Special Issue on Flexible and Wearable Electronics: from Materials to Applications

Ultrathin free-standing graphene oxide film based flexible touchless sensor

Lin Liu1, 2, Yingyi Wang2, Guanghui Li1, Sujie Qin2, and Ting Zhang1,

+ Author Affiliations

 Corresponding author: Sujie Qin, Sujie.Qin@xjtlu.edu.cn; Ting Zhang, Email: tzhang2009@sinano.ac.cn

PDF

Turn off MathJax

Abstract: Ultrathin free-standing graphene oxide (GO) films were fabricated by vacuum filtration method assisted with Ni(OH)2 nanosheets as the sacrifice layer. The surface of the obtained GO film is very clean as the Ni(OH)2 nanosheets can be thoroughly etched by HCl. The thickness of the GO films can be well-controlled by changing the volume of GO dispersion, and the thinnest GO film reached ~12 nm. As a novel and transparent dielectric material, the GO film has been applied as the dielectric layer for the flexible touchless capacitive sensor which can effectively distinguish the approaching of an insulator or a conductor.

Key words: graphene oxidefree-standing filmtouchless sensor



[1]
Bao Z N, Chen X D. Flexible and stretchable devices. Adv Mater, 2016, 28(22): 4177 doi: 10.1002/adma.v28.22
[2]
Yun S, Park S, Park B, et al. Polymer-waveguide-based flexible tactile sensor array for dynamic response. Adv Mater, 2014, 26(26): 4474 doi: 10.1002/adma.v26.26
[3]
Aezinia F, Wang Y F, Bahreyni B, et al. Three dimensional touchless tracking of objects using integrated capacitive sensors. IEEE Trans Consum Electr, 2012, 58(3): 886 doi: 10.1109/TCE.2012.6311332
[4]
Szendrei K, Ganter P, Sobrado O S, et al. Touchless optical finger motion tracking based on 2D nanosheets with giant moisture responsiveness. Adv Mater, 2015, 27(41): 6341 doi: 10.1002/adma.201503463
[5]
Yu L, Xu H L, Monro T M, et al. Ultrafast colorimetric humidity-sensitive polyelectrolyte coating for touchless control. Mater Horiz, 2017, 4(1): 72 doi: 10.1039/C6MH00317F
[6]
Feng J, Peng L L, Wu C Z, et al. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv Mater, 2012, 24(15): 1969 doi: 10.1002/adma.201104681
[7]
Chi H, Liu Y J, Wang F K, et al. Highly sensitive and fast response colorimetric humidity sensors based on graphene oxides film. ACS Appl Mater Interfaces, 2015, 7(36): 19882 doi: 10.1021/acsami.5b06883
[8]
Borini S, White R, Wei D, et al. Ultrafast graphene oxide humidity sensors. ACS Nano, 2013, 7(12): 11166 doi: 10.1021/nn404889b
[9]
Standley B, Mendez A, Schmidgall E, et al. Graphene-graphite oxide field-effect transistors. Nano Lett, 2012, 12(3): 1165 doi: 10.1021/nl2028415
[10]
Liang G H, Wang Y C, Mei D Q, et al. Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for three-axis force measurement. J Microelectromech Syst, 2015, 24(5): 1510 doi: 10.1109/JMEMS.2015.2418095
[11]
Wang D R, Bao Y R, Zha J W, et al. Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl Mater Interfaces, 2012, 4(11): 6273 doi: 10.1021/am3018652
[12]
Chem S, Zhu J W, Wu X D, et al. Graphene oxide MnO2 nanocomposites for supercapacitors. ACS Nano, 2010, 4(5): 2822 doi: 10.1021/nn901311t
[13]
Seredych M, Bandosz T J. Evaluation of GO/MnO2 composites as supercapacitors in neutral electrolytes: role of graphite oxide oxidation level. J Mater Chem, 2012, 22(44): 23525 doi: 10.1039/c2jm34294d
[14]
Chen C M, Yang Q H, Yang Y G, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater, 2009, 21(29): 3007 doi: 10.1002/adma.v21:29
[15]
Medhekar N V, Ramasubramaniam A, Ruoff R S, et al. Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano, 2010, 4(4): 2300 doi: 10.1021/nn901934u
[16]
Kim H W, Yoon H W, Yoon S M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 95 doi: 10.1126/science.1236686
[17]
Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067): 442 doi: 10.1126/science.1211694
[18]
Dikin D A, Stankoviich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper. Nature, 2007, 448(7152): 457 doi: 10.1038/nature06016
[19]
Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol, 2008, 3(5): 270 doi: 10.1038/nnano.2008.83
[20]
Cote L J, Kim F, Huang J X. Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc, 2009, 131(3): 1043 doi: 10.1021/ja806262m
[21]
Li G H, Wang X W, Ding H Y, et al. A facile synthesis method for Ni(OH)2 ultrathin nanosheets and their conversion to porous NiO nanosheets used for formaldehyde sensing. RSC Adv, 2012, 2(33): 13018 doi: 10.1039/c2ra22049k
[22]
Shen J, Liu G P, Huang K, et al. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano, 2016, 10(3): 3398 doi: 10.1021/acsnano.5b07304
[23]
Song F X, Jie W B, Zhang T, et al. Room-temperature fabrication of a three-dimensional reduced-graphene oxide/ polypyrrole/hydroxyapatite composite scaffold for bone tissue engineering. RSC Adv, 2016, 6(95): 92804 doi: 10.1039/C6RA15267H
[24]
Peng H D, Meng L J, Niu L Y, et al. Simultaneous reduction and surface functionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid. J Phys Chem C, 2012, 116(30): 16294 doi: 10.1021/jp3043889
[25]
Yeh C, Raidongia K, Shao J, et al. On the origin of the stability of graphene oxide membranes in water. Nat Chem, 2014, 7(2): 166
[26]
Xi Y J, Hu J Q, Liu Z, et al. Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing. ACS Appl Mater Interfaces, 2016, 8(24): 15557 doi: 10.1021/acsami.6b00928
[27]
Tang L A L, Lee W C, Shi H, et al. Highly wrinkled cross-linked graphene oxide membranes for biological and charge-storage applications. Small, 2012, 8(3): 423 doi: 10.1002/smll.201101690
[28]
Qin S Y, Liu X J, Zhuo R X, et al. Microstructure-controllable graphene oxide hydrogel film based on a ph-responsive graphene oxide hydrogel. Macromol Chem Phys, 2012, 213(19): 2044 doi: 10.1002/macp.201200281
[29]
Teradal N L, Mars S, Morag A, et al. Porous graphene oxide chemi-capacitor vapor sensor array. J Mater Chem C, 2017, 5(5): 1128 doi: 10.1039/C6TC05364E
[30]
Aezinia F, Wang Y F, Bahreyni B. Three dimensional touchless tracking of objects using integrated capacitive sensors. IEEE Transn Consum Electron, 2012, 58(3): 886 doi: 10.1109/TCE.2012.6311332
[31]
Haslinger L, Hehenberger S, Zagar B G. Capacitance measurement system for touchless interaction. Proc Eng, 2016, 168: 737 doi: 10.1016/j.proeng.2016.11.265
[32]
Garbini J L, Saunders R A, Jorgensen J E. In-process drilled hole inspection for aerospace applications. Prec Eng, 1991, 13(2): 125 doi: 10.1016/0141-6359(91)90503-B
Fig. 1.  (Color online) Schematic of the fabrication process of the free-standing GO film.

Fig. 2.  (Color online) A photograph of the PTFE/Ni(OH)2 membrane which is filtered with 10 mL 0.01 mg/mL Ni(OH)2 nanosheets solution. (b), (c) SEM images of bare PTFE membrane and PTFE/Ni(OH)2 membrane, respectively. (d) A photograph of the PTFE/Ni(OH)2/GO membrane by filtering 10 mL 20 mg/L GO dispersion onto the PTFE/Ni(OH)2 membrane. (e), (f) SEM images of PTFE/Ni(OH)2/GO membrane and the obtained GO film, respectively.

Fig. 3.  (Color online) (a)–(d) The photographs of the prepared GO films with different thickness by tuning the volume of GO dispersion (20 mg/L) which are transferred onto PET substrates: (a) 1.5 mL, (b) 2 mL, (c) 3 mL, and (d) 10 mL. (e) Transmittance of the GO films which are obtained with different GO dispersion volume (300 to 1200 nm).

Fig. 4.  (Color online) The AFM images and height profile of prepared GO films with different volume of GO dispersion (20 mg/mL): (a)1.5 mL, (b) 10 mL.

Fig. 5.  (Color online) (a) The schematic graph and (b) photograph of the capacitive sensor based on GO film. Gold electrodes work as the panel electrodes on both sides of GO film; capacitance time (C–T) response to different objects when they are close to the sensor: (c) insulator, (d) conductor, (e) hand.

Fig. 6.  (Color online) The schematic graph of the electrical field distribution of the capacitive sensor (a), and the electrical field distribution of the top electrode when the conductor is close to the top electrode (b).

Table 1.   The least thickness of GO films obtained via different fabrication method.

Method Thickness References
Filter 2 nm [19]
Spin-coating 3–10 nm [16]
Spray- or spin-coating 0.1 μm [17]
Vapor induced assemble 0.5 μm [14]
Filter 1 μm [18]
Chemical ‘stitching’ 1 μm [27]
Vacuum drying 5 μm [28]
Filter ~12 nm Our work
DownLoad: CSV
[1]
Bao Z N, Chen X D. Flexible and stretchable devices. Adv Mater, 2016, 28(22): 4177 doi: 10.1002/adma.v28.22
[2]
Yun S, Park S, Park B, et al. Polymer-waveguide-based flexible tactile sensor array for dynamic response. Adv Mater, 2014, 26(26): 4474 doi: 10.1002/adma.v26.26
[3]
Aezinia F, Wang Y F, Bahreyni B, et al. Three dimensional touchless tracking of objects using integrated capacitive sensors. IEEE Trans Consum Electr, 2012, 58(3): 886 doi: 10.1109/TCE.2012.6311332
[4]
Szendrei K, Ganter P, Sobrado O S, et al. Touchless optical finger motion tracking based on 2D nanosheets with giant moisture responsiveness. Adv Mater, 2015, 27(41): 6341 doi: 10.1002/adma.201503463
[5]
Yu L, Xu H L, Monro T M, et al. Ultrafast colorimetric humidity-sensitive polyelectrolyte coating for touchless control. Mater Horiz, 2017, 4(1): 72 doi: 10.1039/C6MH00317F
[6]
Feng J, Peng L L, Wu C Z, et al. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv Mater, 2012, 24(15): 1969 doi: 10.1002/adma.201104681
[7]
Chi H, Liu Y J, Wang F K, et al. Highly sensitive and fast response colorimetric humidity sensors based on graphene oxides film. ACS Appl Mater Interfaces, 2015, 7(36): 19882 doi: 10.1021/acsami.5b06883
[8]
Borini S, White R, Wei D, et al. Ultrafast graphene oxide humidity sensors. ACS Nano, 2013, 7(12): 11166 doi: 10.1021/nn404889b
[9]
Standley B, Mendez A, Schmidgall E, et al. Graphene-graphite oxide field-effect transistors. Nano Lett, 2012, 12(3): 1165 doi: 10.1021/nl2028415
[10]
Liang G H, Wang Y C, Mei D Q, et al. Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for three-axis force measurement. J Microelectromech Syst, 2015, 24(5): 1510 doi: 10.1109/JMEMS.2015.2418095
[11]
Wang D R, Bao Y R, Zha J W, et al. Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl Mater Interfaces, 2012, 4(11): 6273 doi: 10.1021/am3018652
[12]
Chem S, Zhu J W, Wu X D, et al. Graphene oxide MnO2 nanocomposites for supercapacitors. ACS Nano, 2010, 4(5): 2822 doi: 10.1021/nn901311t
[13]
Seredych M, Bandosz T J. Evaluation of GO/MnO2 composites as supercapacitors in neutral electrolytes: role of graphite oxide oxidation level. J Mater Chem, 2012, 22(44): 23525 doi: 10.1039/c2jm34294d
[14]
Chen C M, Yang Q H, Yang Y G, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater, 2009, 21(29): 3007 doi: 10.1002/adma.v21:29
[15]
Medhekar N V, Ramasubramaniam A, Ruoff R S, et al. Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano, 2010, 4(4): 2300 doi: 10.1021/nn901934u
[16]
Kim H W, Yoon H W, Yoon S M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 95 doi: 10.1126/science.1236686
[17]
Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067): 442 doi: 10.1126/science.1211694
[18]
Dikin D A, Stankoviich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper. Nature, 2007, 448(7152): 457 doi: 10.1038/nature06016
[19]
Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol, 2008, 3(5): 270 doi: 10.1038/nnano.2008.83
[20]
Cote L J, Kim F, Huang J X. Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc, 2009, 131(3): 1043 doi: 10.1021/ja806262m
[21]
Li G H, Wang X W, Ding H Y, et al. A facile synthesis method for Ni(OH)2 ultrathin nanosheets and their conversion to porous NiO nanosheets used for formaldehyde sensing. RSC Adv, 2012, 2(33): 13018 doi: 10.1039/c2ra22049k
[22]
Shen J, Liu G P, Huang K, et al. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano, 2016, 10(3): 3398 doi: 10.1021/acsnano.5b07304
[23]
Song F X, Jie W B, Zhang T, et al. Room-temperature fabrication of a three-dimensional reduced-graphene oxide/ polypyrrole/hydroxyapatite composite scaffold for bone tissue engineering. RSC Adv, 2016, 6(95): 92804 doi: 10.1039/C6RA15267H
[24]
Peng H D, Meng L J, Niu L Y, et al. Simultaneous reduction and surface functionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid. J Phys Chem C, 2012, 116(30): 16294 doi: 10.1021/jp3043889
[25]
Yeh C, Raidongia K, Shao J, et al. On the origin of the stability of graphene oxide membranes in water. Nat Chem, 2014, 7(2): 166
[26]
Xi Y J, Hu J Q, Liu Z, et al. Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing. ACS Appl Mater Interfaces, 2016, 8(24): 15557 doi: 10.1021/acsami.6b00928
[27]
Tang L A L, Lee W C, Shi H, et al. Highly wrinkled cross-linked graphene oxide membranes for biological and charge-storage applications. Small, 2012, 8(3): 423 doi: 10.1002/smll.201101690
[28]
Qin S Y, Liu X J, Zhuo R X, et al. Microstructure-controllable graphene oxide hydrogel film based on a ph-responsive graphene oxide hydrogel. Macromol Chem Phys, 2012, 213(19): 2044 doi: 10.1002/macp.201200281
[29]
Teradal N L, Mars S, Morag A, et al. Porous graphene oxide chemi-capacitor vapor sensor array. J Mater Chem C, 2017, 5(5): 1128 doi: 10.1039/C6TC05364E
[30]
Aezinia F, Wang Y F, Bahreyni B. Three dimensional touchless tracking of objects using integrated capacitive sensors. IEEE Transn Consum Electron, 2012, 58(3): 886 doi: 10.1109/TCE.2012.6311332
[31]
Haslinger L, Hehenberger S, Zagar B G. Capacitance measurement system for touchless interaction. Proc Eng, 2016, 168: 737 doi: 10.1016/j.proeng.2016.11.265
[32]
Garbini J L, Saunders R A, Jorgensen J E. In-process drilled hole inspection for aerospace applications. Prec Eng, 1991, 13(2): 125 doi: 10.1016/0141-6359(91)90503-B

17070039supp.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4936 Times PDF downloads: 89 Times Cited by: 0 Times

    History

    Received: 31 July 2017 Revised: 09 November 2017 Online: Accepted Manuscript: 27 December 2017Published: 01 January 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lin Liu, Yingyi Wang, Guanghui Li, Sujie Qin, Ting Zhang. Ultrathin free-standing graphene oxide film based flexible touchless sensor[J]. Journal of Semiconductors, 2018, 39(1): 013002. doi: 10.1088/1674-4926/39/1/013002 L Liu, Y Y Wang, G H Li, S J Qin, T Zhang, Ultrathin free-standing graphene oxide film based flexible touchless sensor[J]. J. Semicond., 2018, 39(1): 013002. doi: 10.1088/1674-4926/39/1/013002.Export: BibTex EndNote
      Citation:
      Lin Liu, Yingyi Wang, Guanghui Li, Sujie Qin, Ting Zhang. Ultrathin free-standing graphene oxide film based flexible touchless sensor[J]. Journal of Semiconductors, 2018, 39(1): 013002. doi: 10.1088/1674-4926/39/1/013002

      L Liu, Y Y Wang, G H Li, S J Qin, T Zhang, Ultrathin free-standing graphene oxide film based flexible touchless sensor[J]. J. Semicond., 2018, 39(1): 013002. doi: 10.1088/1674-4926/39/1/013002.
      Export: BibTex EndNote

      Ultrathin free-standing graphene oxide film based flexible touchless sensor

      doi: 10.1088/1674-4926/39/1/013002
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 61574163) and the Foundation Research Project of Jiangsu Province (Nos. BK20160392, BK20170008).

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return