SEMICONDUCTOR MATERIALS

Light emission of heavily doped AlGaN structures under optical pumping

P. A. Bokhan1, N. V. Fateev1, 2, I. V. Osinnykh1, 2, T. V. Malin1, Dm. E. Zakrevsky1, 3, K. S. Zhuravlev1, 2, Xin Wei4, , Jian Li4 and Lianghui Chen4

+ Author Affiliations

 Corresponding author: Xin Wei, weix@red.semi.ac.cn

PDF

Turn off MathJax

Abstract: Spectral, temporal and polarization characteristics of spontaneous and stimulated luminescence of Al0.5Ga0.5N/AlN structures grown by molecular beam epitaxy were studied at the optical pulsed pumping with λ = 266 nm. Samples with a high degree of silicon doping were investigated. The vast majority of radiation falls on transitions within the band gap between the levels of defects. As a result, the radiation band embracing the whole visible range of more than 300 THz is observed in both spontaneous radiation and induced luminescence. In spontaneous radiation the band has a smooth spectral intensity distribution over the wavelengths, whereas induced radiation has its sharp peaks corresponding to the mode structure of the planar waveguide. The measured gain of the active medium is g ≈ 70 cm−1 for a weak signal.

Key words: filmoptical characteristicslaser material



[1]
Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Appl Phys Lett, 2008, 93: 241106 doi: 10.1063/1.3050539
[2]
Shatalov M, Gaevski M, Adivarahan V, et al. Room-temperature stimulated emission from AlN at 214 nm. Jpn J Appl Phys, 2006, 45: L1286 doi: 10.1143/JJAP.45.L1286
[3]
Pecora E F, Zhang W, Nikiforov A Y, et al. Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations. Appl Phys Lett, 2012, 100: 061111 doi: 10.1063/1.3681944
[4]
Tian Y, Yan J, Zhang Y, et al. Stimulated emission at 288 nm from silicon-doped AlGaN-based multiple-quantum-well laser. Opt Express, 2015, 23: 11334 doi: 10.1364/OE.23.011334
[5]
Lutsenko E V, Rzheutskii N V, Pavlovskii V N, et al. Spontaneous and stimulated emission in the mid-ultraviolet range of quantum-well heterostructures based on AlGaN compounds grown by molecular beam epitaxy on c-sapphire substrates. Phys Solid State, 2013, 55: 2173 doi: 10.1134/S106378341310020X
[6]
Bokhan P A, Gugin P P, Zakrevsky Dm E, et al. Luminescence and superradiance in electron-beam-excited AlxGa1–xN. Appl Phys, 2014, 116: 113103 doi: 10.1063/1.4894774
[7]
Yoshida S, Misawa S, Gonda S. Properties of AlxGa1–xN films prepared by reactive molecular beam epitaxy. J Appl Phys, 1982, 53: 6844 doi: 10.1063/1.329998
[8]
Bradley S T, Goss S H, Brillson L J, et al. Deep level defects and doping in high Al mole fraction AlGaN. J Vac Sci Technol B, 2003, 21: 2558 doi: 10.1116/1.1627331
[9]
Zhao D G, Jiang D S, Zhu J J, et al. Role of edge dislocation and Si impurity in linking the blue luminescence and yellow luminescence in n-type GaN films. Appl Phys Lett, 2009, 95: 041901 doi: 10.1063/1.3187540
[10]
Osinnykh I V, Malin T V, Plyusnin V F, et al. Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1–xN:Si with the Al content x > 0.5. Jpn J Appl Phys, 2016, 55: 05FG09 doi: 10.7567/JJAP.55.05FG09
[11]
Zhuravlev K S, Osinnykh I V, Protasov D Y, et al. Characterization of MBE grown AlGaN layers heavily doped using silane. Phys Status Solidi C, 2013, 10: 315 doi: 10.1002/pssc.201200703
[12]
Muth J F, Brown J D, Johnson M A L, et al. Absorption coefficient and refractive index of GaN, AlN, and AlGaN alloys. MRS Internet J Nitride Semicond Res, 1999, 4S1: G5.2
[13]
Malin T V, Gilinsky A M, Mansurov V G, et al. Increase in the diffusion length of minority carriers in AlxGa1–xN alloys (x = 0–0.1) fabricated by ammonia molecular beam epitaxy. Semiconductors, 2015, 49: 1285 doi: 10.1134/S1063782615100140
[14]
Ayupov B M, Sulyaeva V S, Shayapov V R, et al. Searching for the starting approximation when solving inverse problems in ellipsometry and spectrophotometry. J Opt Technol, 2011, 78: 350 doi: 10.1364/JOT.78.000350
[15]
Shaklee K L. Direct determination of optical gain in semiconductor crystals. Appl Phys Lett, 1971, 18: 475 doi: 10.1063/1.1653501
[16]
Oster A, Erbert G, Wenzel H. Gain spectra measurements by a variable stripe length method with current injection. Electron Lett, 1997, 33: 864 doi: 10.1049/el:19970605
[17]
Sanford N A, Robins L H, Davydov A V, et al. Refractive index study of AlxGa1–xN films grown on sapphire substrates. J Appl Phys, 2003, 94: 2980 doi: 10.1063/1.1598276
[18]
Sanford N A, Robins L H, Davydov A V, et al. Determination of the refractive indices of AlN, GaN, and AlxGa1–xN grown on (111) Si substrates. J Appl Phys, 2003, 93: 5222 doi: 10.1063/1.1563293
[19]
Antoine-Vincent N, Natali F, Mihailovic M, et al. An introduction to integrated optics. IEEE Trans Microwave Theory Tech, 1975, 23: 2 doi: 10.1109/TMTT.1975.1128500
[20]
Kogelnik H. Unique optical properties of AlGaN alloys and related ultraviolet emitters. Appl Phys Lett, 2004, 84: 5264 doi: 10.1063/1.1765208
[21]
Nam K B, Li J, Nakarmi M L, et al. Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers. Appl Phys B, 2001, 72: 515 doi: 10.1007/s003400100540
Fig. 1.  (Color online) The Al, Ga, Si atomic concentrations in Al0.5Ga0.5N versus the film depth.

Fig. 2.  (Color online) Experimental setup: 1 – sample, 2 – Glan prism polarizer, 3 – lens, 4 – spectrometer, 5 – blind, 6 – pump radiation with λ = 266 nm, 7 – recorder radiation.

Fig. 3.  (Color online) PL spectra of the Al0.5Ga0.5N film under (1, 2) the electron beam excitation[6] and (3) the optical excitation at λ = 266 nm: (1) emission in the direction perpendicular to the film; (2, 3) emission from the cleaved edge.

Fig. 4.  (Color online) The edge luminescence spectra of the Al0.5Ga0.5N film with stripe length L = 1.2 mm for various values of the pulsed pumping power densities.

Fig. 5.  (Color online) PL intensity of the Al0.5Ga0.5N film: (1) emission in the direction perpendicular to the film, (2) emission from the cleaved edge, λ = 560(1) and λ = 528(2) nm, L = 1.2 mm.

Fig. 6.  (Color online) Fragments of the luminescence spectrum (1) without the polarizer and the polarizer at different rotation (2) ζ = 0°, (3) ζ = 45° , (4) ζ = 90°.

Fig. 7.  (Color online) The gain of the Al0.5Ga0.5N/AlN structure. 1 – experimental data; 2 – exponential approximation of the initial section of the experimental data according to Eq. (2).

Fig. 8.  (Color online) The decay time τf of the PL emission at λ = 595 nm from the Al0.5Ga0.5N film as a function of the power density W of the pump radiation (λ = 266 nm). The inset shows the typical oscillogram of the PL radiation.

Fig. 9.  The AlGaN/AlN/Al2O3 waveguide structure.

[1]
Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Appl Phys Lett, 2008, 93: 241106 doi: 10.1063/1.3050539
[2]
Shatalov M, Gaevski M, Adivarahan V, et al. Room-temperature stimulated emission from AlN at 214 nm. Jpn J Appl Phys, 2006, 45: L1286 doi: 10.1143/JJAP.45.L1286
[3]
Pecora E F, Zhang W, Nikiforov A Y, et al. Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations. Appl Phys Lett, 2012, 100: 061111 doi: 10.1063/1.3681944
[4]
Tian Y, Yan J, Zhang Y, et al. Stimulated emission at 288 nm from silicon-doped AlGaN-based multiple-quantum-well laser. Opt Express, 2015, 23: 11334 doi: 10.1364/OE.23.011334
[5]
Lutsenko E V, Rzheutskii N V, Pavlovskii V N, et al. Spontaneous and stimulated emission in the mid-ultraviolet range of quantum-well heterostructures based on AlGaN compounds grown by molecular beam epitaxy on c-sapphire substrates. Phys Solid State, 2013, 55: 2173 doi: 10.1134/S106378341310020X
[6]
Bokhan P A, Gugin P P, Zakrevsky Dm E, et al. Luminescence and superradiance in electron-beam-excited AlxGa1–xN. Appl Phys, 2014, 116: 113103 doi: 10.1063/1.4894774
[7]
Yoshida S, Misawa S, Gonda S. Properties of AlxGa1–xN films prepared by reactive molecular beam epitaxy. J Appl Phys, 1982, 53: 6844 doi: 10.1063/1.329998
[8]
Bradley S T, Goss S H, Brillson L J, et al. Deep level defects and doping in high Al mole fraction AlGaN. J Vac Sci Technol B, 2003, 21: 2558 doi: 10.1116/1.1627331
[9]
Zhao D G, Jiang D S, Zhu J J, et al. Role of edge dislocation and Si impurity in linking the blue luminescence and yellow luminescence in n-type GaN films. Appl Phys Lett, 2009, 95: 041901 doi: 10.1063/1.3187540
[10]
Osinnykh I V, Malin T V, Plyusnin V F, et al. Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1–xN:Si with the Al content x > 0.5. Jpn J Appl Phys, 2016, 55: 05FG09 doi: 10.7567/JJAP.55.05FG09
[11]
Zhuravlev K S, Osinnykh I V, Protasov D Y, et al. Characterization of MBE grown AlGaN layers heavily doped using silane. Phys Status Solidi C, 2013, 10: 315 doi: 10.1002/pssc.201200703
[12]
Muth J F, Brown J D, Johnson M A L, et al. Absorption coefficient and refractive index of GaN, AlN, and AlGaN alloys. MRS Internet J Nitride Semicond Res, 1999, 4S1: G5.2
[13]
Malin T V, Gilinsky A M, Mansurov V G, et al. Increase in the diffusion length of minority carriers in AlxGa1–xN alloys (x = 0–0.1) fabricated by ammonia molecular beam epitaxy. Semiconductors, 2015, 49: 1285 doi: 10.1134/S1063782615100140
[14]
Ayupov B M, Sulyaeva V S, Shayapov V R, et al. Searching for the starting approximation when solving inverse problems in ellipsometry and spectrophotometry. J Opt Technol, 2011, 78: 350 doi: 10.1364/JOT.78.000350
[15]
Shaklee K L. Direct determination of optical gain in semiconductor crystals. Appl Phys Lett, 1971, 18: 475 doi: 10.1063/1.1653501
[16]
Oster A, Erbert G, Wenzel H. Gain spectra measurements by a variable stripe length method with current injection. Electron Lett, 1997, 33: 864 doi: 10.1049/el:19970605
[17]
Sanford N A, Robins L H, Davydov A V, et al. Refractive index study of AlxGa1–xN films grown on sapphire substrates. J Appl Phys, 2003, 94: 2980 doi: 10.1063/1.1598276
[18]
Sanford N A, Robins L H, Davydov A V, et al. Determination of the refractive indices of AlN, GaN, and AlxGa1–xN grown on (111) Si substrates. J Appl Phys, 2003, 93: 5222 doi: 10.1063/1.1563293
[19]
Antoine-Vincent N, Natali F, Mihailovic M, et al. An introduction to integrated optics. IEEE Trans Microwave Theory Tech, 1975, 23: 2 doi: 10.1109/TMTT.1975.1128500
[20]
Kogelnik H. Unique optical properties of AlGaN alloys and related ultraviolet emitters. Appl Phys Lett, 2004, 84: 5264 doi: 10.1063/1.1765208
[21]
Nam K B, Li J, Nakarmi M L, et al. Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers. Appl Phys B, 2001, 72: 515 doi: 10.1007/s003400100540
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3259 Times PDF downloads: 35 Times Cited by: 0 Times

    History

    Received: 13 April 2017 Revised: 08 November 2017 Online: Uncorrected proof: 24 January 2018Accepted Manuscript: 02 March 2018Published: 01 April 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      P. A. Bokhan, N. V. Fateev, I. V. Osinnykh, T. V. Malin, Dm. E. Zakrevsky, K. S. Zhuravlev, Xin Wei, Jian Li, Lianghui Chen. Light emission of heavily doped AlGaN structures under optical pumping[J]. Journal of Semiconductors, 2018, 39(4): 043002. doi: 10.1088/1674-4926/39/4/043002 P. A. Bokhan, N. V. Fateev, I. V. Osinnykh, T. V. Malin, Dm. E. Zakrevsky, K. S. Zhuravlev, X Wei, J Li, L H Chen. Light emission of heavily doped AlGaN structures under optical pumping[J]. J. Semicond., 2018, 39(4): 043002. doi: 10.1088/1674-4926/39/4/043002.Export: BibTex EndNote
      Citation:
      P. A. Bokhan, N. V. Fateev, I. V. Osinnykh, T. V. Malin, Dm. E. Zakrevsky, K. S. Zhuravlev, Xin Wei, Jian Li, Lianghui Chen. Light emission of heavily doped AlGaN structures under optical pumping[J]. Journal of Semiconductors, 2018, 39(4): 043002. doi: 10.1088/1674-4926/39/4/043002

      P. A. Bokhan, N. V. Fateev, I. V. Osinnykh, T. V. Malin, Dm. E. Zakrevsky, K. S. Zhuravlev, X Wei, J Li, L H Chen. Light emission of heavily doped AlGaN structures under optical pumping[J]. J. Semicond., 2018, 39(4): 043002. doi: 10.1088/1674-4926/39/4/043002.
      Export: BibTex EndNote

      Light emission of heavily doped AlGaN structures under optical pumping

      doi: 10.1088/1674-4926/39/4/043002
      More Information
      • Corresponding author: weix@red.semi.ac.cn
      • Received Date: 2017-04-13
      • Revised Date: 2017-11-08
      • Published Date: 2018-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return