SEMICONDUCTOR MATERIALS

The effect of oxygen on the epitaxial growth of diamond

Meng Gong1, 2, Yanan Chen1, 2, Wancheng Yu1, Peng Jin1, 2, , Zhanguo Wang1, Zhimin Wang3, Shenjin Zhang3, Feng Yang3, Fengfeng Zhang3, Qinjun Peng3 and Zuyan Xu3

+ Author Affiliations

 Corresponding author: Peng Jin, Email: pengjin@semi.ac.cn

PDF

Turn off MathJax

Abstract: We studied the effect of oxygen on the growth quality of diamond epitaxial layers. After oxygen is added during the growth of the diamond epitaxial layer, as the thickness of the epitaxial layer increases, the full width at half maximum of the rocking curve of the (004) plane of diamond epitaxial layer increases continuously, and, in addition, the intensities of both the Raman peaks and the free exciton emission peaks of the diamond epitaxial layer decrease continuously. These experimental results demonstrate that as the thickness of the diamond epitaxial layer increases, the quality of the diamond epitaxial layer degrades. The strong etching effect of the OH radical groups in the plasma on the diamond epilayers leads to the degradation of their crystallinity.

Key words: diamondultra-wide bandgap semiconductorMPCVDoxygen effect



[1]
Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297(5587): 1670 doi: 10.1126/science.1074374
[2]
Landstrass M I, Plano M A, Moreno M A, et al. Device properties of homoepitaxially grown diamond. Diamond Relat Mater, 1993, 2(5): 1033
[3]
Mer‐Calfati C, Habka N, Ben‐Younes A, et al. High surface smoothening of diamond HPHT (100) substrates. Phys Status Solidi A, 2009, 206(9): 1955 doi: 10.1002/pssa.v206:9
[4]
Wang Z G, Zheng Y L, et al. Research progress of semiconductor materials (Volume I). Beijing: High Education Press, 2012
[5]
Kuwabara D, Makino T, Takeuchi D, et al. Unique temperature dependence of deep ultraviolet emission intensity for diamond light emitting diodes. Jpn J Appl Phys, 2014, 53: 05FP02 doi: 10.7567/JJAP.53.05FP02
[6]
Chang X H, Wang Y F, Zhang X F, et al. UV-photodetector based on NiO/diamond film. Appl Phys Lett, 2018, 112(3): 032103 doi: 10.1063/1.5004269
[7]
Ozawa N, Makino T, Kato H, et al. Temperature dependence of electrical characteristics for diamond Schottky-pn diode in forward bias. Diamond Relat Mater, 2018, 85: 49 doi: 10.1016/j.diamond.2018.03.030
[8]
Zhou J J, Bai S, Kong C, et al. Research on the diamond MISFET. J Semicond, 2013, 34(3): 034006 doi: 10.1088/1674-4926/34/3/034006
[9]
Zhang J F, Ren Z Y, Zhang C F, et al. Characterization and mobility analysis of MoO3-gated diamond MOSFET. Jpn J Appl Phys, 2017, 56(10): 100
[10]
Zhang Y, Chen Y N, Liu Y L, et al. Research on band-edge emission properties and mechanism of high-quality single-crystal diamond. Carbon, 2018, 132: 651 doi: 10.1016/j.carbon.2018.02.105
[11]
Ohmagari S, Teraji T, Koide Y. Non-destructive detection of killer defects of diamond Schottky barrier diodes. J Appl Phys, 2011, 110: 056105 doi: 10.1063/1.3626791
[12]
Sakaguchi I, Nishitani-Gamo M, Loh K P, et al. Silicon incorporation into chemical vapor deposition diamond: a role of oxygen. Appl Phys Lett, 1997, 71(5): 629 doi: 10.1063/1.119812
[13]
Sakaguchi I, Nishitani-Gamo M, Loh K P, et al. Effect of oxygen addition on boron incorporation on semiconductive diamond CVD. Diamond Relat Mater, 1998, 7(8): 1144 doi: 10.1016/S0925-9635(98)00161-7
[14]
Sakaguchi I, Nishitani-Gamo M, Loh K P, et al. Suppression of surface cracks on (111) homoepitaxial diamond through impurity limitation by oxygen addition. Appl Phys Lett, 1998, 73(18): 2675 doi: 10.1063/1.122550
[15]
Das D, Singh R N, Barney I T, et al. Effect of oxygen on growth and properties of diamond thin film deposited at low surface temperature. J Vac Sci Technol A, 2008, 26(6): 1487 doi: 10.1116/1.2998807
[16]
Tallaire A, Achard J, Silva F, et al. Oxygen plasma pre-treatments for high quality homoepitaxial CVD diamond deposition. Phys Status Solidi A, 2004, 201(11): 2419 doi: 10.1002/(ISSN)1521-396X
[17]
Stehl C, Fischer M, Gsell S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Appl Phys Lett, 2013, 103(15): 151905 doi: 10.1063/1.4824330
[18]
Widmann C J, Müller-Sebert W, Lang N, et al. Homoepitaxial growth of single crystalline CVD-diamond. Diamond Relat Mater, 2016, 64: 1 doi: 10.1016/j.diamond.2015.12.016
[19]
Tsubouchi N, Mokuno Y, Shikata S. Characterizations of etch pits formed on single crystal diamond surface using oxygen/hydrogen plasma surface treatment. Diamond Relat Mater, 2016, 63: 43 doi: 10.1016/j.diamond.2015.08.012
[20]
Ichikawa K, Kodama H, Suzuki K, et al. Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching. Thin Solid Films, 2016, 600: 142 doi: 10.1016/j.tsf.2016.01.009
[21]
Romanov A E, Pompe W, Beltz G, et al. Modeling of threading dislocation density reduction in heteroepitaxial layers. Phys Status Solidi B, 1997, 199(1): 33 doi: 10.1002/(ISSN)1521-3951
[22]
Speck J S, Brewer M A, Beltz G, et al. Scaling laws for the reduction of threading dislocation densities in homogeneous buffer layers. J Appl Phys, 1996, 80(7): 3808 doi: 10.1063/1.363334
[23]
Achard J, Tallaire A, Mille V, et al. Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates. Phys Status Solidi A, 2014, 211(10): 2264 doi: 10.1002/pssa.v211.10
[24]
Naamoun M, Tallaire A, Doppelt P, et al. Reduction of dislocation densities in single crystal CVD diamond by using self-assembled metallic masks. Diamond Relat Mater, 2015, 58: 62 doi: 10.1016/j.diamond.2015.06.012
[25]
Long R, Dai Y, Yu L. Structural and electronic properties of oxygen-adsorbed diamond (100) surface. J Phys Chem C, 2007, 111(2): 855 doi: 10.1021/jp0647176
[26]
Long R, Dai Y, Guo M. Characterization of diamond (100) surface with oxygen termination. Appl Surf Sci, 2008, 254(9): 2851 doi: 10.1016/j.apsusc.2007.10.045
Fig. 1.  XRD spectrum of diamond sample D21.

Fig. 2.  (a) The rocking curve of the (004) plane of diamond sample D21. (b) The full width at half maximum of the rocking curve of the (004) plane of different thickness diamond samples D21, D22, and D24.

Fig. 3.  (Color online) (a) Raman spectrum of different diamond samples. (b) Raman characteristic peak intensity varies with the thickness of the epitaxial layer.

Fig. 4.  (Color online) (a) Low-temperature (10 K) photoluminescence (PL) spectrum of different diamond samples. (b) Intensity of B1 peak changes with the thickness of the epitaxial layer.

[1]
Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297(5587): 1670 doi: 10.1126/science.1074374
[2]
Landstrass M I, Plano M A, Moreno M A, et al. Device properties of homoepitaxially grown diamond. Diamond Relat Mater, 1993, 2(5): 1033
[3]
Mer‐Calfati C, Habka N, Ben‐Younes A, et al. High surface smoothening of diamond HPHT (100) substrates. Phys Status Solidi A, 2009, 206(9): 1955 doi: 10.1002/pssa.v206:9
[4]
Wang Z G, Zheng Y L, et al. Research progress of semiconductor materials (Volume I). Beijing: High Education Press, 2012
[5]
Kuwabara D, Makino T, Takeuchi D, et al. Unique temperature dependence of deep ultraviolet emission intensity for diamond light emitting diodes. Jpn J Appl Phys, 2014, 53: 05FP02 doi: 10.7567/JJAP.53.05FP02
[6]
Chang X H, Wang Y F, Zhang X F, et al. UV-photodetector based on NiO/diamond film. Appl Phys Lett, 2018, 112(3): 032103 doi: 10.1063/1.5004269
[7]
Ozawa N, Makino T, Kato H, et al. Temperature dependence of electrical characteristics for diamond Schottky-pn diode in forward bias. Diamond Relat Mater, 2018, 85: 49 doi: 10.1016/j.diamond.2018.03.030
[8]
Zhou J J, Bai S, Kong C, et al. Research on the diamond MISFET. J Semicond, 2013, 34(3): 034006 doi: 10.1088/1674-4926/34/3/034006
[9]
Zhang J F, Ren Z Y, Zhang C F, et al. Characterization and mobility analysis of MoO3-gated diamond MOSFET. Jpn J Appl Phys, 2017, 56(10): 100
[10]
Zhang Y, Chen Y N, Liu Y L, et al. Research on band-edge emission properties and mechanism of high-quality single-crystal diamond. Carbon, 2018, 132: 651 doi: 10.1016/j.carbon.2018.02.105
[11]
Ohmagari S, Teraji T, Koide Y. Non-destructive detection of killer defects of diamond Schottky barrier diodes. J Appl Phys, 2011, 110: 056105 doi: 10.1063/1.3626791
[12]
Sakaguchi I, Nishitani-Gamo M, Loh K P, et al. Silicon incorporation into chemical vapor deposition diamond: a role of oxygen. Appl Phys Lett, 1997, 71(5): 629 doi: 10.1063/1.119812
[13]
Sakaguchi I, Nishitani-Gamo M, Loh K P, et al. Effect of oxygen addition on boron incorporation on semiconductive diamond CVD. Diamond Relat Mater, 1998, 7(8): 1144 doi: 10.1016/S0925-9635(98)00161-7
[14]
Sakaguchi I, Nishitani-Gamo M, Loh K P, et al. Suppression of surface cracks on (111) homoepitaxial diamond through impurity limitation by oxygen addition. Appl Phys Lett, 1998, 73(18): 2675 doi: 10.1063/1.122550
[15]
Das D, Singh R N, Barney I T, et al. Effect of oxygen on growth and properties of diamond thin film deposited at low surface temperature. J Vac Sci Technol A, 2008, 26(6): 1487 doi: 10.1116/1.2998807
[16]
Tallaire A, Achard J, Silva F, et al. Oxygen plasma pre-treatments for high quality homoepitaxial CVD diamond deposition. Phys Status Solidi A, 2004, 201(11): 2419 doi: 10.1002/(ISSN)1521-396X
[17]
Stehl C, Fischer M, Gsell S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Appl Phys Lett, 2013, 103(15): 151905 doi: 10.1063/1.4824330
[18]
Widmann C J, Müller-Sebert W, Lang N, et al. Homoepitaxial growth of single crystalline CVD-diamond. Diamond Relat Mater, 2016, 64: 1 doi: 10.1016/j.diamond.2015.12.016
[19]
Tsubouchi N, Mokuno Y, Shikata S. Characterizations of etch pits formed on single crystal diamond surface using oxygen/hydrogen plasma surface treatment. Diamond Relat Mater, 2016, 63: 43 doi: 10.1016/j.diamond.2015.08.012
[20]
Ichikawa K, Kodama H, Suzuki K, et al. Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching. Thin Solid Films, 2016, 600: 142 doi: 10.1016/j.tsf.2016.01.009
[21]
Romanov A E, Pompe W, Beltz G, et al. Modeling of threading dislocation density reduction in heteroepitaxial layers. Phys Status Solidi B, 1997, 199(1): 33 doi: 10.1002/(ISSN)1521-3951
[22]
Speck J S, Brewer M A, Beltz G, et al. Scaling laws for the reduction of threading dislocation densities in homogeneous buffer layers. J Appl Phys, 1996, 80(7): 3808 doi: 10.1063/1.363334
[23]
Achard J, Tallaire A, Mille V, et al. Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates. Phys Status Solidi A, 2014, 211(10): 2264 doi: 10.1002/pssa.v211.10
[24]
Naamoun M, Tallaire A, Doppelt P, et al. Reduction of dislocation densities in single crystal CVD diamond by using self-assembled metallic masks. Diamond Relat Mater, 2015, 58: 62 doi: 10.1016/j.diamond.2015.06.012
[25]
Long R, Dai Y, Yu L. Structural and electronic properties of oxygen-adsorbed diamond (100) surface. J Phys Chem C, 2007, 111(2): 855 doi: 10.1021/jp0647176
[26]
Long R, Dai Y, Guo M. Characterization of diamond (100) surface with oxygen termination. Appl Surf Sci, 2008, 254(9): 2851 doi: 10.1016/j.apsusc.2007.10.045
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5097 Times PDF downloads: 128 Times Cited by: 0 Times

    History

    Received: 08 May 2018 Revised: 21 May 2018 Online: Uncorrected proof: 26 July 2018Accepted Manuscript: 03 August 2018Published: 13 December 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Meng Gong, Yanan Chen, Wancheng Yu, Peng Jin, Zhanguo Wang, Zhimin Wang, Shenjin Zhang, Feng Yang, Fengfeng Zhang, Qinjun Peng, Zuyan Xu. The effect of oxygen on the epitaxial growth of diamond[J]. Journal of Semiconductors, 2018, 39(12): 123004. doi: 10.1088/1674-4926/39/12/123004 M Gong, Y N Chen, W C Yu, P Jin, Z G Wang, Z M Wang, S J Zhang, F Yang, F F Zhang, Q J Peng, Z Y Xu, The effect of oxygen on the epitaxial growth of diamond[J]. J. Semicond., 2018, 39(12): 123004. doi: 10.1088/1674-4926/39/12/123004.Export: BibTex EndNote
      Citation:
      Meng Gong, Yanan Chen, Wancheng Yu, Peng Jin, Zhanguo Wang, Zhimin Wang, Shenjin Zhang, Feng Yang, Fengfeng Zhang, Qinjun Peng, Zuyan Xu. The effect of oxygen on the epitaxial growth of diamond[J]. Journal of Semiconductors, 2018, 39(12): 123004. doi: 10.1088/1674-4926/39/12/123004

      M Gong, Y N Chen, W C Yu, P Jin, Z G Wang, Z M Wang, S J Zhang, F Yang, F F Zhang, Q J Peng, Z Y Xu, The effect of oxygen on the epitaxial growth of diamond[J]. J. Semicond., 2018, 39(12): 123004. doi: 10.1088/1674-4926/39/12/123004.
      Export: BibTex EndNote

      The effect of oxygen on the epitaxial growth of diamond

      doi: 10.1088/1674-4926/39/12/123004
      Funds:

      Project supported by the National Key Research and Development Program of China (No. 2018YFB0406500), the Beijing Municipal Science and Technology Commission (No. Z181100004418009), the National Natural Science Foundation of China (No. 51702313).

      More Information
      • Corresponding author: Email: pengjin@semi.ac.cn
      • Received Date: 2018-05-08
      • Revised Date: 2018-05-21
      • Published Date: 2018-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return