, 4(11): 738 doi: 10.1038/nnano.2009.264
[92]
Zhang Z, Guo K, Li Y, et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat Photon, 2015, 9(4): 233
[93]
Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nature Mater, 2016, 15(9): 937 doi: 10.1038/nmat4671
[94]
Li C H, Wang C, Keplinger C, et al. A highly stretchable autonomous self-healing elastomer. Nat Chem, 2016, 8(6): 618 doi: 10.1038/nchem.2492
[95]
Lou Z, Chen S, Wang L, et al. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23: 7 doi: 10.1016/j.nanoen.2016.02.053
[96]
Lou Z, Chen S, Wang L, et al. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy, 2017, 38: 28 doi: 10.1016/j.nanoen.2017.05.024
[97]
Someya T, Sekitani T, Iba S, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci, 2004, 101(27): 9966 doi: 10.1073/pnas.0401918101
[98]
Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604
[99]
Chen S, Lou Z, Chen D, et al. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv Mater Technolo, 2016, 1(7): 1600136
[100]
Kim D H, Ahn J H, Choi W M, et al. Stretchable and foldable silicon integrated circuits. Science, 2008, 320(5875): 507 doi: 10.1126/science.1154367
[101]
Salvetat J P, Bonard J M, Thomson N H, et al. Mechanical properties of carbon nanotubes. Appl Phys A, 1999, 69(3): 255 doi: 10.1007/s003390050999
[102]
Gao L. Flexible device applications of 2D semiconductors. Small, 2017, 13: 1603994
[103]
Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9(10): 768 doi: 10.1038/nnano.2014.207
[104]
Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9): 7931 doi: 10.1021/nn402954e
[105]
Zhang Q, Huang J Q, Qian W Z, et al. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small, 2013, 9(8): 1237 doi: 10.1002/smll.201203252
[106]
Li X, Yang J, Hu Y, et al. Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage. J Mater Chem, 2012, 22(36): 18847 doi: 10.1039/c2jm33297c
[107]
Liang C C, Bro P A. High-voltage, solid-state battery system I design considerations. J Electrochem Soc, 1969, 116(9): 1322 doi: 10.1149/1.2412312
[108]
Liu Y, Gorgutsa S, Santato C, et al. Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J Electrochem. Soc, 2012, 159(4): A349 doi: 10.1149/2.020204jes
[109]
Ha H J, Kil E H, Kwon Y H, et al. UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy Environ Sci, 2012, 5(4): 6491 doi: 10.1039/c2ee03025j
[110]
Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects. Energy Environ Sci, 2014, 7(4): 1307 doi: 10.1039/C3EE43182G
[111]
Hu L, Wu H, La Mantia F, et al. Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010, 4(10): 5843 doi: 10.1021/nn1018158
[112]
Zhang Y, Bai W, Cheng X, et al. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int Edit, 2014, 53(52): 14564 doi: 10.1002/anie.201409366
[113]
Zhang Y, Zhao Y, Cheng X, et al. Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew Chem Int Edit, 2015, 54(38): 11177 doi: 10.1002/anie.201506142
[114]
Xu R P, Li Y Q, Tang J X. Recent advances in flexible organic light-emitting diodes. J Mater Chem C, 2016, 4(39): 9116 doi: 10.1039/C6TC03230C
[115]
Morales-Masis M, De Wolf S, Woods-Robinson R, et al. Transparent electrodes for efficient optoelectronics. Adv Electron Mater, 2017, 3(5): 1600529
[116]
Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics, 2012, 6(2): 105 doi: 10.1038/nphoton.2011.318
[117]
Kim D Y, Han Y C, Kim H C, et al. Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes. Adv Funct Mater, 2015, 25(46): 7145 doi: 10.1002/adfm.201502542
[118]
Ji W, Wang T, Zhu B, et al. Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode. J Mater Chem C, 2017, 5(18): 4543 doi: 10.1039/C7TC00514H
[119]
Ostroverkhova O. Organic optoelectronic materials: mechanisms and applications. Chem Rev, 2016, 116(22): 13279 doi: 10.1021/acs.chemrev.6b00127
[120]
Ahn S, Jeong S H, Han T H, et al. Conducting polymers as anode buffer materials in organic and perovskite optoelectronics. Adv Opt Mater, 2016, 5: 1600512
[121]
Yun J. Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv Funct Mater, 2017, 27(18): 1606641
[122]
Sannicolo T, Lagrange M, Cabos A, et al. Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small, 2016, 12: 6052
[123]
Yang X, Zhou G, Wong W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices. Chem Soc Rev, 2015, 44(23): 8484 doi: 10.1039/C5CS00424A
[124]
Jou J H, Kumar S, Agrawal A, et al. Approaches for fabricating high efficiency organic light emitting diodes. J Mater Chem C, 2015, 3(13): 2974 doi: 10.1039/C4TC02495H
[125]
Han T H, Choi M R, Jeon C W, et al. Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials. Sci Adv, 2016, 2(10): e1601428 doi: 10.1126/sciadv.1601428
[126]
Park M H, Kim J Y, Han T H, et al. Flexible lamination encapsulation. Adv Mater, 2015, 27(29): 4308 doi: 10.1002/adma.v27.29
[127]
Han D, Khan Y, Ting J, et al. Flexible blade-coated multicolor polymer light-emitting diodes for optoelectronic sensors. Adv Mater, 2017, 29(22): 1606206
[128]
Wang L, Ruan C, Li M, et al. Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer. J Mater Chem C, 2017, 5(16): 4017 doi: 10.1039/C7TC00903H
Fig. 1.  (Color online) (a, b) Schematic illustration of two different contact structures[74]. Reprinted with permission, Copyright 2008 John Wiley and Sons. (c) Two-step manufacturing processes of the buckled silicon nanoribbon devices. (d) Optical images of a large-scale aligned array of silicon nanoribbon wave (left) and single-crystal Si ribbons on PDMS (right). (e) Angled-view scanning electron microscope image of four wavy Si nanoribbons in (d)[75]. Reprinted with permission, Copyright 2005 American Association for the Advancement of Science.

Fig. 2.  (Color online) (a, b) Optical images of a net-like organic transistors based device, the device can extend by 25% when it is stretched[76]. Reprinted with permission, Copyright 2005 National Academy of Sciences. (c, d) Optical images of the stretch process of mesh structure formed by parallel lines and linked points[77]. (e) Schematic illustration of strain sensor fabricated by SWCNTs[77]. Reprinted with permission , Copyright 2011 Nature Publishing Group. (f) SEM image of irregular Au nanomesh structure which acts as highly stretchable and transparent electrodes[78]. Reprinted with permission, Copyright 2014 Nature Publishing Group.

Fig. 3.  (Color online) (a) Schematic illustration of the basic islands and bridges structure. (b) Optical images of hemispherical electronic eye camera with islands and bridges structure[80]. (c) Schematic description of the transfer process of islands and bridges array from PDMS to hemispherical glass lens substrate[80]. Reprinted with permission, Copyright 2008 Nature Publishing Group. (d) SEM images of the self-similar serpentine structure. (e) The stretched process of the self-similar serpentine structure[81]. Reprinted with permission, Copyright 2008 National Academy of Sciences. (f) SEM image of a type of S-shaped microfabricated suspensions. (g) Magnified SEM image of the shape-changed process of the structure with S-shaped microfabricated suspensions under pressure[82]. Reprinted with permission, Copyright 2004 AIP Publishing LLC.

Fig. 4.  (Color online) (a) Schematic illustration of different curve-shaped interconnects. (b) The deformation and pressure circumstance when the interconnected tracks are under same pressure. (c) Optical image of the fracture of the copper tracks, the position of the fracture agrees well with the prediction[84]. Reprinted with permission, Copyright 2008 Elsevier. (d) Calculated radius and angles of the most optimal horse-shoe-like structure[85]. Reprinted with permission, Copyright 2009 Emerald.

Fig. 5.  (Color online) (a) Stretchable lithium batteries with self-similar serpentine interconnects structure. (b) Optical microscope images of the microstructure of the batteries[86]. (c, Reprinted with permission[87], Copyright 2013 Elsevier, d[86]) Large area and magnified scheme of the mechanical model of self-similar serpentine. (e) The specific process of experimental and computational studies (FEA) of buckling physics interconnects with self-similar serpentine layouts[86]. Reprinted with permission, Copyright 2013 Nature Publishing Group.

Fig. 6.  (Color online) (a) A kind of mesh structure which mimics body tissue. (b) The concrete structure in (a), including triangular, honeycomb and kagome mesh structures. (c) The comparisons of three different architectures’ stretchability[88]. Reprinted with permission, Copyright 2015 Nature Publishing Group.

Fig. 7.  (Color online) (a) The structure of a fiber-shaped solar cell[89]. Reprinted with permission, Copyright 2014 John Wiley and Sons. (b) Schematic illustration of a photovoltaic wire[90]. Reprinted with permission, Copyright 2013 American Chemical Society. (c) The structure of a kind of flexible fiber-shaped PLEC. Inset: photo of a fiber-shaped PLEC biased at 10 V[92]. Reprinted with permission, Copyright 2015 Nature Publishing Group.

Fig. 8.  (Color online) (a) The pressure sensor with PVDF@rGO nanofiber framework film[95]. Reprinted with permission, Copyright 2016 Elsevier. (b) The structure of a kind of e-skin based on polyaniline hollow nanospheres composite films (PANI-HNSCF)[96]. (c) The flexible sensor array of the e-skin in (b)[96]. Reprinted with permission, Copyright 2017 Elsevier. (d) The electronic data glove and the condition when it recognizes the gesture of “OK”[99]. Reprinted with permission, Copyright 2016 John Wiley and Sons.

Fig. 9.  (Color online) (a, b) The carrier mobility and strain limits comparison of several typical semiconducting materials including organic materials, metal oxide, traditional silicon, and two-dimensional materials[44]. Reprinted with permission, Copyright 2014 Nature Publishing Group. (c) Schematic illustration of the process of embedding carbon nanotube into elastomer to act as the electrode[26]. Reprinted with permission, Copyright 2014 John Wiley and Sons. (d) Optical image of skin-inspired stretchable devices using healable semiconducting polymer as active materials[66]. Reprinted with permission, Copyright 2016 Nature Publishing Group. (e) Scheme of typical all-two-dimensional materials flexible field effect transistor[104]. Reprinted with permission, Copyright 2013 American Chemical Society.

[1]
Hammock M L, Chortos A, Tee B C, et al. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25(42): 5997 doi: 10.1002/adma.201302240
[2]
Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973): 1603 doi: 10.1126/science.1182383
[3]
Someya T. Stretchable electronics. Weinheim: Wiley-VCH , 2012
[4]
Someya T, Sekitani T, Iba S, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci, 2004, 101(27): 9966 doi: 10.1073/pnas.0401918101
[5]
Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 2014, 8(5): 4689 doi: 10.1021/nn500441k
[6]
Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater, 2016, 15(9): 937 doi: 10.1038/nmat4671
[7]
Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604 doi: 10.1002/adfm.201606604
[8]
Mannsfeld S C, Tee B C, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010, 9(10): 859 doi: 10.1038/nmat2834
[9]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat nanotechnol, 2011, 6(5): 296 doi: 10.1038/nnano.2011.36
[10]
Kim D H, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333(6044): 838 doi: 10.1126/science.1206157
[11]
Ying M, Bonifas A P, Lu N, et al. Silicon nanomembranes for fingertip electronics. Nanotechnology, 2012, 23(34): 344004 doi: 10.1088/0957-4484/23/34/344004
[12]
Schwartz G, Tee B C K, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013, 4: 1859 doi: 10.1038/ncomms2832
[13]
Choong C L, Shim M B, Lee B S, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater, 2014, 26(21): 3451 doi: 10.1002/adma.v26.21
[14]
Trung T Q, Lee N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv Mater, 2016, 28(22): 4338 doi: 10.1002/adma.v28.22
[15]
Yang Y, Yang X, Zou X, et al. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv Funct Mater, 2017, 27(19): 1604096 doi: 10.1002/adfm.v27.19
[16]
Kenry, Yeo J C, Lim C T. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst Nanoeng, 2016, 2: 16043 doi: 10.1038/micronano.2016.43
[17]
Lacour S P, Benmerah S, Tarte E, et al. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med Biolog Eng Comput, 2010, 48(10): 945 doi: 10.1007/s11517-010-0644-8
[18]
Jeong J W, Kim M K, Cheng H, et al. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv Healthcare Mater, 2014, 3(5): 642 doi: 10.1002/adhm.201300334
[19]
Chen Z, To J W F, Wang C, et al. A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv Energy Mater, 2014, 4(12)
[20]
Lin H, Weng W, Ren J, et al. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv Mater, 2014, 26(8): 1217 doi: 10.1002/adma.v26.8
[21]
Gwon H, Hong J, Kim H, et al. Recent progress on flexible lithium rechargeable batteries. Energy Environm Sci, 2014, 7(2): 538 doi: 10.1039/C3EE42927J
[22]
Chen L, Zhou G, Liu Z, et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv Mater, 2016, 28(3): 510 doi: 10.1002/adma.v28.3
[23]
Mo R, Rooney D, Sun K, et al. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat Commun, 2017, 8: 13949
[24]
Pu J, Yomogida Y, Liu K K, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett, 2012, 12(8): 4013 doi: 10.1021/nl301335q
[25]
Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9): 7931 doi: 10.1021/nn402954e
[26]
Chortos A, Lim J, To J W F, et al. Highly stretchable transistors using a microcracked organic semiconductor. Adv Mater, 2014, 26(25): 4253 doi: 10.1002/adma.v26.25
[27]
Park S, Shin S H, Yogeesh M N, et al. Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett, 2016, 37(4): 512 doi: 10.1109/LED.2016.2535484
[28]
Kim Y H, Lee E Y, Lee H H, et al. Characteristics of reduced graphene oxide quantum dots for a flexible memory thin film transistor. ACS Appl Mater Interfaces, 2017, 9(19): 16375 doi: 10.1021/acsami.7b00714
[29]
Dong S, Xi J, Wu Y, et al. High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. Anal Chim Acta, 2015, 853: 200 doi: 10.1016/j.aca.2014.08.004
[30]
Nagaraju G, Raju G S R, Ko Y H, et al. Hierarchical Ni–Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale, 2016, 8(2): 812 doi: 10.1039/C5NR05643H
[31]
Liang J, Li L, Niu X, et al. Elastomeric polymer light-emitting devices and displays. Nat Photonics, 2013, 7(10): 817 doi: 10.1038/nphoton.2013.242
[32]
Jung M, Kim J, Noh J, et al. All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans Electron Devices, 2010, 57(3): 571 doi: 10.1109/TED.2009.2039541
[33]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574 doi: 10.1038/nnano.2010.132
[34]
Xia M, Cheng Z, Han J, et al. Extremely stretchable all-carbon-nanotube transistor on flexible and transparent substrates. Appl Phy Lett, 2014, 105(14): 143504 doi: 10.1063/1.4897528
[35]
Chortos A, Koleilat G I, Pfattner R, et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv Mater, 2016, 28(22): 4441 doi: 10.1002/adma.v28.22
[36]
Xu F, Wu M Y, Safron N S, et al. Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. Nano Lett, 2014, 14(2): 682 doi: 10.1021/nl403941a
[37]
Ota H, Chen K, Lin Y, et al. Highly deformable liquid-state heterojunction sensors. Nat Commun, 2014, 5: 5032 doi: 10.1038/ncomms6032
[38]
Chen J, Liu Y, Minett A I, et al. Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery. Chem Mater, 2007, 19(15): 3595 doi: 10.1021/cm070991g
[39]
Oh J Y, Kim S, Baik H K, et al. Conducting polymer dough for deformable electronics. Adv Mater, 2016, 28(22): 4455 doi: 10.1002/adma.v28.22
[40]
Vosgueritchian M, Lipomi D J, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater, 2012, 22(2): 421 doi: 10.1002/adfm.201101775
[41]
Lee K, Park J, Tchoe Y, et al. Flexible resistive random access memory devices by using NiOx/GaN microdisk arrays fabricated on graphene films. Nanotechnology, 2017, 28(20): 205202 doi: 10.1088/1361-6528/aa6763
[42]
Sun Y, Rogers J A. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett, 2004, 4(10): 1953 doi: 10.1021/nl048835l
[43]
Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428(6986): 911 doi: 10.1038/nature02498
[44]
Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun, 2014, 5: 5678 doi: 10.1038/ncomms6678
[45]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3): 183 doi: 10.1038/nmat1849
[46]
Wu X, Sprinkle M, Li X, et al. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys Rev Lett, 2008, 101(2): 026801 doi: 10.1103/PhysRevLett.101.026801
[47]
Eda G, Mattevi C, Yamaguchi H, et al. Insulator to semimetal transition in graphene oxide. J Phys Chem C, 2009, 113(35): 15768 doi: 10.1021/jp9051402
[48]
Kim J, Cote L J, Huang J. Two-dimensional soft material: new faces of graphene oxide. ACC Chem Res, 2012, 45(8): 1356 doi: 10.1021/ar300047s
[49]
Jeong H Y, Kim J Y, Kim J W, et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett, 2010, 10(11): 4381 doi: 10.1021/nl101902k
[50]
Rupprecht L. Conductive polymers and plastics: in industrial applications. William Andrew, 1999
[51]
Parman C E, Israeloff N E, Kakalios J. Conductance fluctuations in doped hydrogenated amorphous silicon. Phys Rev B, 1993, 47(19): 12578 doi: 10.1103/PhysRevB.47.12578
[52]
Liu Y, Zhang A, Shen C, et al. Red phosphorus nano-dots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano, 2017, 11: 5530
[53]
Georgiou T, Jalil R, Belle B D, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol, 2013, 8(2): 100
[54]
Park S, Vosguerichian M, Bao Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, 5(5): 1727 doi: 10.1039/c3nr33560g
[55]
Yakobson B I, Brabec C J, Bernholc J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett, 1996, 76(14): 2511 doi: 10.1103/PhysRevLett.76.2511
[56]
Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996, 381(6584): 678 doi: 10.1038/381678a0
[57]
Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277(5334): 1971 doi: 10.1126/science.277.5334.1971
[58]
Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306(5700): 1358 doi: 10.1126/science.1104276
[59]
Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber. Science, 2007, 318(5858): 1892 doi: 10.1126/science.1147635
[60]
Shang Y, He X, Li Y, et al. Super-stretchable spring-like carbon nanotube ropes. Adv Mater, 2012, 24(21): 2896 doi: 10.1002/adma.v24.21
[61]
Menard E, Nuzzo R G, Rogers J A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl Phys Lett, 2005, 86(9): 093507 doi: 10.1063/1.1866637
[62]
Hecht D S, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater, 2011, 23(13): 1482 doi: 10.1002/adma.201003188
[63]
Kumar A, Zhou C. The race to replace tin-doped indium oxide: which material will win. ACS Nano, 2010, 4(1): 11 doi: 10.1021/nn901903b
[64]
Lee P, Lee J, Lee H, et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater, 2012, 24(25): 3326 doi: 10.1002/adma.v24.25
[65]
Onorato J, Pakhnyuk V, Luscombe C K. Structure and design of polymers for durable, stretchable organic electronics. Polym J, 2017, 49(1): 41 doi: 10.1038/pj.2016.76
[66]
Oh J Y, Rondeau-Gagné S, Chiu Y C, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539(7629): 411 doi: 10.1038/nature20102
[67]
Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc, Chem Commun, 1977(16): 578 doi: 10.1039/c39770000578
[68]
Na S I, Wang G, Kim S S, et al. Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells. J Mater Chem, 2009, 19(47): 9045 doi: 10.1039/b915756e
[69]
Nardes A M, Kemerink M, De Kok M M, et al. Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Org Electron, 2008, 9(5): 727 doi: 10.1016/j.orgel.2008.05.006
[70]
Vosgueritchian M, Lipomi D J, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater, 2012, 22(2): 421 doi: 10.1002/adfm.201101775
[71]
Chortos A, Koleilat G I, Pfattner R, et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv Mater, 2016, 28(22): 4441 doi: 10.1002/adma.v28.22
[72]
Park S I, Ahn J H, Feng X, et al. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv Funct Mater, 2008, 18(18): 2673 doi: 10.1002/adfm.v18:18
[73]
Khang D Y,Rogers J A,Lee H H. Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv Funct Mater, 2009, 19(10): 1526 doi: 10.1002/adfm.v19:10
[74]
Kim D H,Rogers J. A stretchable electronics: materials strategies and devices. Adv Mater, 2008, 20(24): 4887 doi: 10.1002/adma.v20:24
[75]
Khang D Y, Jiang H, Huang Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311(5758): 208 doi: 10.1126/science.1121401
[76]
Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA, 2005, 102(35): 12321 doi: 10.1073/pnas.0807476105
[77]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6(5): 296 doi: 10.1038/nnano.2011.36
[78]
Guo C F, Sun T, Liu Q, et al. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat Commun, 2014, 5: 3121
[79]
Kim D H, Xiao J, Song J, et al. Stretchable, curvilinear electronics based on inorganic materials. Adv Mater, 2010, 22(19): 2108 doi: 10.1002/adma.v22:19
[80]
Ko H C, Stoykovich M P, Song J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454(7205): 748 doi: 10.1038/nature07113
[81]
Kim D H, Song J, Choi W M, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad of Sci, 2008, 105(48): 18675 doi: 10.1073/pnas.0807476105
[82]
Hung P J, Jeong K, Liu G L, et al. Microfabricated suspensions for electrical connections on the tunable elastomer membrane. Appl Phys Lett, 2004, 85(24): 6051 doi: 10.1063/1.1835553
[83]
Huang K, Dinyari R, Lanzara G, et al. An approach to cost-effective, robust, large-area electronics using monolithic silicon. IEEE Electron Devices Meeting, 2007: 217
[84]
Gonzalez M, Axisa F, Bulcke M V, et al. Design of metal interconnects for stretchable electronic circuits. Microelectron Reliab, 2008, 48(6): 825 doi: 10.1016/j.microrel.2008.03.025
[85]
Gonzalez M, Axisa F, Bossuyt F, et al. Design and performance of metal conductors for stretchable electronic circuits. Circuit World, 2009, 35(1): 22 doi: 10.1108/03056120910928699
[86]
Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013, 4: 1543 doi: 10.1038/ncomms2553
[87]
Zhang Y, Fu H, Su Y, et al. Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater, 2013, 61(20): 7816 doi: 10.1016/j.actamat.2013.09.020
[88]
Jang K I, Chung H U, Xu S, et al. Soft network composite materials with deterministic and bio-inspired designs. Nat Commun, 2015, 6: 6566
[89]
Qiu L, Deng J, Lu X, et al. Integrating perovskite solar cells into a flexible fiber. Angew Chem Int Edit, 2014, 53(39): 10425 doi: 10.1002/anie.201404973
[90]
Pan S, Yang Z, Li H, et al. Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte. J Am Chem Soc, 2013, 135(29): 10622 doi: 10.1021/ja405012w
[91]
Peng H, Sun X, Cai F, et al. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nat Nanotechnol, 2009, 4(11): 738 doi: 10.1038/nnano.2009.264
[92]
Zhang Z, Guo K, Li Y, et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat Photon, 2015, 9(4): 233
[93]
Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nature Mater, 2016, 15(9): 937 doi: 10.1038/nmat4671
[94]
Li C H, Wang C, Keplinger C, et al. A highly stretchable autonomous self-healing elastomer. Nat Chem, 2016, 8(6): 618 doi: 10.1038/nchem.2492
[95]
Lou Z, Chen S, Wang L, et al. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23: 7 doi: 10.1016/j.nanoen.2016.02.053
[96]
Lou Z, Chen S, Wang L, et al. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy, 2017, 38: 28 doi: 10.1016/j.nanoen.2017.05.024
[97]
Someya T, Sekitani T, Iba S, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci, 2004, 101(27): 9966 doi: 10.1073/pnas.0401918101
[98]
Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604
[99]
Chen S, Lou Z, Chen D, et al. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv Mater Technolo, 2016, 1(7): 1600136
[100]
Kim D H, Ahn J H, Choi W M, et al. Stretchable and foldable silicon integrated circuits. Science, 2008, 320(5875): 507 doi: 10.1126/science.1154367
[101]
Salvetat J P, Bonard J M, Thomson N H, et al. Mechanical properties of carbon nanotubes. Appl Phys A, 1999, 69(3): 255 doi: 10.1007/s003390050999
[102]
Gao L. Flexible device applications of 2D semiconductors. Small, 2017, 13: 1603994
[103]
Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9(10): 768 doi: 10.1038/nnano.2014.207
[104]
Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9): 7931 doi: 10.1021/nn402954e
[105]
Zhang Q, Huang J Q, Qian W Z, et al. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small, 2013, 9(8): 1237 doi: 10.1002/smll.201203252
[106]
Li X, Yang J, Hu Y, et al. Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage. J Mater Chem, 2012, 22(36): 18847 doi: 10.1039/c2jm33297c
[107]
Liang C C, Bro P A. High-voltage, solid-state battery system I design considerations. J Electrochem Soc, 1969, 116(9): 1322 doi: 10.1149/1.2412312
[108]
Liu Y, Gorgutsa S, Santato C, et al. Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J Electrochem. Soc, 2012, 159(4): A349 doi: 10.1149/2.020204jes
[109]
Ha H J, Kil E H, Kwon Y H, et al. UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy Environ Sci, 2012, 5(4): 6491 doi: 10.1039/c2ee03025j
[110]
Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects. Energy Environ Sci, 2014, 7(4): 1307 doi: 10.1039/C3EE43182G
[111]
Hu L, Wu H, La Mantia F, et al. Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010, 4(10): 5843 doi: 10.1021/nn1018158
[112]
Zhang Y, Bai W, Cheng X, et al. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int Edit, 2014, 53(52): 14564 doi: 10.1002/anie.201409366
[113]
Zhang Y, Zhao Y, Cheng X, et al. Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew Chem Int Edit, 2015, 54(38): 11177 doi: 10.1002/anie.201506142
[114]
Xu R P, Li Y Q, Tang J X. Recent advances in flexible organic light-emitting diodes. J Mater Chem C, 2016, 4(39): 9116 doi: 10.1039/C6TC03230C
[115]
Morales-Masis M, De Wolf S, Woods-Robinson R, et al. Transparent electrodes for efficient optoelectronics. Adv Electron Mater, 2017, 3(5): 1600529
[116]
Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics, 2012, 6(2): 105 doi: 10.1038/nphoton.2011.318
[117]
Kim D Y, Han Y C, Kim H C, et al. Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes. Adv Funct Mater, 2015, 25(46): 7145 doi: 10.1002/adfm.201502542
[118]
Ji W, Wang T, Zhu B, et al. Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode. J Mater Chem C, 2017, 5(18): 4543 doi: 10.1039/C7TC00514H
[119]
Ostroverkhova O. Organic optoelectronic materials: mechanisms and applications. Chem Rev, 2016, 116(22): 13279 doi: 10.1021/acs.chemrev.6b00127
[120]
Ahn S, Jeong S H, Han T H, et al. Conducting polymers as anode buffer materials in organic and perovskite optoelectronics. Adv Opt Mater, 2016, 5: 1600512
[121]
Yun J. Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv Funct Mater, 2017, 27(18): 1606641
[122]
Sannicolo T, Lagrange M, Cabos A, et al. Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small, 2016, 12: 6052
[123]
Yang X, Zhou G, Wong W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices. Chem Soc Rev, 2015, 44(23): 8484 doi: 10.1039/C5CS00424A
[124]
Jou J H, Kumar S, Agrawal A, et al. Approaches for fabricating high efficiency organic light emitting diodes. J Mater Chem C, 2015, 3(13): 2974 doi: 10.1039/C4TC02495H
[125]
Han T H, Choi M R, Jeon C W, et al. Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials. Sci Adv, 2016, 2(10): e1601428 doi: 10.1126/sciadv.1601428
[126]
Park M H, Kim J Y, Han T H, et al. Flexible lamination encapsulation. Adv Mater, 2015, 27(29): 4308 doi: 10.1002/adma.v27.29
[127]
Han D, Khan Y, Ting J, et al. Flexible blade-coated multicolor polymer light-emitting diodes for optoelectronic sensors. Adv Mater, 2017, 29(22): 1606206
[128]
Wang L, Ruan C, Li M, et al. Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer. J Mater Chem C, 2017, 5(16): 4017 doi: 10.1039/C7TC00903H
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 9168 Times PDF downloads: 192 Times Cited by: 0 Times

    History

    Received: 05 August 2017 Revised: 05 October 2017 Online: Accepted Manuscript: 27 December 2017Published: 01 January 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Mingzhi Zou, Yue Ma, Xin Yuan, Yi Hu, Jie Liu, Zhong Jin. Flexible devices: from materials, architectures to applications[J]. Journal of Semiconductors, 2018, 39(1): 011010. doi: 10.1088/1674-4926/39/1/011010 M Z Zou, Y Ma, X Yuan, Y Hu, J Liu, Z Jin, Flexible devices: from materials, architectures to applications[J]. J. Semicond., 2018, 39(1): 011010. doi: 10.1088/1674-4926/39/1/011010.Export: BibTex EndNote
      Citation:
      Mingzhi Zou, Yue Ma, Xin Yuan, Yi Hu, Jie Liu, Zhong Jin. Flexible devices: from materials, architectures to applications[J]. Journal of Semiconductors, 2018, 39(1): 011010. doi: 10.1088/1674-4926/39/1/011010

      M Z Zou, Y Ma, X Yuan, Y Hu, J Liu, Z Jin, Flexible devices: from materials, architectures to applications[J]. J. Semicond., 2018, 39(1): 011010. doi: 10.1088/1674-4926/39/1/011010.
      Export: BibTex EndNote

      Flexible devices: from materials, architectures to applications

      doi: 10.1088/1674-4926/39/1/011010
      Funds:

      Project supported by the National Key R&D Program of China (Nos. 2017YFA0208200, 2016YFB0700600, 2015CB659300), the National Natural Science Foundation of China (Nos. 21403105, 21573108), and the Fundamental Research Funds for the Central Universities (No. 020514380107).

      More Information
      • Corresponding author: Email: zhongjin@nju.edu.cn
      • Received Date: 2017-08-05
      • Revised Date: 2017-10-05
      • Published Date: 2018-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return