SEMICONDUCTOR DEVICES

High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength

Hao Luo1, 2, 3, Cheng’ao Yang1, 2, 3, Shengwen Xie1, 2, 3, Xiaoli Chai1, 2, 3, Shushan Huang1, 2, 3, Yu Zhang1, 2, 3, , Yingqiang Xu1, 2 and Zhichuan Niu1, 2, 3

+ Author Affiliations

 Corresponding author: Yu Zhang, zhangyu@semi.ac.cn

PDF

Turn off MathJax

Abstract: The GaSb-based distributed Bragg reflection (DBR) diode laser with 23rd-order gratings have been fabricated by conventional UV lithography and inductively coupled plasma (ICP) etching. The ICP etching conditions were optimized and the relationship among etching depth, duty ratio and side-mode suppression ratio (SMSR) was studied. The device with a ridge width of 100 μm, gratings period of 13 μm and etching depth of 1.55 μm as well as the duty ratio of 85% was fabricated, its maximum SMSR reached 22.52 dB with uncoated cavity facets under single longitudinal operation mode at room temperature.

Key words: GaSb-baseddistributed Bragg reflectioninductively coupled plasmasingle longitudinal modehigh-order gratings



[1]
Curcio J A, Drummeter L F, Petty C C, et al. An experimental study of atmospheric transmission. J Opt Soc Am, 1954, 43: 97
[2]
Wootten M B, Tan J, Chien Y J, et al. Broadband 2.4 μm superluminescent GaInAsSb/AlGaAsSb quantum well diodes for optical sensing of biomolecules. Semicond Sci Technol, 2014, 29(11): 115014 doi: 10.1088/0268-1242/29/11/115014
[3]
Kaplan L D. On the calculation of atmospheric transmission functions for the infrared. 2.0.CO;2">J Meteorol, 1952, 9: 139 doi: 10.1175/1520-0469(1952)009<0139:OTCOAT>2.0.CO;2
[4]
Gebbie H A, Harding W R, Hilsum C, et al. Atmospheric transmission in the 1 to 14 μ region. Proc Royal Soc London Ser A, 1951, 206: 87 doi: 10.1098/rspa.1951.0058
[5]
Meng Y X, Liu T G, Liu K, et al. A modified empirical mode decomposition algorithm in TDLAS for gas detection. IEEE Photonics J, 2014, 6: 9
[6]
Krzempek K, Jahjah M, Lewicki R, et al. CW DFT RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell. Appl Phys B, 2013, 112: 461 doi: 10.1007/s00340-013-5544-9
[7]
Li L, Wang Y, Li S. Application of infrared gas detection technology to safe production and transportation in natural gas industry. Nat Gas Ind, 2011, 31: 96
[8]
Kim H D, Kang S G, Le C H. A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser. IEEE Photonics Technol Lett, 2000, 12(8): 1067 doi: 10.1109/68.868010
[9]
Lu Q Y, Guo W H, Nawrocka M, et al. Single mode lasers based on slots suitable for photonic integration. Opt Express, 2011, 19(26): 140 doi: 10.1364/OE.19.00B140
[10]
Mueller M, Bauer A, Lehnhardt T, et al. High-power frequency stabilized GaSb DBR tapered laser. IEEE Photonics Technol Lett, 2008, 20(21-24): 2162
[11]
Viheriala J, Haring K, Suomalainen S, et al. High spectral purity high-power GaSb-based DFB laser fabricated by nanoimprint lithography. IEEE Photonic Technol Lett, 2016, 28(11): 1233 doi: 10.1109/LPT.2016.2519044
[12]
Xu J, Zhang W, Liu L, et al. Phase-shift control in two-beam laser interference lithography. 2011. IEEE International Conference on Mechatronics and Automation, 2011: 144
[13]
Murata H, Rokuta E, Shimoyama H, et al. Computer simulation of high brightness and high beam current electron gun for high-thoroughput electrom beam lithography. 25th International Vacuum Nanoelectronics Conference, 2012: 1
[14]
Forouhar S, Briggs R M, Frez C, et al. High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength. Appl Phys Lett, 2012, 100(3): 031107 doi: 10.1063/1.3678187
[15]
Zhang Y, Wang G W, Tang B, et al. Molecular beam epitaxy growth of InGaSb/AlGaAsSb strained quantum well diode lasers. J Semicond, 2011, 32(10): 103002 doi: 10.1088/1674-4926/32/10/103002
[16]
Fan Z F, Luo J S, Ye W H. Compressible Rayleigh–Taylor instability with preheat in inertial confinement fusion. Chin Phys Lett, 2007, 24(8): 2308 doi: 10.1088/0256-307X/24/8/042
[17]
Chai X L, Zhang Y, Liao Y P, et al. High power GaSb-based 2.6 μm room-temperature laser diodes with InGaAsSb/AlGaAsSb type I quantum-wells. Infrared Millim Waves, 2017, 36(3): 278
[18]
Hosoda T, Kipshidze G, Shterengas L, et al. 200 mW type I GaSb-based laser diodes operating at 3 μm: Role of waveguide width. Appl Phys Lett, 2009, 94(26): 261104 doi: 10.1063/1.3159819
[19]
Gupta J A, Ventrudo B F, Waldron P, et al. External cavity tunable type-I diode laser with continuous-wave singlemode operation at 3.24 μm. Electron Lett, 2010, 46(17): 1218 doi: 10.1049/el.2010.1790
[20]
Swaminathan K, Janardhanan P E, Sulima O V. Inductively coupled plasma etching of III–V antimonides in BCl3/SiCl4 etching chemisrty. Thin Solid Film, 2008, 516: 8712 doi: 10.1016/j.tsf.2008.05.029
[21]
Kasunic K J. Design equations for the reflectivity of deep-etch distributed Bragg reflector gratings. Lightwave Technol, 2000, 18(3): 425 doi: 10.1109/50.827516
[22]
Fricke J, Wenzel H, Matalla M, et al. 980-nm DBR lasers using higher order gratings defined by i-line lithography. Semicond Sci Technol, 2005, 20(11): 1149 doi: 10.1088/0268-1242/20/11/009
Fig. 1.  (Color online) Epitaxial structure used to fabricate the DBR laser.

Fig. 2.  SEM photos of etching morphology under different etching conditions.

Fig. 3.  The morphology of different mask layers.

Fig. 4.  (Color online) Comparison of the lasing spectrum under the same current and output power.

Fig. 5.  (Color online) 3D sketch of the fabricated device and its lasing spectrum.

Fig. 7.  (Color online) P–I–V curves of three typical devices.

Fig. 6.  (Color online) Relationship between duty ratio, etching depth and SMSR.

Fig. 8.  (Color online) Relationship between current and wavelength.

Fig. 9.  The spectrum of the high-order DBR device with max SMSR.

Table 1.   Different ICP etching gases and flowrate ratios.

No. 1 No. 2 No. 3 No. 4 No. 5
Cl2:1 Cl2:0 Cl2:0 Cl2:4 Cl2:5
SiCl4:3 SiCl4:3 SiCl4:2 BCl3:10 BCl3:10
Ar:5 Ar:5 Ar:5 Ar:3 Ar:3
DownLoad: CSV
[1]
Curcio J A, Drummeter L F, Petty C C, et al. An experimental study of atmospheric transmission. J Opt Soc Am, 1954, 43: 97
[2]
Wootten M B, Tan J, Chien Y J, et al. Broadband 2.4 μm superluminescent GaInAsSb/AlGaAsSb quantum well diodes for optical sensing of biomolecules. Semicond Sci Technol, 2014, 29(11): 115014 doi: 10.1088/0268-1242/29/11/115014
[3]
Kaplan L D. On the calculation of atmospheric transmission functions for the infrared. 2.0.CO;2">J Meteorol, 1952, 9: 139 doi: 10.1175/1520-0469(1952)009<0139:OTCOAT>2.0.CO;2
[4]
Gebbie H A, Harding W R, Hilsum C, et al. Atmospheric transmission in the 1 to 14 μ region. Proc Royal Soc London Ser A, 1951, 206: 87 doi: 10.1098/rspa.1951.0058
[5]
Meng Y X, Liu T G, Liu K, et al. A modified empirical mode decomposition algorithm in TDLAS for gas detection. IEEE Photonics J, 2014, 6: 9
[6]
Krzempek K, Jahjah M, Lewicki R, et al. CW DFT RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell. Appl Phys B, 2013, 112: 461 doi: 10.1007/s00340-013-5544-9
[7]
Li L, Wang Y, Li S. Application of infrared gas detection technology to safe production and transportation in natural gas industry. Nat Gas Ind, 2011, 31: 96
[8]
Kim H D, Kang S G, Le C H. A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser. IEEE Photonics Technol Lett, 2000, 12(8): 1067 doi: 10.1109/68.868010
[9]
Lu Q Y, Guo W H, Nawrocka M, et al. Single mode lasers based on slots suitable for photonic integration. Opt Express, 2011, 19(26): 140 doi: 10.1364/OE.19.00B140
[10]
Mueller M, Bauer A, Lehnhardt T, et al. High-power frequency stabilized GaSb DBR tapered laser. IEEE Photonics Technol Lett, 2008, 20(21-24): 2162
[11]
Viheriala J, Haring K, Suomalainen S, et al. High spectral purity high-power GaSb-based DFB laser fabricated by nanoimprint lithography. IEEE Photonic Technol Lett, 2016, 28(11): 1233 doi: 10.1109/LPT.2016.2519044
[12]
Xu J, Zhang W, Liu L, et al. Phase-shift control in two-beam laser interference lithography. 2011. IEEE International Conference on Mechatronics and Automation, 2011: 144
[13]
Murata H, Rokuta E, Shimoyama H, et al. Computer simulation of high brightness and high beam current electron gun for high-thoroughput electrom beam lithography. 25th International Vacuum Nanoelectronics Conference, 2012: 1
[14]
Forouhar S, Briggs R M, Frez C, et al. High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength. Appl Phys Lett, 2012, 100(3): 031107 doi: 10.1063/1.3678187
[15]
Zhang Y, Wang G W, Tang B, et al. Molecular beam epitaxy growth of InGaSb/AlGaAsSb strained quantum well diode lasers. J Semicond, 2011, 32(10): 103002 doi: 10.1088/1674-4926/32/10/103002
[16]
Fan Z F, Luo J S, Ye W H. Compressible Rayleigh–Taylor instability with preheat in inertial confinement fusion. Chin Phys Lett, 2007, 24(8): 2308 doi: 10.1088/0256-307X/24/8/042
[17]
Chai X L, Zhang Y, Liao Y P, et al. High power GaSb-based 2.6 μm room-temperature laser diodes with InGaAsSb/AlGaAsSb type I quantum-wells. Infrared Millim Waves, 2017, 36(3): 278
[18]
Hosoda T, Kipshidze G, Shterengas L, et al. 200 mW type I GaSb-based laser diodes operating at 3 μm: Role of waveguide width. Appl Phys Lett, 2009, 94(26): 261104 doi: 10.1063/1.3159819
[19]
Gupta J A, Ventrudo B F, Waldron P, et al. External cavity tunable type-I diode laser with continuous-wave singlemode operation at 3.24 μm. Electron Lett, 2010, 46(17): 1218 doi: 10.1049/el.2010.1790
[20]
Swaminathan K, Janardhanan P E, Sulima O V. Inductively coupled plasma etching of III–V antimonides in BCl3/SiCl4 etching chemisrty. Thin Solid Film, 2008, 516: 8712 doi: 10.1016/j.tsf.2008.05.029
[21]
Kasunic K J. Design equations for the reflectivity of deep-etch distributed Bragg reflector gratings. Lightwave Technol, 2000, 18(3): 425 doi: 10.1109/50.827516
[22]
Fricke J, Wenzel H, Matalla M, et al. 980-nm DBR lasers using higher order gratings defined by i-line lithography. Semicond Sci Technol, 2005, 20(11): 1149 doi: 10.1088/0268-1242/20/11/009
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4002 Times PDF downloads: 44 Times Cited by: 0 Times

    History

    Received: 06 February 2018 Revised: 04 April 2018 Online: Uncorrected proof: 25 May 2018Published: 09 October 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hao Luo, Cheng’ao Yang, Shengwen Xie, Xiaoli Chai, Shushan Huang, Yu Zhang, Yingqiang Xu, Zhichuan Niu. High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength[J]. Journal of Semiconductors, 2018, 39(10): 104007. doi: 10.1088/1674-4926/39/10/104007 H Luo, C Yang, S W Xie, X L Chai, S S Huang, Y Zhang, Y Q Xu, Z C Niu, High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength[J]. J. Semicond., 2018, 39(10): 104007. doi: 10.1088/1674-4926/39/10/104007.Export: BibTex EndNote
      Citation:
      Hao Luo, Cheng’ao Yang, Shengwen Xie, Xiaoli Chai, Shushan Huang, Yu Zhang, Yingqiang Xu, Zhichuan Niu. High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength[J]. Journal of Semiconductors, 2018, 39(10): 104007. doi: 10.1088/1674-4926/39/10/104007

      H Luo, C Yang, S W Xie, X L Chai, S S Huang, Y Zhang, Y Q Xu, Z C Niu, High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength[J]. J. Semicond., 2018, 39(10): 104007. doi: 10.1088/1674-4926/39/10/104007.
      Export: BibTex EndNote

      High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength

      doi: 10.1088/1674-4926/39/10/104007
      Funds:

      Project supported by the National Basic Research Program of China (Nos. 2016YFB0402403, 2014CB643903) and the National Natural Science Foundation of China (Nos. 61790583, 61435012).

      More Information
      • Corresponding author: zhangyu@semi.ac.cn
      • Received Date: 2018-02-06
      • Revised Date: 2018-04-04
      • Published Date: 2018-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return