SEMICONDUCTOR MATERIALS

Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode

Junmei Li1, 2, Wei Guo1, , Moheb Sheikhi1, Hongwei Li3, Baoxue Bo2 and Jichun Ye1

+ Author Affiliations

 Corresponding author: Wei Guo, Email: guowei@nimte.ac.cn

PDF

Turn off MathJax

Abstract: N-polar and III-polar GaN and AlN epitaxial thin films grown side by side on single sapphire substrate was reported. Surface morphology, wet etching susceptibility and bi-axial strain conditions were investigated and the polarity control scheme was utilized in the fabrication of Schottky barrier diode where ohmic contact and Schottky contact were deposited on N-polar domains and Ga-polar domains, respectively. The influence of N-polarity on on-state resistivity and IV characteristic was discussed, demonstrating that lateral polarity structure of GaN and AlN can be widely used in new designs of optoelectronic and electronic devices.

Key words: polarityIII-nitridebiaxial strainSchottky barrier diode



[1]
Nakamura S, Senoh M, Iwasa N, et al. High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes. Appl Phys Lett, 1995, 67(13): 1868 doi: 10.1063/1.114359
[2]
Qi C L, Huang Y, Zhan T, et al. Fabrication and characteristics of excellent current spreading GaN-based LED by using transparent electrode–insulator–semiconductor structure. J Semicond, 2017, 38(8): 084005 doi: 10.1088/1674-4926/38/8/084005
[3]
Keller S, Li H, Laurent M, et al. Recent progress in metal–organic chemical vapor deposition of N-polar group-III nitrides. Semicond Sci Technol, 2014, 29(11): 113001 doi: 10.1088/0268-1242/29/11/113001
[4]
Mita S. Polarity control in GaN epilayers grown by metalorganic chemical vapor deposition. Master‘s Thesis, North Carolina State University, 2007
[5]
Liu B, Zhang S, Yin J Y, et al. Effect of high-temperature buffer thickness on quality of AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition. Chin Phys B, 2013, 22(5): 057105 doi: 10.1088/1674-1056/22/5/057105
[6]
Mohn S, Stolyarchuk N, Markurt T, et al. Polarity control in group-III nitrides beyond pragmatism. Phys Rev Appl, 2016, 5(5): 054004 doi: 10.1103/PhysRevApplied.5.054004
[7]
Rice A, Collazo R, Tweedie J, et al. Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition. J Appl Phys, 2010, 108(4): 043510 doi: 10.1063/1.3467522
[8]
Hite J K, Zoll R, Mastro M A, et al. Role of growth parameters in equalizing simultaneous growth of N-and Ga-polar GaN by MOCVD. Phys Status Solidi C, 2014, 11(3/4): 458
[9]
Collazo R N, Mita S, Xie J, et al. Implementation of the GaN lateral polarity junction in a MESFET utilizing polar doping selectivity. Phys Status Solidi A, 2010, 207(1): 45 doi: 10.1002/pssa.v207:1
[10]
Alden D, Guo W, Kirste R, et al. Fabrication and structural properties of AlN submicron periodic lateral polar structures and waveguides for UV-C applications. Appl Phys Lett, 2016, 108(26): 261106 doi: 10.1063/1.4955033
[11]
Troha T, Rigler M, Alden D, et al. UV second harmonic generation in AlN waveguides with modal phase matching. Opt Mater Express, 2016, 6(6): 2014 doi: 10.1364/OME.6.002014
[12]
Losurdo M, Giangregorio M M, Capezzuto P, et al. Interplay between GaN polarity and surface reactivity towards atomic hydrogen. J Appl Phys, 2004, 95(12): 8408 doi: 10.1063/1.1745124
[13]
Bryan I, Bryan Z, Mita S, et al. Surface kinetics in AlN growth: a universal model for the control of surface morphology in III-nitrides. J Cryst Growth, 2016, 438: 81 doi: 10.1016/j.jcrysgro.2015.12.022
[14]
Sun Q, Cho Y, Lee I H, et al. Nitrogen-polar GaN growth evolution on c-plane sapphire. Appl Phys Lett, 2008, 93(13): 131912 doi: 10.1063/1.2993333
[15]
Guo W, Kirste R, Bryan I, et al. KOH based selective wet chemical etching of AlN, AlxGa1−xN, and GaN crystals: a way towards substrate removal in deep ultraviolet-light emitting diode. Appl Phys Lett, 2015, 106(8): 082110 doi: 10.1063/1.4913705
[16]
Zhuang D, Edgar J. Wet etching of GaN, AlN, and SiC: a review. Mater Sci Eng R, 2005, 48(1): 1 doi: 10.1016/j.mser.2004.11.002
[17]
Haboeck U, Siegle H, Hoffmann A, et al. Lattice dynamics in GaN and AlN probed with first-and second-order Raman spectroscopy. Phys Status Solidi C, 2003, 0(6): 1710 doi: 10.1002/pssc.200303130
[18]
Tian Y, Zhang Y, Yan J, et al. Stimulated emission at 272 nm from an AlxGa1−xN-based multiple-quantum-well laser with two-step etched facets. RSC Adv, 2016, 6(55): 50245 doi: 10.1039/C6RA11612D
[19]
Kirste R, Mita S, Hussey L, et al. Polarity control and growth of lateral polarity structures in AlN. Appl Phys Lett, 2013, 102(18): 181913 doi: 10.1063/1.4804575
[20]
Guo W, Xie J, Akouala C, et al. Comparative study of etching high crystalline quality AlN and GaN. J Cryst Growth, 2013, 366: 20 doi: 10.1016/j.jcrysgro.2012.12.141
[21]
Bryan I, Bryan Z, Mita S, et al. The role of surface kinetics on composition and quality of AlGaN. J Cryst Growth, 2016, 451: 65 doi: 10.1016/j.jcrysgro.2016.06.055
[22]
Wang T Y, Tasi C T, Lin C F, et al. 85% internal quantum efficiency of 280-nm AlGaN multiple quantum wells by defect engineering. Sci Rep, 2017, 7(1): 14422 doi: 10.1038/s41598-017-14825-8
[23]
Hoffmann M P, Kirste R, Mita S, et al. Growth and characterization of AlxGa1−xN lateral polarity structures. Phys Status Solidi A, 2015, 212(5): 1039 doi: 10.1002/pssa.v212.5
Fig. 1.  (Color online) AFM images of (a) low temperature AlN buffer, (b) GaN and (c) AlN epitaxial thin films grown on AlN buffers, (d) RIE etched AlN buffers on top of sapphire substrate, (e) GaN and (f) AlN epitaxial thin films grown on nitridated surface of RIE etched AlN buffers.

Fig. 2.  (Color online) Raman spectroscopy of (a) Ga-polar, N-polar GaN thin film and (b) Al-polar, N-polar AlN epitaxial thin film grown on patterned AlN buffers.

Fig. 3.  (Color online) DIC microscope images of lithography patterned low temperature (a) AlN buffers and (b) GaN LPS grown on top of the patterned AlN buffers. (c) Schematic structure of conventional Schottky barrier diode (SBD) and SBD fabricated on LPS GaN. (d) IV characteristic of conventional SBD and LPS SBD. (e) Tilted view SEM images of N-polar domains adjacent to IDB after KOH etching. (f) Tilted view SEM images of IDB with N-polar and Ga-polar domains grown side by side.

[1]
Nakamura S, Senoh M, Iwasa N, et al. High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes. Appl Phys Lett, 1995, 67(13): 1868 doi: 10.1063/1.114359
[2]
Qi C L, Huang Y, Zhan T, et al. Fabrication and characteristics of excellent current spreading GaN-based LED by using transparent electrode–insulator–semiconductor structure. J Semicond, 2017, 38(8): 084005 doi: 10.1088/1674-4926/38/8/084005
[3]
Keller S, Li H, Laurent M, et al. Recent progress in metal–organic chemical vapor deposition of N-polar group-III nitrides. Semicond Sci Technol, 2014, 29(11): 113001 doi: 10.1088/0268-1242/29/11/113001
[4]
Mita S. Polarity control in GaN epilayers grown by metalorganic chemical vapor deposition. Master‘s Thesis, North Carolina State University, 2007
[5]
Liu B, Zhang S, Yin J Y, et al. Effect of high-temperature buffer thickness on quality of AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition. Chin Phys B, 2013, 22(5): 057105 doi: 10.1088/1674-1056/22/5/057105
[6]
Mohn S, Stolyarchuk N, Markurt T, et al. Polarity control in group-III nitrides beyond pragmatism. Phys Rev Appl, 2016, 5(5): 054004 doi: 10.1103/PhysRevApplied.5.054004
[7]
Rice A, Collazo R, Tweedie J, et al. Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition. J Appl Phys, 2010, 108(4): 043510 doi: 10.1063/1.3467522
[8]
Hite J K, Zoll R, Mastro M A, et al. Role of growth parameters in equalizing simultaneous growth of N-and Ga-polar GaN by MOCVD. Phys Status Solidi C, 2014, 11(3/4): 458
[9]
Collazo R N, Mita S, Xie J, et al. Implementation of the GaN lateral polarity junction in a MESFET utilizing polar doping selectivity. Phys Status Solidi A, 2010, 207(1): 45 doi: 10.1002/pssa.v207:1
[10]
Alden D, Guo W, Kirste R, et al. Fabrication and structural properties of AlN submicron periodic lateral polar structures and waveguides for UV-C applications. Appl Phys Lett, 2016, 108(26): 261106 doi: 10.1063/1.4955033
[11]
Troha T, Rigler M, Alden D, et al. UV second harmonic generation in AlN waveguides with modal phase matching. Opt Mater Express, 2016, 6(6): 2014 doi: 10.1364/OME.6.002014
[12]
Losurdo M, Giangregorio M M, Capezzuto P, et al. Interplay between GaN polarity and surface reactivity towards atomic hydrogen. J Appl Phys, 2004, 95(12): 8408 doi: 10.1063/1.1745124
[13]
Bryan I, Bryan Z, Mita S, et al. Surface kinetics in AlN growth: a universal model for the control of surface morphology in III-nitrides. J Cryst Growth, 2016, 438: 81 doi: 10.1016/j.jcrysgro.2015.12.022
[14]
Sun Q, Cho Y, Lee I H, et al. Nitrogen-polar GaN growth evolution on c-plane sapphire. Appl Phys Lett, 2008, 93(13): 131912 doi: 10.1063/1.2993333
[15]
Guo W, Kirste R, Bryan I, et al. KOH based selective wet chemical etching of AlN, AlxGa1−xN, and GaN crystals: a way towards substrate removal in deep ultraviolet-light emitting diode. Appl Phys Lett, 2015, 106(8): 082110 doi: 10.1063/1.4913705
[16]
Zhuang D, Edgar J. Wet etching of GaN, AlN, and SiC: a review. Mater Sci Eng R, 2005, 48(1): 1 doi: 10.1016/j.mser.2004.11.002
[17]
Haboeck U, Siegle H, Hoffmann A, et al. Lattice dynamics in GaN and AlN probed with first-and second-order Raman spectroscopy. Phys Status Solidi C, 2003, 0(6): 1710 doi: 10.1002/pssc.200303130
[18]
Tian Y, Zhang Y, Yan J, et al. Stimulated emission at 272 nm from an AlxGa1−xN-based multiple-quantum-well laser with two-step etched facets. RSC Adv, 2016, 6(55): 50245 doi: 10.1039/C6RA11612D
[19]
Kirste R, Mita S, Hussey L, et al. Polarity control and growth of lateral polarity structures in AlN. Appl Phys Lett, 2013, 102(18): 181913 doi: 10.1063/1.4804575
[20]
Guo W, Xie J, Akouala C, et al. Comparative study of etching high crystalline quality AlN and GaN. J Cryst Growth, 2013, 366: 20 doi: 10.1016/j.jcrysgro.2012.12.141
[21]
Bryan I, Bryan Z, Mita S, et al. The role of surface kinetics on composition and quality of AlGaN. J Cryst Growth, 2016, 451: 65 doi: 10.1016/j.jcrysgro.2016.06.055
[22]
Wang T Y, Tasi C T, Lin C F, et al. 85% internal quantum efficiency of 280-nm AlGaN multiple quantum wells by defect engineering. Sci Rep, 2017, 7(1): 14422 doi: 10.1038/s41598-017-14825-8
[23]
Hoffmann M P, Kirste R, Mita S, et al. Growth and characterization of AlxGa1−xN lateral polarity structures. Phys Status Solidi A, 2015, 212(5): 1039 doi: 10.1002/pssa.v212.5
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3708 Times PDF downloads: 57 Times Cited by: 0 Times

    History

    Received: 20 August 2017 Revised: 15 December 2017 Online: Uncorrected proof: 25 January 2018Accepted Manuscript: 18 April 2018Published: 01 May 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Junmei Li, Wei Guo, Moheb Sheikhi, Hongwei Li, Baoxue Bo, Jichun Ye. Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode[J]. Journal of Semiconductors, 2018, 39(5): 053003. doi: 10.1088/1674-4926/39/5/053003 J M Li, W Guo, M Sheikhi, H W Li, B X Bo, J C Ye. Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode[J]. J. Semicond., 2018, 39(5): 053003. doi: 10.1088/1674-4926/39/5/053003.Export: BibTex EndNote
      Citation:
      Junmei Li, Wei Guo, Moheb Sheikhi, Hongwei Li, Baoxue Bo, Jichun Ye. Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode[J]. Journal of Semiconductors, 2018, 39(5): 053003. doi: 10.1088/1674-4926/39/5/053003

      J M Li, W Guo, M Sheikhi, H W Li, B X Bo, J C Ye. Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode[J]. J. Semicond., 2018, 39(5): 053003. doi: 10.1088/1674-4926/39/5/053003.
      Export: BibTex EndNote

      Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode

      doi: 10.1088/1674-4926/39/5/053003
      Funds:

      Project partially supported by the National Key Research and Development Program of China (No. 2016YFB0400802), the National Natural Science Foundation of China (No. 61704176), and the Open project of Zhejiang Key Laboratory for Advanced Microelectronic Intelligent Systems and Applications (No. ZJUAMIS1704).

      More Information
      • Corresponding author: Email: guowei@nimte.ac.cn
      • Received Date: 2017-08-20
      • Revised Date: 2017-12-15
      • Published Date: 2018-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return