SEMICONDUCTOR PHYSICS 

The oscillations in ESR spectra of Hg0.76Cd0.24Te implanted by Ag+ at the X and Q-bands

A. V. Shestakov1, 2, , I. I. Fazlizhanov1, 2, I. V. Yatsyk1, 2, I. F. Gilmutdinov2, M. I. Ibragimova1, V. A. Shustov1 and R. M. Eremina1, 2

+ Author Affiliations

 Corresponding author: A. V. Shestakov, alekseivshestakov@gmail.com

PDF

Turn off MathJax

Abstract: The objects of the investigation were uniformly Ag+ doped Hg0.76Cd0.24Te mercury chalcogenide monocrystals obtained by ion implantation with subsequent thermal annealing over 20 days. After implantation and annealing the conductivity was inverted from n-type with carrier concentration of 1016 cm−3 to p-type with carrier concentration of ≈ 3.9 × 1015 cm−3. The investigations of microwave absorption derivative (dP/dH) showed the existence of strong oscillations in the magnetic field for Ag:Hg0.76Cd0.24Te in the temperature range 4.2–12 K. The concentration and effective mass of charge carrier were determined from oscillation period and temperature dependency of oscillation amplitude. We suppose that this phenomenon is similar to the de Haas–van Alphen effect in weakly correlated electron system with imperfect nesting vector.

Key words: de Haas–van Alphen effectAg:Hg0.76Cd0.24Temagnetic resonance



[1]
Veynger A I, Zabrodskii A G, Tisnek T V, et al. Distinctive features of the magnetoresistance of degenerately doped nInAs and their influence on magnetic-field-dependent microwave absorption. Semiconductors, 1998, 32(5): 497 doi: 10.1134/1.1187427
[2]
Winterfeld L, Agapito L A, Li J, et al. Strain-induced topological insulator phase transition in HgSe. Phys Rev B, 2013, 87(7): 075143 doi: 10.1103/PhysRevB.87.075143
[3]
Comedi D, Kalish R. Vibrations of constituent atoms in ZnxCd1−xTe and Hg1−xCdxTe (various x). J Cryst Growth, 1990, 101(1): 1022 doi: 10.1016/0022-0248(90)91126-B
[4]
Bratashevskii Y A, Nikolaenko Y M, Prozorovskii V D, et al. Model of two-electron conduction in Hg1−xCdxTe. Sov Phys Semicond, 1990, 24(2): 188
[5]
Field S B, Reich D H, Shivaram B S, et al. Evidence for depinning of a Wigner crystal in Hg–Cd–Te. Phys Rev B, 1986, 33(7): 5082 doi: 10.1103/PhysRevB.33.5082
[6]
Tsidilkovskii I M. Crystallization of a three-dimensional electron gas. Sov Phys Usp, 1987, 152(4): 583 doi: 10.3367/UFNr.0152.198708c.0583
[7]
Bogoboyashchiy V V. Effect of annealing on activation of native acceptors in narrow-gap p-HgCdTe crystals. Semiconductor Physics, Quantum Electronics And Optoelectronics, 1999, 2(1): 62
[8]
Kozyrev S P. Anomalous properties of optical lattice vibrations in HgTe: a double-well model of the lattice potential for a Hg atom. Phys Solid State, 2010, 52(3): 574 doi: 10.1134/S1063783410030194
[9]
Sun L Z, Chen X, Sun Y L, et al. Relaxations and bonding mechanism in Hg1−xCdxTe with mercury vacancy defect: first-principles study. Phys Rev B, 2006, 73: 195206 doi: 10.1103/PhysRevB.73.195206
[10]
Han J L, Sun L Z, Qu X D, et al. Electronic properties of the Au impurity in Hg0.75Cd0.25Te: first-principles study. Physica B, 2009, 404: 131 doi: 10.1016/j.physb.2008.10.017
[11]
Ibragimova M I, Baryshev N S, Yu V. Effect of successive implantation of Ag+(Cu+) and Xe+ ions on the recombination properties of CdxHg1−xTe crystals. Semiconductors, 1997, 31(7): 666 doi: 10.1134/1.1187061
[12]
Kittel C. Introduction to solid state physics. New York: Wiley, 2004.
[13]
Pipard A B. Magnetoresistance in metals. New York: Cambridge University Press, 2009
[14]
Kireev P S. Physics of semiconductors. Moscow: Vysshaya shkola, 1975 (in Russian)
[15]
Popenko N, Bekirov B, Ivanchenko I, et al. Concentration anomalies of the magnetization of HgSe:Fe crystals. JETF Lett, 2014, 100(4): 247 doi: 10.1134/S0021364014160127
[16]
von Bardeleben H J, Jia Y Q, Manasreh M O, et al. Electron paramagnetic resonance study of the two-dimensional electron gas in Ga1−xAlxSb/InAs single quantum wells. Appl Phys Lett, 1993, 62(1): 90 doi: 10.1063/1.108782
[17]
Sboychakov O, Rakhmanov A L, Kugel K I, et al. Magnetic field effects in electron systems with imperfect nesting. Phys Rev B, 2017, 95(1): 014203 doi: 10.1103/PhysRevB.95.014203
Fig. 1.  (Color online) The angular dependencies of ESR spectra in Ag:Hg0.76Cd0.24Te at the T = 4.2 K in the X-band (9.3 GHz) (a) as the function of magnetic field; (b) versus of the inverse magnetic field. (c) The magnetic resonance spectra in the Q-band (34 GHz).

Fig. 2.  (Color online) (a) The dependencies of magnetization versus magnetic field at 5 K. Inset: The residual data after subtracting the diamagnetic contribution of the conduction electrons and the Langevin function of magnetic saturation. (b) The dependence of the resistivity versus magnetic field at 5 K. Solid red line: fitting according to Eq. (1).

Fig. 3.  (Color online) (a) The high-frequency oscillation period dependence from magnetic field that was obtained from ESR and PPMS data. Dotted line: fitting according to Eq. (2). (b) The angular dependence of first minimum location of low-frequency oscillation obtained from ESR (X-band).

Fig. 4.  (Color online) (a) Temperature evolution of the oscillations in Ag:Hg0.76Cd0.24Te. (b) Dependence of the oscillation amplitude versus temperature near 4 kOe.

Fig. 5.  (Color online) (a) The view of spectra before and after X-ray irradiation. (b) The angular dependence spectra after X-ray irradiation (the angles shown here are relative).

[1]
Veynger A I, Zabrodskii A G, Tisnek T V, et al. Distinctive features of the magnetoresistance of degenerately doped nInAs and their influence on magnetic-field-dependent microwave absorption. Semiconductors, 1998, 32(5): 497 doi: 10.1134/1.1187427
[2]
Winterfeld L, Agapito L A, Li J, et al. Strain-induced topological insulator phase transition in HgSe. Phys Rev B, 2013, 87(7): 075143 doi: 10.1103/PhysRevB.87.075143
[3]
Comedi D, Kalish R. Vibrations of constituent atoms in ZnxCd1−xTe and Hg1−xCdxTe (various x). J Cryst Growth, 1990, 101(1): 1022 doi: 10.1016/0022-0248(90)91126-B
[4]
Bratashevskii Y A, Nikolaenko Y M, Prozorovskii V D, et al. Model of two-electron conduction in Hg1−xCdxTe. Sov Phys Semicond, 1990, 24(2): 188
[5]
Field S B, Reich D H, Shivaram B S, et al. Evidence for depinning of a Wigner crystal in Hg–Cd–Te. Phys Rev B, 1986, 33(7): 5082 doi: 10.1103/PhysRevB.33.5082
[6]
Tsidilkovskii I M. Crystallization of a three-dimensional electron gas. Sov Phys Usp, 1987, 152(4): 583 doi: 10.3367/UFNr.0152.198708c.0583
[7]
Bogoboyashchiy V V. Effect of annealing on activation of native acceptors in narrow-gap p-HgCdTe crystals. Semiconductor Physics, Quantum Electronics And Optoelectronics, 1999, 2(1): 62
[8]
Kozyrev S P. Anomalous properties of optical lattice vibrations in HgTe: a double-well model of the lattice potential for a Hg atom. Phys Solid State, 2010, 52(3): 574 doi: 10.1134/S1063783410030194
[9]
Sun L Z, Chen X, Sun Y L, et al. Relaxations and bonding mechanism in Hg1−xCdxTe with mercury vacancy defect: first-principles study. Phys Rev B, 2006, 73: 195206 doi: 10.1103/PhysRevB.73.195206
[10]
Han J L, Sun L Z, Qu X D, et al. Electronic properties of the Au impurity in Hg0.75Cd0.25Te: first-principles study. Physica B, 2009, 404: 131 doi: 10.1016/j.physb.2008.10.017
[11]
Ibragimova M I, Baryshev N S, Yu V. Effect of successive implantation of Ag+(Cu+) and Xe+ ions on the recombination properties of CdxHg1−xTe crystals. Semiconductors, 1997, 31(7): 666 doi: 10.1134/1.1187061
[12]
Kittel C. Introduction to solid state physics. New York: Wiley, 2004.
[13]
Pipard A B. Magnetoresistance in metals. New York: Cambridge University Press, 2009
[14]
Kireev P S. Physics of semiconductors. Moscow: Vysshaya shkola, 1975 (in Russian)
[15]
Popenko N, Bekirov B, Ivanchenko I, et al. Concentration anomalies of the magnetization of HgSe:Fe crystals. JETF Lett, 2014, 100(4): 247 doi: 10.1134/S0021364014160127
[16]
von Bardeleben H J, Jia Y Q, Manasreh M O, et al. Electron paramagnetic resonance study of the two-dimensional electron gas in Ga1−xAlxSb/InAs single quantum wells. Appl Phys Lett, 1993, 62(1): 90 doi: 10.1063/1.108782
[17]
Sboychakov O, Rakhmanov A L, Kugel K I, et al. Magnetic field effects in electron systems with imperfect nesting. Phys Rev B, 2017, 95(1): 014203 doi: 10.1103/PhysRevB.95.014203
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3894 Times PDF downloads: 65 Times Cited by: 0 Times

    History

    Received: 19 September 2017 Revised: 14 December 2017 Online: Accepted Manuscript: 01 February 2018Uncorrected proof: 03 April 2018Published: 01 May 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      A. V. Shestakov, I. I. Fazlizhanov, I. V. Yatsyk, I. F. Gilmutdinov, M. I. Ibragimova, V. A. Shustov, R. M. Eremina. The oscillations in ESR spectra of Hg0.76Cd0.24Te implanted by Ag+ at the X and Q-bands[J]. Journal of Semiconductors, 2018, 39(5): 052001. doi: 10.1088/1674-4926/39/5/052001 A. V. Shestakov, I. I. Fazlizhanov, I. V. Yatsyk, I. F. Gilmutdinov, M. I. Ibragimova, V. A. Shustov, R. M. Eremina. The oscillations in ESR spectra of Hg0.76Cd0.24Te implanted by Ag+ at the X and Q-bands[J]. J. Semicond., 2018, 39(5): 052001. doi: 10.1088/1674-4926/39/5/052001.Export: BibTex EndNote
      Citation:
      A. V. Shestakov, I. I. Fazlizhanov, I. V. Yatsyk, I. F. Gilmutdinov, M. I. Ibragimova, V. A. Shustov, R. M. Eremina. The oscillations in ESR spectra of Hg0.76Cd0.24Te implanted by Ag+ at the X and Q-bands[J]. Journal of Semiconductors, 2018, 39(5): 052001. doi: 10.1088/1674-4926/39/5/052001

      A. V. Shestakov, I. I. Fazlizhanov, I. V. Yatsyk, I. F. Gilmutdinov, M. I. Ibragimova, V. A. Shustov, R. M. Eremina. The oscillations in ESR spectra of Hg0.76Cd0.24Te implanted by Ag+ at the X and Q-bands[J]. J. Semicond., 2018, 39(5): 052001. doi: 10.1088/1674-4926/39/5/052001.
      Export: BibTex EndNote

      The oscillations in ESR spectra of Hg0.76Cd0.24Te implanted by Ag+ at the X and Q-bands

      doi: 10.1088/1674-4926/39/5/052001
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return