SEMICONDUCTOR PHYSICS

Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors

A. K. Mishra1, S. K. Mishra2, S. P. Pandey3, and Kshama Lakshmi Mishra4

+ Author Affiliations

 Corresponding author: S. P. Pandey, pandeysp72@gmail.com

PDF

Turn off MathJax

Abstract: Thermoluminescence studies were performed of ZnSe:Tb and ZnSe:(Mn, Tb) phosphors. A method of preparation for ZnSe phosphors doped with Tb and (Mn, Tb) has been discussed. The thermoluminescence (TL) properties of these phosphors have been studied from 100 to 370 K temperature after exciting by UV radiation (365 nm) at three uniform heating rates 0.4, 0.6 and 0.9 K/s. The trapping parameters like trap depth, lifetime of electrons and capture cross-section have also been determined using various methods.

Key words: thermoluminescenceelectroluminescencecapture cross-sectionionizing radiationphosphorsCurie's method



[1]
Green A G J, Ray B, Viney I V F, et al. Luminescence studies of CaS phosphors doped with cerium and copper. Phys Stat Sol A, 1988, 110: 269 doi: 10.1002/(ISSN)1521-396X
[2]
Tripathi L N, Mishra Sanjaya K, Pandey U N. Thermoluminescence of ZnS doped with Dy and Mn. Phys Lett A, 1991, 154(5/6): 312
[3]
Pillai S M, Vallabhan C P J. A study on the electroluminescence spectrum of samarium and dysprosium doped calcium sulfide. Phys Stat Sol B, 1986, 134(1): 383 doi: 10.1002/(ISSN)1521-3951
[4]
Tripathi L N, Mishra S K, Raj N S. Luminescence in ZnSe doped with Pr and (Sn, Pr) phosphors. Int J Pure Appl Phys, 1993, 31(2): 899
[5]
Tripathi L N, Sinha S K, Mishra Sanjaya K. Thermoluminescence in ZnS:Ag and (Ag, Gd) phosphors. Proc Nat Symp on Some Auspects of Mod Phys at Dibrugarh Univ Dibrugarh, May, 1994: 27
[6]
Tripathi L N, Pandey U N, Mishra Sanjaya K, et al. Thermoluminescence and phosphorescence decay in ZnS:(Cu, Dy). Proc Nat Sem on TL & Its Appl at M.S. Univ Barauda Publ Tata Mc-Graw Hill, 1990: P-95-100.
[7]
Mishra A K, Tripathi L N, Pandey U N, et al. Thermoluminescence in ZnS doped Pr and (Cu, Pr) phosphors. Ind J Pure Appl Phys, 2002, 40: 337
[8]
Chen R, Kirsh Y. Analysis of thermally stimulated process. Pargamon Press, 1981, 15: 148
[9]
Mott N F, Gurney R W. Electronic Process in ionic crystals. Oxford Univ Press, 1940
[10]
Randall J T, Wilkins M H F. Phosphorescence of electron traps. 1945, A-184: 366
[11]
Mishra S K. Luminescence in some inorganic phosphors. LAP Lambert Publisher, 2012
[12]
Das S, Mandal K C. Optical down conversion in rare earth (Tb3+ and Yb3+) doped CdS nanocrystal. Mater Lett, 2012, 66: 46 doi: 10.1016/j.matlet.2011.08.034
[13]
Reddy J A, Kokila M K, Nagabhushana H. Structural, EPR, photo and thermoluminescence properties of ZnO doped Fe nanoparticles. Spectroshimica Acta A, 2011, 133(2): 876
[14]
Sharma R, Bisen D P, Dhole J J, et al. Mechno-luminescence and thermoluminescence of Mn doped ZnS Crystal. J Lumin, 2011, 131(10): 2089 doi: 10.1016/j.jlumin.2011.05.020
[15]
Tiwari R, Balatraunk P, Tamarkar R K, et al. Synthesis, characterization and thermoluminescence behavior of (Cd,Zn)S mixed phosphors doped with Ag. Chalcogenide Lett, 2014, 11(3): 141
[16]
Tu D, Xu C N, Fujio Y, et al. Phosphorescence quenching by mechanical stimulus in CaZnOS:Cu. App Phy Lett, 2014, 105: 605
[17]
Chandra B P, Chandra P K, Jha P. Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials. Physica B, 2015, 461: 38 doi: 10.1016/j.physb.2014.12.007
[18]
Curie D. Luminescence in crystal. London: Methuen Co. Ltd, 1963: 162
[19]
Khan F, Baek S H, Kim J H. Investigation of the surface passivation mechanism through an Ag-doped Al-rich film using a solution process. Nanoscale, 2016, 8: 1007 doi: 10.1039/C5NR06883E
Fig. 1.  (Color online) Thermal glow curves at single uniform heating rate (0.4 K/s).

Fig. 2.  (Color online) Thermal glow curves at single uniform heating rate (0.4 K/s).

Fig. 3.  (Color online) Glow curves for ZnSe:Tb phosphors at three different heating rates.

Fig. 4.  (Color online) Glow curves for ZnSe:(Mn, Tb) phosphors at three different heating rates.

Fig. 5.  (Color online) ln Im versus 1/Tm plot.

Table 2.   Values of peak temperature Tm (K), trap depth E (eV), frequency factor S (s−1), and capture cross-section σ (m2) calculated by various heating rates method in these phosphors at three heating rates β1 = 0.4 K/s, β2 = 0.6 K/s & β3 = 0.9 K/s:

No Phosphor Peak temperatures
T1 at β1, T2 at β2
and T3 at β3
At β1 & β2 At β2 & β3 At β1 & β3 Σ (10-22 m2) From graph lnIm
versus 1/Tm
1 ZnSe:Tb,
Tb = 0.05% 181, 184, 187 0.36, 0.43 0.37, 0.96 0.36, 0.63 8.00 0.39
Tb = 0.01% 160, 163, 166 0.28,0.03 0.29,0.08 0.28,0.03 0.71
2 ZnSe:(Mn,Tb),
Mn = 1%, Tb = 0.05% 201, 204, 207 0.44, 6.34 0.45, 14.28 0.45, 9.59 95.85
Mn = Tb = 0.05% 199, 202, 205 0.43, 4.83 0.44, 10.79 0.44, 7.30 74.49 0.51
DownLoad: CSV

Table 1.   Values of peak temperature Tm (k), trap depth E (eV), life time τ (s), and capture cross-section σ (m2) calculated by Curie’s method: β = 0.4 K/s, K = 480 K/eV and T0 = 10 K.

No Phosphor Tm (K) E (eV) τ (s) σ (10−22 m2)
1 ZnSe:Tb,
Tb = 0.05% 181 0.36 19.83 7.77
250 0.50 26.95 4.33
Tb = 0.01% 160 0.31 17.66 9.36
265 0.53 28.50 3.85
2 ZnSe:(Mn,Tb),
Mn = 1%, 130 0.25 14.58 12.14
Tb = 0.05% 201 0.40 21.72 6.57
313 0.63 33.46 2.70
Mn = Tb = 142 0.28 15.81 10.97
0.05% 199 0.39 21.69 6.63
325 0.66 34.71 2.49
DownLoad: CSV
[1]
Green A G J, Ray B, Viney I V F, et al. Luminescence studies of CaS phosphors doped with cerium and copper. Phys Stat Sol A, 1988, 110: 269 doi: 10.1002/(ISSN)1521-396X
[2]
Tripathi L N, Mishra Sanjaya K, Pandey U N. Thermoluminescence of ZnS doped with Dy and Mn. Phys Lett A, 1991, 154(5/6): 312
[3]
Pillai S M, Vallabhan C P J. A study on the electroluminescence spectrum of samarium and dysprosium doped calcium sulfide. Phys Stat Sol B, 1986, 134(1): 383 doi: 10.1002/(ISSN)1521-3951
[4]
Tripathi L N, Mishra S K, Raj N S. Luminescence in ZnSe doped with Pr and (Sn, Pr) phosphors. Int J Pure Appl Phys, 1993, 31(2): 899
[5]
Tripathi L N, Sinha S K, Mishra Sanjaya K. Thermoluminescence in ZnS:Ag and (Ag, Gd) phosphors. Proc Nat Symp on Some Auspects of Mod Phys at Dibrugarh Univ Dibrugarh, May, 1994: 27
[6]
Tripathi L N, Pandey U N, Mishra Sanjaya K, et al. Thermoluminescence and phosphorescence decay in ZnS:(Cu, Dy). Proc Nat Sem on TL & Its Appl at M.S. Univ Barauda Publ Tata Mc-Graw Hill, 1990: P-95-100.
[7]
Mishra A K, Tripathi L N, Pandey U N, et al. Thermoluminescence in ZnS doped Pr and (Cu, Pr) phosphors. Ind J Pure Appl Phys, 2002, 40: 337
[8]
Chen R, Kirsh Y. Analysis of thermally stimulated process. Pargamon Press, 1981, 15: 148
[9]
Mott N F, Gurney R W. Electronic Process in ionic crystals. Oxford Univ Press, 1940
[10]
Randall J T, Wilkins M H F. Phosphorescence of electron traps. 1945, A-184: 366
[11]
Mishra S K. Luminescence in some inorganic phosphors. LAP Lambert Publisher, 2012
[12]
Das S, Mandal K C. Optical down conversion in rare earth (Tb3+ and Yb3+) doped CdS nanocrystal. Mater Lett, 2012, 66: 46 doi: 10.1016/j.matlet.2011.08.034
[13]
Reddy J A, Kokila M K, Nagabhushana H. Structural, EPR, photo and thermoluminescence properties of ZnO doped Fe nanoparticles. Spectroshimica Acta A, 2011, 133(2): 876
[14]
Sharma R, Bisen D P, Dhole J J, et al. Mechno-luminescence and thermoluminescence of Mn doped ZnS Crystal. J Lumin, 2011, 131(10): 2089 doi: 10.1016/j.jlumin.2011.05.020
[15]
Tiwari R, Balatraunk P, Tamarkar R K, et al. Synthesis, characterization and thermoluminescence behavior of (Cd,Zn)S mixed phosphors doped with Ag. Chalcogenide Lett, 2014, 11(3): 141
[16]
Tu D, Xu C N, Fujio Y, et al. Phosphorescence quenching by mechanical stimulus in CaZnOS:Cu. App Phy Lett, 2014, 105: 605
[17]
Chandra B P, Chandra P K, Jha P. Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials. Physica B, 2015, 461: 38 doi: 10.1016/j.physb.2014.12.007
[18]
Curie D. Luminescence in crystal. London: Methuen Co. Ltd, 1963: 162
[19]
Khan F, Baek S H, Kim J H. Investigation of the surface passivation mechanism through an Ag-doped Al-rich film using a solution process. Nanoscale, 2016, 8: 1007 doi: 10.1039/C5NR06883E
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3798 Times PDF downloads: 41 Times Cited by: 0 Times

    History

    Received: 16 May 2017 Revised: 06 June 2017 Online: Corrected proof: 15 November 2017Uncorrected proof: 24 January 2018Accepted Manuscript: 01 February 2018Published: 02 February 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      A. K. Mishra, S. K. Mishra, S. P. Pandey, Kshama Lakshmi Mishra. Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors[J]. Journal of Semiconductors, 2018, 39(2): 022001. doi: 10.1088/1674-4926/39/2/022001 A. K. Mishra, S. K. Mishra, S. P. Pandey, K L Mishra. Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors[J]. J. Semicond., 2018, 39(2): 022001. doi: 10.1088/1674-4926/39/2/022001.Export: BibTex EndNote
      Citation:
      A. K. Mishra, S. K. Mishra, S. P. Pandey, Kshama Lakshmi Mishra. Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors[J]. Journal of Semiconductors, 2018, 39(2): 022001. doi: 10.1088/1674-4926/39/2/022001

      A. K. Mishra, S. K. Mishra, S. P. Pandey, K L Mishra. Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors[J]. J. Semicond., 2018, 39(2): 022001. doi: 10.1088/1674-4926/39/2/022001.
      Export: BibTex EndNote

      Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors

      doi: 10.1088/1674-4926/39/2/022001
      More Information
      • Corresponding author: pandeysp72@gmail.com
      • Received Date: 2017-05-16
      • Revised Date: 2017-06-06
      • Available Online: 2017-02-01
      • Published Date: 2018-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return