SEMICONDUCTOR DEVICES

Design and simulation of nanoscale double-gate TFET/tunnel CNTFET

Shashi Bala and Mamta Khosla

+ Author Affiliations

 Corresponding author: Shashi Bala, Email: shashi.sbbs@gmail.com

PDF

Turn off MathJax

Abstract: A double-gate tunnel field-effect transistor (DG tunnel FET) has been designed and investigated for various channel materials such as silicon (Si), gallium arsenide (GaAs), alminium gallium arsenide (AlxGa1−xAs) and CNT using a nano ViDES Device and TCAD SILVACO ATLAS simulator. The proposed devices are compared on the basis of inverse subthreshold slope (SS), ION/IOFF current ratio and leakage current. Using Si as the channel material limits the property to reduce leakage current with scaling of channel, whereas the AlxGa1−xAs based DG tunnel FET provides a better ION/IOFF current ratio (2.51 × 106) as compared to other devices keeping the leakage current within permissible limits. The performed silmulation of the CNT based channel in the double-gate tunnel field-effect transistor using the nano ViDES shows better performace for a sub-threshold slope of 29.4 mV/dec as the channel is scaled down. The proposed work shows the potential of the CNT channel based DG tunnel FET as a futuristic device for better switching and high retention time, which makes it suitable for memory based circuits.

Key words: band-to-band tunneling (BTBT)double gate (DG)silicon (Si)gallium arsenide (GaAs)aluminum gallium arsenide (AlxGa1−xAs)tunnel field effect transistor (FET)carbon nanotube (CNT)



[1]
Sakurai T. Perspectives of low-power VLSI's. IEICE trans Electron, 2004, 87(4): 429
[2]
Bernstein K, Cavin R K, Porod W, et al. Device and architecture outlook for beyond CMOS switches. Proc IEEE, 2010, 98(12): 2169 doi: 10.1109/JPROC.2010.2066530
[3]
Seabaugh A C, Zhang Q. Low-voltage tunnel transistors for beyond CMOS logic. Proc IEEE, 2010, 98(12): 2095 doi: 10.1109/JPROC.2010.2070470
[4]
Zener C. A theory of the electrical breakdown of solid dielectrics. Proc Royal Soc London A, 1934, 145(855): 523 doi: 10.1098/rspa.1934.0116
[5]
Silvaco ATLAS device simulator and user manual, silvaco int; Santa Clara, CA, USA 5.19.2 2013
[6]
Appenzeller J, Lin Y M, Knoch J, et al. Comparing carbon nanotube transistors-the ideal choice: a novel tunneling device design. IEEE Trans Electron Devices, 2005, 52(12): 2568 doi: 10.1109/TED.2005.859654
[7]
Sharma S K, Raj B, Khosla M. Comparative analysis of MOSFET, CNTFET and NWFET for energy efficient VLSI circuit design. J VLSI Des Tools Technol, 2016, 6: 1
[8]
Boucart K, Ionescu A M. Length scaling of the double gate tunnel FET with a high-k gate dielectric. Solid-State Electron, 2007, 51(11): 1500
[9]
Sharma S K, Raj B, Khosla M. A Gaussian approach for analytical subthreshold current model of cylindrical nanowire FET with quantum mechanical effects. Microelectron J, 2016, 53: 65 doi: 10.1016/j.mejo.2016.04.002
[10]
Sharma S K, Raj B, Khosla M. Subthreshold performance of In1−xGaxAs based dual metal with gate stack cylindrical/surrounding gate nanowire MOSFET for low power analog applications. J Nanoelectron Optoelectron, 2017, 12(2): 171 doi: 10.1166/jno.2017.1961
[11]
Zhang L, Lin X, He J, et al. An analytical charge model for double-gate tunnel FETs. IEEE Trans Electron Devices, 2012, 59(12): 3217 doi: 10.1109/TED.2012.2217145
[12]
Kumar S, Raj B. Compact channel potential analytical modeling of DG-TFET based on Evanescent-mode approach. J Comput Electron, 2015, 14(3): 820 doi: 10.1007/s10825-015-0718-9
[13]
Singh A, Khosla M, Raj B. Analysis of electrostatic doped Schottky barrier carbon nanotube FET for low power applications. J Mater Sci: Mater Electron, 2017, 28(2): 1762 doi: 10.1007/s10854-016-5723-7
[14]
Singh K, Raj B. Temperature-dependent modeling and performance evaluation of multi-walled CNT and single-walled CNT as global interconnects. J Electron Mater, 2015, 44(12): 4825 doi: 10.1007/s11664-015-4040-x
[15]
Narang R, Saxena M, Gupta M, et al. Modeling and simulation of multi layer gate dielectric double gate tunnel field-effect transistor (DG-TFET). Students' Technology Symposium (TechSym), 2011: 281
[16]
Kumar S, Raj B. Analysis of ION and ambipolar current for dual-material gate–drain overlapped DG-TFET. J Nanoelectron Optoelectron, 2016, 11(3): 323 doi: 10.1166/jno.2016.1902
[17]
Singh K, Raj B. Performance and analysis of temperature dependent multi-walled carbon nanotubes as global interconnects at different technology nodes. J Comput Electron, 2015, 14(2): 469 doi: 10.1007/s10825-015-0667-3
[18]
Krishnamohan T, Kim D, Raghunathan S, et al. Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and $ \ll $ 60 mV/dec subthreshold slope. IEEE International Electron Devices Meeting, 2008: 1
[19]
Arun S, Balamurugan N B. An analytical modeling and simulation of dual material double gate tunnel field effect transistor for low power applications. J Electr Eng Technol, 2014, 9(1): 247 doi: 10.5370/JEET.2014.9.1.247
[20]
Singh A, Khosla M, Raj B. Compact model for ballistic single wall CNTFET under quantum capacitance limit. J Semicond, 2016, 37(10): 104001 doi: 10.1088/1674-4926/37/10/104001
[21]
Sahoo R, Mishra R R. Simulations of carbon nanotube field effect transistors. Int J Electron Eng Res, 2009, 1(2): 117
[22]
Singh A, Khosla M, Raj B. Compact model for ballistic single wall CNTFET under quantum capacitance limit. J Semicond, 2016, 37(10): 104001 doi: 10.1088/1674-4926/37/10/104001
[23]
Singh A, Khosla M, Raj B. Comparative analysis of carbon nanotube field effect transistor and nanowire transistor for low power circuit design. J Nanoelectron Optoelectron, 2016, 11(3): 388 doi: 10.1166/jno.2016.1913
Fig. 1.  Schematic diagram for DG tunnel FET with high-k dielectric.

Fig. 2.  (Color online) IDSVGS characteristic of design DG tunnel FET and the existing device[6].

Fig. 3.  (Color online) Simulated schematic view of DG tunnel FETs with various channel materials. (a) Silicon. (b) GaAs. (c) AlxGa1−xAs.

Fig. 4.  (Color online) IDSVGS characteristic of DG tunnel FET for various channel materials: Si, GaAs and AlxGa1−xAs.

Fig. 5.  (Color online) IDSVGS characteristic in log scale of DG tunnel FET for various channel materials Si, GaAs, AlxGa1−xAs.

Fig. 6.  (Color online) Energy-band diagram of DG tunnel FET for various channel material Si, AlxGa1−xAs, GaAs in ON state.

Fig. 7.  (Color online) Variations of energy gap (Eg) with mole fraction x of its component ranging from 0 to 0.6.

Fig. 8.  (Color online) IDSVGS characteristic of AlxGa1−xAs DG tunnel FET for different values of aluminum mole fraction.

Fig. 9.  Schematic diagram for DG tunnel FET with high-k dielectric.

Fig. 10.  (Color online) IDSVGS characteristic of DG-tunnel FET for various channel materials Si, AlxGa1−xAs, and CNT.

Table 1.   Properties of the various channel materials used in SILVACO ATLAS TCAD simulation.

Property Si GaAs AlxGa1−xAs CNT
Dielectric constant 11.9 13.1 12.90−2.84x 4.8
Energy gap at 300 K (eV) 1.12 1.424 1.422 eV + 1.2475x 0.75
Intrinsic carrier concentration (cm−3) 1.45 × 1010 1.79 × 106 2.1 × 105
Mobility (Drift) μn (cm2/(V·s)) 1500 8500 8.1−2.2x + 104x2 79 000
Mobility (Drift) μp (cm2/(V·s)) 475 400 370−970x + 740x2 79 000
Thermal conductivity at 300 K (W/cm·°C) 1.5 0.46 0.55−2.12x + 2.48x2 6600
DownLoad: CSV

Table 2.   Various output parameters for different channel materials (SILVACO ATLAS TCAD simulation).

Device with different channel materials IOFF ION ION/IOFF SS (mV/decade) Vt
Silicon 4.11 × 10−17 17.7 × 10−5 4.32 × 1012 30.7985 0.682591
GaAs 1.16 × 10−18 36.6 × 10−5 3.15 × 1014 16.121 0.590537
AlGaAs 1.01 × 10−20 32.8 × 10−5 3.24 × 1016 14.5095 0.627576
DownLoad: CSV

Table 3.   Various output parameters for different mole fractions of aluminum.

Mole fraction IOFF ION ION/IOFF SS (mV/decade) Vt
x = 10 1.24 × 10−21 7.70 × 10−5 6.21 × 1016 14.074 0.785767
x = 20 1.18 × 10−21 1.19 × 10−5 1.01 × 1016 14.1381 1.00271
x = 30 6.86 × 10−21 1.24 × 10−6 1.81 × 1014 24.6429 1.24419
x = 40 2.20 × 10−21 8.67 × 10−8 3.94 × 1013 27.9075 1.3300
DownLoad: CSV

Table 4.   Various output parameters for different channel materials obtained from TCAD simulation.

Device with different channel materials ION IOFF ION/IOFF SS (mV/decade)
Silicon 2.14 × 10−6 4.27 × 10−10 5.011 × 103 37
AlxGa1−xAs 9.30 × 10−6 3.70 × 10−12 2.51 × 106 32.5
CNT (d = 1 nm) 3.03 × 10−6 2.00 × 10−12 1.51 × 106 29.4
DownLoad: CSV
[1]
Sakurai T. Perspectives of low-power VLSI's. IEICE trans Electron, 2004, 87(4): 429
[2]
Bernstein K, Cavin R K, Porod W, et al. Device and architecture outlook for beyond CMOS switches. Proc IEEE, 2010, 98(12): 2169 doi: 10.1109/JPROC.2010.2066530
[3]
Seabaugh A C, Zhang Q. Low-voltage tunnel transistors for beyond CMOS logic. Proc IEEE, 2010, 98(12): 2095 doi: 10.1109/JPROC.2010.2070470
[4]
Zener C. A theory of the electrical breakdown of solid dielectrics. Proc Royal Soc London A, 1934, 145(855): 523 doi: 10.1098/rspa.1934.0116
[5]
Silvaco ATLAS device simulator and user manual, silvaco int; Santa Clara, CA, USA 5.19.2 2013
[6]
Appenzeller J, Lin Y M, Knoch J, et al. Comparing carbon nanotube transistors-the ideal choice: a novel tunneling device design. IEEE Trans Electron Devices, 2005, 52(12): 2568 doi: 10.1109/TED.2005.859654
[7]
Sharma S K, Raj B, Khosla M. Comparative analysis of MOSFET, CNTFET and NWFET for energy efficient VLSI circuit design. J VLSI Des Tools Technol, 2016, 6: 1
[8]
Boucart K, Ionescu A M. Length scaling of the double gate tunnel FET with a high-k gate dielectric. Solid-State Electron, 2007, 51(11): 1500
[9]
Sharma S K, Raj B, Khosla M. A Gaussian approach for analytical subthreshold current model of cylindrical nanowire FET with quantum mechanical effects. Microelectron J, 2016, 53: 65 doi: 10.1016/j.mejo.2016.04.002
[10]
Sharma S K, Raj B, Khosla M. Subthreshold performance of In1−xGaxAs based dual metal with gate stack cylindrical/surrounding gate nanowire MOSFET for low power analog applications. J Nanoelectron Optoelectron, 2017, 12(2): 171 doi: 10.1166/jno.2017.1961
[11]
Zhang L, Lin X, He J, et al. An analytical charge model for double-gate tunnel FETs. IEEE Trans Electron Devices, 2012, 59(12): 3217 doi: 10.1109/TED.2012.2217145
[12]
Kumar S, Raj B. Compact channel potential analytical modeling of DG-TFET based on Evanescent-mode approach. J Comput Electron, 2015, 14(3): 820 doi: 10.1007/s10825-015-0718-9
[13]
Singh A, Khosla M, Raj B. Analysis of electrostatic doped Schottky barrier carbon nanotube FET for low power applications. J Mater Sci: Mater Electron, 2017, 28(2): 1762 doi: 10.1007/s10854-016-5723-7
[14]
Singh K, Raj B. Temperature-dependent modeling and performance evaluation of multi-walled CNT and single-walled CNT as global interconnects. J Electron Mater, 2015, 44(12): 4825 doi: 10.1007/s11664-015-4040-x
[15]
Narang R, Saxena M, Gupta M, et al. Modeling and simulation of multi layer gate dielectric double gate tunnel field-effect transistor (DG-TFET). Students' Technology Symposium (TechSym), 2011: 281
[16]
Kumar S, Raj B. Analysis of ION and ambipolar current for dual-material gate–drain overlapped DG-TFET. J Nanoelectron Optoelectron, 2016, 11(3): 323 doi: 10.1166/jno.2016.1902
[17]
Singh K, Raj B. Performance and analysis of temperature dependent multi-walled carbon nanotubes as global interconnects at different technology nodes. J Comput Electron, 2015, 14(2): 469 doi: 10.1007/s10825-015-0667-3
[18]
Krishnamohan T, Kim D, Raghunathan S, et al. Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and $ \ll $ 60 mV/dec subthreshold slope. IEEE International Electron Devices Meeting, 2008: 1
[19]
Arun S, Balamurugan N B. An analytical modeling and simulation of dual material double gate tunnel field effect transistor for low power applications. J Electr Eng Technol, 2014, 9(1): 247 doi: 10.5370/JEET.2014.9.1.247
[20]
Singh A, Khosla M, Raj B. Compact model for ballistic single wall CNTFET under quantum capacitance limit. J Semicond, 2016, 37(10): 104001 doi: 10.1088/1674-4926/37/10/104001
[21]
Sahoo R, Mishra R R. Simulations of carbon nanotube field effect transistors. Int J Electron Eng Res, 2009, 1(2): 117
[22]
Singh A, Khosla M, Raj B. Compact model for ballistic single wall CNTFET under quantum capacitance limit. J Semicond, 2016, 37(10): 104001 doi: 10.1088/1674-4926/37/10/104001
[23]
Singh A, Khosla M, Raj B. Comparative analysis of carbon nanotube field effect transistor and nanowire transistor for low power circuit design. J Nanoelectron Optoelectron, 2016, 11(3): 388 doi: 10.1166/jno.2016.1913
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5614 Times PDF downloads: 275 Times Cited by: 0 Times

    History

    Received: 21 July 2017 Revised: 09 August 2017 Online: Uncorrected proof: 25 January 2018Accepted Manuscript: 02 March 2018Published: 01 April 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shashi Bala, Mamta Khosla. Design and simulation of nanoscale double-gate TFET/tunnel CNTFET[J]. Journal of Semiconductors, 2018, 39(4): 044001. doi: 10.1088/1674-4926/39/4/044001 S S B la, M Khosla. Design and simulation of nanoscale double-gate TFET/tunnel CNTFET[J]. J. Semicond., 2018, 39(4): 044001. doi: 10.1088/1674-4926/39/4/044001.Export: BibTex EndNote
      Citation:
      Shashi Bala, Mamta Khosla. Design and simulation of nanoscale double-gate TFET/tunnel CNTFET[J]. Journal of Semiconductors, 2018, 39(4): 044001. doi: 10.1088/1674-4926/39/4/044001

      S S B la, M Khosla. Design and simulation of nanoscale double-gate TFET/tunnel CNTFET[J]. J. Semicond., 2018, 39(4): 044001. doi: 10.1088/1674-4926/39/4/044001.
      Export: BibTex EndNote

      Design and simulation of nanoscale double-gate TFET/tunnel CNTFET

      doi: 10.1088/1674-4926/39/4/044001
      More Information
      • Corresponding author: Email: shashi.sbbs@gmail.com
      • Received Date: 2017-07-21
      • Revised Date: 2017-08-09
      • Available Online: 2018-04-01
      • Published Date: 2018-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return