SEMICONDUCTOR DEVICES

Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm

Chuncai Hou1, 2, 3, Yue Zhao1, 2, 3, Jinchuan Zhang1, 2, 3, , Shenqiang Zhai1, 2, 3, Ning Zhuo1, 2, 3, Junqi Liu1, 2, 3, Lijun Wang1, 2, 3, Shuman Liu1, 2, 3, Fengqi Liu1, 2, 3, and Zhanguo Wang1, 2, 3

+ Author Affiliations

 Corresponding author: Jinchuan Zhang, zhangjinchuan@semi.ac.cn; Fengqi Liu, fqliu@semi.ac.cn

PDF

Turn off MathJax

Abstract: Continuous wave (CW) operation of long wave infrared (LWIR) quantum cascade lasers (QCLs) is achieved up to a temperature of 303 K. For room temperature CW operation, the wafer with 35 stages was processed into buried heterostructure lasers. For a 2-mm-long and 10-μm-wide laser with high-reflectivity (HR) coating on the rear facet, CW output power of 45 mW at 283 K and 9 mW at 303 K is obtained. The lasing wavelength is around 9.4 μm locating in the LWIR spectrum range.

Key words: quantum cascade laserlong wave infrareddouble-phonon resonance



[1]
Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264: 553 doi: 10.1126/science.264.5158.553
[2]
Vitiello M S, Scalari G, Williams B, et al. Quantum cascade lasers: 20 years of challenges. Optics Express, 2015, 23: 5167 doi: 10.1364/OE.23.005167
[3]
Kazarinov R F, Suris R. Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice. Soviet Phys, 1971, 5: 707
[4]
Kastalsky A, Goldman V, Abeles J. Possibility of infrared laser in a resonant tunneling structure. Appl Phys Lett, 1991, 59: 2636 doi: 10.1063/1.105922
[5]
Razeghi M, Lu Q Y, Bandyopadhyay N, et al. Quantum cascade lasers: from tool to product. Optics Express, 2015, 23: 8462 doi: 10.1364/OE.23.008462
[6]
Kosterev A A, ad Tittel F K. Chemical sensors based on quantum cascade lasers. IEEE J Quantum Electron, 2002, 38: 582 doi: 10.1109/JQE.2002.1005408
[7]
Liu C W, Zhai S Q, Zhang J C, et al. Free-space communication based on quantum cascade laser. J Semicond, 2015, 36: 094009 doi: 10.1088/1674-4926/36/9/094009
[8]
Kumar C, Patel C K N, Lyakh A. High power quantum cascade lasers for infrared countermeasures, targeting and illumination, beacons and standoff detection of explosives and CWAs. Proc SPIE, 2015, 9467: 946702 doi: 10.1117/12.2178050
[9]
Bai Y, Bandyopadhyay N, Tsao S et al. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl Phys Lett, 2011, 98: 181102 doi: 10.1063/1.3586773
[10]
Lu Q Y, Bai Y B, Bandyopadhyay N, et al. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl Phys Lett, 2011, 98: 181106 doi: 10.1063/1.3588412
[11]
Lyakh A, Maulini R, Tsekoun A, et al. Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power. Opt Express, 2012, 20: 4382 doi: 10.1364/OE.20.004382
[12]
Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science, 2002, 295: 301 doi: 10.1126/science.1066408
[13]
Darvish S, Slivken S, Evans A, et al. Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~9.6 μm. Appl Phys Lett, 2006, 88: 201114 doi: 10.1063/1.2205730
[14]
Baranov A N, Bahriz M, Teissier R. Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 μm. Opt Express, 2016, 24: 18799 doi: 10.1364/OE.24.018799
[15]
Fox M. Optical properties of solids. Am J Phys, 2002, 70: 1269
[16]
Troccoli M, Wang X, Fan J. Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 μm). Opt Eng, 2010, 49: 111106 doi: 10.1117/1.3498778
[17]
Troccoli M, Lyakh A, Fan J, et al. Long-wave IR quantum cascade lasers for emission in the λ = 8–12 μm spectral region. Opt Mater Express, 2013, 3: 1546 doi: 10.1364/OME.3.001546
[18]
Liang P, Liu F Q, Zhang J C, et al. High-power high-temperature continuous-wave operation of quantum cascade laser at λ~4.6 μm without lateral regrowth. Chin Phys Lett, 2012, 29: 074215 doi: 10.1088/0256-307X/29/7/074215
Fig. 2.  (Color online) (a) Output light power versus injection current of a 2-mm-long and 10-μm-wide QCL in CW operation mode at different heat sink temperatures between 283 and 303 K along with V–I curves at 293 K. (b) Peak power of the same device changes with the injection current at the repetition frequency of 5 kHz and a duty circle of 1%.

Fig. 1.  (Color online) Mode characteristic according to the real part of the refractive index along the growth direction of the device structure with a Drude–Lorentz solver.

Fig. 3.  (Color online) (a) CW emitting spectrum of QCL at different heat sink temperature between 283 and 303 K. The insert shows the electrical luminescence spectrum. (b) CW lasing spectra at a different injection current from 0.85 to 1.0 A with a step of 0.03 A. The inset shows the linear-fit tuning characteristics of the lasing frequency with electrical power for the same device.

Fig. 4.  (Color online) Threshold current density as a function of heat sink temperature in CW and pulsed mode of a 2-mm-long and 10-μm-wide LWIR QCL. The red line is fitted with the exponential function Jth = J0exp(T/T0).

Fig. 5.  (Color online) Measured lateral far-field radiation patterns for the devices at pulsed driving currents of 0.85 A under 50 kHz repetition frequency and 1% duty circle, the dash is the measurement and the red line is the result fitted with the Gauss function. The inset shows the spot of a laser beam emitted from the device collimated by the aspheric lens.

[1]
Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264: 553 doi: 10.1126/science.264.5158.553
[2]
Vitiello M S, Scalari G, Williams B, et al. Quantum cascade lasers: 20 years of challenges. Optics Express, 2015, 23: 5167 doi: 10.1364/OE.23.005167
[3]
Kazarinov R F, Suris R. Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice. Soviet Phys, 1971, 5: 707
[4]
Kastalsky A, Goldman V, Abeles J. Possibility of infrared laser in a resonant tunneling structure. Appl Phys Lett, 1991, 59: 2636 doi: 10.1063/1.105922
[5]
Razeghi M, Lu Q Y, Bandyopadhyay N, et al. Quantum cascade lasers: from tool to product. Optics Express, 2015, 23: 8462 doi: 10.1364/OE.23.008462
[6]
Kosterev A A, ad Tittel F K. Chemical sensors based on quantum cascade lasers. IEEE J Quantum Electron, 2002, 38: 582 doi: 10.1109/JQE.2002.1005408
[7]
Liu C W, Zhai S Q, Zhang J C, et al. Free-space communication based on quantum cascade laser. J Semicond, 2015, 36: 094009 doi: 10.1088/1674-4926/36/9/094009
[8]
Kumar C, Patel C K N, Lyakh A. High power quantum cascade lasers for infrared countermeasures, targeting and illumination, beacons and standoff detection of explosives and CWAs. Proc SPIE, 2015, 9467: 946702 doi: 10.1117/12.2178050
[9]
Bai Y, Bandyopadhyay N, Tsao S et al. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl Phys Lett, 2011, 98: 181102 doi: 10.1063/1.3586773
[10]
Lu Q Y, Bai Y B, Bandyopadhyay N, et al. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl Phys Lett, 2011, 98: 181106 doi: 10.1063/1.3588412
[11]
Lyakh A, Maulini R, Tsekoun A, et al. Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power. Opt Express, 2012, 20: 4382 doi: 10.1364/OE.20.004382
[12]
Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science, 2002, 295: 301 doi: 10.1126/science.1066408
[13]
Darvish S, Slivken S, Evans A, et al. Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~9.6 μm. Appl Phys Lett, 2006, 88: 201114 doi: 10.1063/1.2205730
[14]
Baranov A N, Bahriz M, Teissier R. Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 μm. Opt Express, 2016, 24: 18799 doi: 10.1364/OE.24.018799
[15]
Fox M. Optical properties of solids. Am J Phys, 2002, 70: 1269
[16]
Troccoli M, Wang X, Fan J. Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 μm). Opt Eng, 2010, 49: 111106 doi: 10.1117/1.3498778
[17]
Troccoli M, Lyakh A, Fan J, et al. Long-wave IR quantum cascade lasers for emission in the λ = 8–12 μm spectral region. Opt Mater Express, 2013, 3: 1546 doi: 10.1364/OME.3.001546
[18]
Liang P, Liu F Q, Zhang J C, et al. High-power high-temperature continuous-wave operation of quantum cascade laser at λ~4.6 μm without lateral regrowth. Chin Phys Lett, 2012, 29: 074215 doi: 10.1088/0256-307X/29/7/074215
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3851 Times PDF downloads: 75 Times Cited by: 0 Times

    History

    Received: 20 July 2017 Revised: 25 August 2017 Online: Uncorrected proof: 24 January 2018Published: 01 March 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chuncai Hou, Yue Zhao, Jinchuan Zhang, Shenqiang Zhai, Ning Zhuo, Junqi Liu, Lijun Wang, Shuman Liu, Fengqi Liu, Zhanguo Wang. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm[J]. Journal of Semiconductors, 2018, 39(3): 034001. doi: 10.1088/1674-4926/39/3/034001 C C Hou, Y Zhao, J C Zhang, S Q Zhai, N Zhuo, J Q Liu, L J Wang, S M Liu, F Q Liu, Z G Wang. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm[J]. J. Semicond., 2018, 39(3): 034001. doi: 10.1088/1674-4926/39/3/034001.Export: BibTex EndNote
      Citation:
      Chuncai Hou, Yue Zhao, Jinchuan Zhang, Shenqiang Zhai, Ning Zhuo, Junqi Liu, Lijun Wang, Shuman Liu, Fengqi Liu, Zhanguo Wang. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm[J]. Journal of Semiconductors, 2018, 39(3): 034001. doi: 10.1088/1674-4926/39/3/034001

      C C Hou, Y Zhao, J C Zhang, S Q Zhai, N Zhuo, J Q Liu, L J Wang, S M Liu, F Q Liu, Z G Wang. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm[J]. J. Semicond., 2018, 39(3): 034001. doi: 10.1088/1674-4926/39/3/034001.
      Export: BibTex EndNote

      Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm

      doi: 10.1088/1674-4926/39/3/034001
      Funds:

      Project supported by the National Key Research And Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61774146, 61674144, 61404131), the Key Projects of Chinese Academy of Sciences (Nos. ZDRW-XH-2016-4, QYZDJ-SSW-JSC027), and the Beijing Natural Science Foundation (No. 4162060, 4172060).

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return