ARTICLES

Three-dimensional hierarchical CuO gas sensor modified by Au nanoparticles

Qi Lei1, Hairong Li1, 2, 3, , Huan Zhang1, Jianan Wang1, Wenhao Fan1 and Lina Cai1

+ Author Affiliations

 Corresponding author: Hairong Li, Email: lzulihairong@163.com

PDF

Turn off MathJax

Abstract: The three-dimensional hierarchical CuO and Au nanoparticles were synthesized by the hydrothermal method, respectively. The hierarchical CuO and the Au nanoparticles samples were characterized by X-ray diffraction and scanning electronic microscope, respectively. The as-synthesized CuO was assembled regularly from the nanosheets with thickness of 100 nm. The size of Au nanoparticles ranged from 50 to 200 nm. The hierarchical CuO gas sensors modified by different concentration of gold were fabricated. All the Au-loaded CuO gas sensors enhanced the response to ethanol and xylene while reducing the response to methanol, acetone, and formaldehyde. The results indicate that the Au nanoparticles prepared with PVP as surfactant can improve the selectivity of CuO gas sensors to ethanol gas for other common organic volatile gases. The improvement of gas sensing is mainly attributed to the different catalytic efficiency of the Au nanoparticles for different reactions. Meanwhile, the related mechanisms are discussed.

Key words: CuOAu nanoparticlegas sensorselectivity



[1]
Gong H, Hu J Q, Wang J H, et al. Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sensor Actuat B, 2006, 115(1): 247 doi: 10.1016/j.snb.2005.09.008
[2]
Zhou J, Li P, Zhang S, et al. Zeolite-modified microcantilever gas sensor for indoor air quality control. Sensor Actuat B, 2003, 94(3): 337 doi: 10.1016/S0925-4005(03)00369-1
[3]
Kawamura K, Kerman K, Fujihara M, et al. Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sensor Actuat B, 2005, 105(2): 495 doi: 10.1016/j.snb.2004.07.010
[4]
Tsujita W, Yoshino A, Ishida H, et al. Gas sensor network for air-pollution monitoring. Sensor Actuat B, 2005, 110(2): 304 doi: 10.1016/j.snb.2005.02.008
[5]
Huang H, Zhou J, Chen S, et al. A highly sensitive QCM sensor coated with Ag+-ZSM-5 film for medical diagnosis. Sensor Actuat B, 2004, 101(3): 316 doi: 10.1016/j.snb.2004.04.001
[6]
Abad E, Zampolli S, Marco S, et al. Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sensor Actuat B, 2007, 127(1): 2 doi: 10.1016/j.snb.2007.07.007
[7]
Ozawa T, Ishiguro Y, Toyoda K, et al. Detection of decomposed compounds from an early stage fire by an adsorption/combustion-type sensor. Sensor Actuat B, 2005, 108(1/2): 473
[8]
Dossi N, Toniolo R, Pizzariello A, et al. An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip, 2012, 12(1): 153 doi: 10.1039/C1LC20663J
[9]
Liu B, Yang H, Zhao H, et al. Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals. Sensor Actuat B, 2011, 156(1): 251 doi: 10.1016/j.snb.2011.04.028
[10]
Shen J Y, Wang M D, Wang Y F, et al. Iron and carbon codoped WO3 with hierarchical walnut-like microstructure for highly sensitive and selective acetone sensor. Sensor Actuat B, 2018, 256: 27 doi: 10.1016/j.snb.2017.10.073
[11]
Li X, Zhao Y, Wang X, et al. Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sensor Actuat B, 2016, 230: 330 doi: 10.1016/j.snb.2016.02.069
[12]
Tan W, Tan J, Li L, et al. Nanosheets-assembled hollowed-out hierarchical Co3O4 microrods for fast response/recovery gas sensor. Sensor Actuat B, 2017, 249: 66 doi: 10.1016/j.snb.2017.04.068
[13]
Liu C, Gao H, Wang L, et al. Facile synthesis and the enhanced sensing properties of Pt-loaded α-Fe2O3 porous nanospheres. Sensor Actuat B, 2017, 252: 1153 doi: 10.1016/j.snb.2017.06.012
[14]
Wang S, Cao J, Cui W, et al. Oxygen vacancies and grain boundaries potential barriers modulation facilitated formaldehyde gas sensing performances for In2O3 hierarchical architectures. Sensor Actuat B, 2018, 255: 159 doi: 10.1016/j.snb.2017.08.054
[15]
Khoang N D, Trung D D, Van Duy N, et al. Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sensor Actuat B, 2012, 174: 594 doi: 10.1016/j.snb.2012.07.118
[16]
Park H J, Choi N J, Kang H, et al. A ppb-level formaldehyde gas sensor based on CuO nanocubes prepared using a polyol process. Sensor Actuat B, 2014, 203: 282 doi: 10.1016/j.snb.2014.06.118
[17]
Dong C, Liu X, Xiao X, et al. Combustion synthesis of porous Pt-functionalized SnO2 sheets for isopropanol gas detection with a significant enhancement in response. J Mater Chem A, 2014, 2(47): 20089 doi: 10.1039/C4TA04251D
[18]
Wang F, Li H, Yuan Z, et al. A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol-gel method. RSC Adv, 2016, 6(83): 79343 doi: 10.1039/C6RA13876D
[19]
Gao H, Jia H, Bierer B, et al. Scalable gas sensors fabrication to integrate metal oxide nanoparticles with well-defined shape and size. Sensor Actuat B, 2017, 249: 639 doi: 10.1016/j.snb.2017.04.031
[20]
Yang C, Xiao F, Wang J, et al. 3D flower- and 2D sheet-like CuO nanostructures: microwave-assisted synthesis and application in gas sensors. Sensor Actuat B, 2015, 207: 177 doi: 10.1016/j.snb.2014.10.063
[21]
Miller D R, Akbar S A, Morris P A. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensor Actuat B, 2014, 204: 250 doi: 10.1016/j.snb.2014.07.074
[22]
Feng C, Kou X, Chen B, et al. One-pot synthesis of In doped NiO nanofibers and their gas sensing properties. Sensor Actuat B, 2017, 253: 584 doi: 10.1016/j.snb.2017.06.115
[23]
Wang C, Liu J, Yang Q, et al. Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sensor Actuat B, 2015, 220: 59 doi: 10.1016/j.snb.2015.05.037
[24]
Hu X, Zhu Z, Chen C, et al. Highly sensitive H2S gas sensors based on Pd-doped CuO nanoflowers with low operating temperature. Sensor Actuat B, 2017, 253: 809 doi: 10.1016/j.snb.2017.06.183
[25]
Park S, Cai Z, Lee J, et al. Fabrication of a low-concentration H2S gas sensor using CuO nanorods decorated with Fe2O3 nanoparticles. Mater Lett, 2016, 181: 231 doi: 10.1016/j.matlet.2016.06.043
[26]
Wang L, Han B, Wang Z, et al. Effective improvement of sensing performance of amperometric NO2 sensor by Ag-modified nano-structured CuO sensing electrode. Sensor Actuat B, 2015, 207: 791 doi: 10.1016/j.snb.2014.10.125
[27]
Lee J S, Katoch A, Kim J H, et al. Effect of Au nanoparticle size on the gas-sensing performance of p-CuO nanowires. Sensor Actuat B, 2016, 222: 307 doi: 10.1016/j.snb.2015.08.037
[28]
Kim S, Park S, Park S, et al. Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sensor Actuat B, 2015, 209: 180 doi: 10.1016/j.snb.2014.11.106
[29]
Zhang S, Song P, Zhang J, et al. Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles. Sensor Actuat B, 2017, 242: 983 doi: 10.1016/j.snb.2016.09.155
[30]
Zhang J, Song P, Li Z, et al. Enhanced trimethylamine sensing performance of single-crystal MoO3 nanobelts decorated with Au nanoparticles. J Alloy Compd, 2016, 685: 1024 doi: 10.1016/j.jallcom.2016.06.257
[31]
Li Z, Wang N, Lin Z, et al. Room-temperature high-performance H2S sensor based on porous CuO nanosheets prepared by hydrothermal method. ACS Appl Mater Inter, 2016, 8(32): 20962 doi: 10.1021/acsami.6b02893
[32]
Umar A, Alshahrani A A, Algarni H, et al. CuO nanosheets as potential scaffolds for gas sensing applications. Sensor Actuat B, 2017, 250: 24 doi: 10.1016/j.snb.2017.04.062
[33]
Liu X, Sun Y, Yu M, et al. Enhanced ethanol sensing properties of ultrathin ZnO nanosheets decorated with CuO nanoparticles. Sensor Actuat B, 2018, 255: 3384 doi: 10.1016/j.snb.2017.09.165
[34]
Sun X M, Li Y D. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly. Langmuir, 2005, 21(13): 6019 doi: 10.1021/la050193+
[35]
Yang H, Liu Z H. Preparation and properties of flower-like CuO nanostructures. J Shaanxi Normal University, 2009, 37(6): 60
[36]
Liu X, Chen N, Han B, et al. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale, 2015, 7(36): 14872 doi: 10.1039/C5NR03585F
[37]
Bai S, Liu X, Li D, et al. Synthesis of ZnO nanorods and its application in NO2 sensors. Sensor Actuat B, 2011, 153(1): 110 doi: 10.1016/j.snb.2010.10.010
[38]
Guo G S, Lin K W, Han D M, et al. Functionalization of flower-like ZnO nanostructures with Au@CuO nanoparticles for detection of ethanol. IEEE Sens J, 2014, 14(6): 1797 doi: 10.1109/JSEN.2014.2303479
[39]
Li X, Feng W, Xiao Y, et al. Hollow zinc oxide microspheres functionalized by Au nanoparticles for gas sensors. RSC Adv, 2014, 4(53): 28005 doi: 10.1039/c4ra02541e
[40]
Li X, Zhou X, Guo H, et al. Design of Au@ZnO yolk-shell nanospheres with enhanced gas sensing properties. ACS Appl Mater Inter, 2014, 6(21): 18661 doi: 10.1021/am5057322
[41]
Wang L, Wang S, Xu M, et al. A Au-functionalized ZnO nanowire gas sensor for detection of benzene and toluene. Phys Chem Chem Phys, 2013, 15(40): 17179 doi: 10.1039/c3cp52392f
[42]
Guo J, Zhang J, Zhu M, et al. High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sensor Actuat B, 2014, 199: 339 doi: 10.1016/j.snb.2014.04.010
[43]
Dong C, Li Q, Chen G, et al. Enhanced formaldehyde sensing performance of 3D hierarchical porous structure Pt-functionalized NiO via a facile solution combustion synthesis. Sensor Actuat B, 2015, 220: 171 doi: 10.1016/j.snb.2015.05.056
[44]
Park J, Shen X, Wang G. Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres. Sensor Actuat B, 2009, 136(2): 494 doi: 10.1016/j.snb.2008.11.041
[45]
Liu C, Navale ST, Yang ZB, et al. Ethanol gas sensing properties of hydrothermally grown α-MnO2 nanorods. J Alloy Compd, 2017, 727: 362 doi: 10.1016/j.jallcom.2017.08.150
[46]
Guan L, Pang H, Wang J, et al. Fabrication of novel comb-like Cu2O nanorod-based structures through an interface etching method and their application as ethanol sensors. Chem Commun, 2010, 46(37): 7022 doi: 10.1039/c0cc02331k
[47]
Parmar M, Bhatia R, Prasad V, et al. Ethanol sensing using CuO/MWNT thin film. Sensor Actuat B, 2011, 158(1): 229 doi: 10.1016/j.snb.2011.06.010
Fig. 1.  (Color online) XRD patterns of (a) the Au samples, and (b) the Au–CuO and pure CuO samples.

Fig. 2.  SEM micrographs of (a,b) the CuO nanomaterial, (c) the Au nanoparticles, and (d) the Au-loaded CuO nanomaterial.

Fig. 3.  (Color online) (a) Relation of the gas response with operating temperature for the pure CuO, and 0.5‰, 1.0‰, and 2.0‰ Au-loaded CuO gas sensors to 500 ppm of ethanol. (b) The response of the sensors based on pure CuO and Au-loaded CuO to different concentrations of ethanol at 160 ºC.

Fig. 4.  (Color online) (a, b) Response and recovery behavior of the gas sensors based on pure CuO and 1.0‰ Au-loaded CuO to different concentrations of ethanol at 160 ºC. (c, d) The response time (Tres) and the recovery time (Trec) of the gas sensors based on pure CuO and 1.0‰ Au-loaded CuO to 400 ppm of ethanol at 160 ºC.

Fig. 5.  (Color online) Equivalent diagram of the resistance of the Au-loaded CuO nanosheet.

Fig. 6.  (Color online) Response of the gas sensors based on the pure CuO and 0.5‰, 1.0‰, and 2.0‰ Au-loaded CuO to 400 ppm of various test gases at 160 ºC.

Fig. 7.  (Color online) Response of the gas sensors based on the pure CuO and 0.5‰, 1.0‰, and 2.0‰ Au-loaded CuO to different concentrations of formaldehyde at 160 ºC.

Fig. 8.  (Color online) Seven cycles of response-recovery to 300 ppm of ethanol of the 2.0‰ Au-loaded CuO gas sensor at 160 ºC.

Table 1.   Comparison of gas-sensing properties of other metal oxide nanostructures toward ethanol gas.

Sensing material T (°С) Ethanol (ppm) Response Reference
3D hierarchical porous structure Pt-NiO 200 500 5.0 [43]
Co3O4 hollow nanospheres 100 1000 6.3 [44]
MnO2 nanorods 180 300 1.6 [45]
Comb-like Cu2O 320 600 3.0 [46]
CuO/MWNT thin film 400 500 4.5 [47]
CuO flowers 260 1000 4.0 [20]
3D hierarchical structure Au-CuO 160 500 8.6 This work
DownLoad: CSV
[1]
Gong H, Hu J Q, Wang J H, et al. Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sensor Actuat B, 2006, 115(1): 247 doi: 10.1016/j.snb.2005.09.008
[2]
Zhou J, Li P, Zhang S, et al. Zeolite-modified microcantilever gas sensor for indoor air quality control. Sensor Actuat B, 2003, 94(3): 337 doi: 10.1016/S0925-4005(03)00369-1
[3]
Kawamura K, Kerman K, Fujihara M, et al. Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sensor Actuat B, 2005, 105(2): 495 doi: 10.1016/j.snb.2004.07.010
[4]
Tsujita W, Yoshino A, Ishida H, et al. Gas sensor network for air-pollution monitoring. Sensor Actuat B, 2005, 110(2): 304 doi: 10.1016/j.snb.2005.02.008
[5]
Huang H, Zhou J, Chen S, et al. A highly sensitive QCM sensor coated with Ag+-ZSM-5 film for medical diagnosis. Sensor Actuat B, 2004, 101(3): 316 doi: 10.1016/j.snb.2004.04.001
[6]
Abad E, Zampolli S, Marco S, et al. Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sensor Actuat B, 2007, 127(1): 2 doi: 10.1016/j.snb.2007.07.007
[7]
Ozawa T, Ishiguro Y, Toyoda K, et al. Detection of decomposed compounds from an early stage fire by an adsorption/combustion-type sensor. Sensor Actuat B, 2005, 108(1/2): 473
[8]
Dossi N, Toniolo R, Pizzariello A, et al. An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip, 2012, 12(1): 153 doi: 10.1039/C1LC20663J
[9]
Liu B, Yang H, Zhao H, et al. Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals. Sensor Actuat B, 2011, 156(1): 251 doi: 10.1016/j.snb.2011.04.028
[10]
Shen J Y, Wang M D, Wang Y F, et al. Iron and carbon codoped WO3 with hierarchical walnut-like microstructure for highly sensitive and selective acetone sensor. Sensor Actuat B, 2018, 256: 27 doi: 10.1016/j.snb.2017.10.073
[11]
Li X, Zhao Y, Wang X, et al. Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sensor Actuat B, 2016, 230: 330 doi: 10.1016/j.snb.2016.02.069
[12]
Tan W, Tan J, Li L, et al. Nanosheets-assembled hollowed-out hierarchical Co3O4 microrods for fast response/recovery gas sensor. Sensor Actuat B, 2017, 249: 66 doi: 10.1016/j.snb.2017.04.068
[13]
Liu C, Gao H, Wang L, et al. Facile synthesis and the enhanced sensing properties of Pt-loaded α-Fe2O3 porous nanospheres. Sensor Actuat B, 2017, 252: 1153 doi: 10.1016/j.snb.2017.06.012
[14]
Wang S, Cao J, Cui W, et al. Oxygen vacancies and grain boundaries potential barriers modulation facilitated formaldehyde gas sensing performances for In2O3 hierarchical architectures. Sensor Actuat B, 2018, 255: 159 doi: 10.1016/j.snb.2017.08.054
[15]
Khoang N D, Trung D D, Van Duy N, et al. Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sensor Actuat B, 2012, 174: 594 doi: 10.1016/j.snb.2012.07.118
[16]
Park H J, Choi N J, Kang H, et al. A ppb-level formaldehyde gas sensor based on CuO nanocubes prepared using a polyol process. Sensor Actuat B, 2014, 203: 282 doi: 10.1016/j.snb.2014.06.118
[17]
Dong C, Liu X, Xiao X, et al. Combustion synthesis of porous Pt-functionalized SnO2 sheets for isopropanol gas detection with a significant enhancement in response. J Mater Chem A, 2014, 2(47): 20089 doi: 10.1039/C4TA04251D
[18]
Wang F, Li H, Yuan Z, et al. A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol-gel method. RSC Adv, 2016, 6(83): 79343 doi: 10.1039/C6RA13876D
[19]
Gao H, Jia H, Bierer B, et al. Scalable gas sensors fabrication to integrate metal oxide nanoparticles with well-defined shape and size. Sensor Actuat B, 2017, 249: 639 doi: 10.1016/j.snb.2017.04.031
[20]
Yang C, Xiao F, Wang J, et al. 3D flower- and 2D sheet-like CuO nanostructures: microwave-assisted synthesis and application in gas sensors. Sensor Actuat B, 2015, 207: 177 doi: 10.1016/j.snb.2014.10.063
[21]
Miller D R, Akbar S A, Morris P A. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensor Actuat B, 2014, 204: 250 doi: 10.1016/j.snb.2014.07.074
[22]
Feng C, Kou X, Chen B, et al. One-pot synthesis of In doped NiO nanofibers and their gas sensing properties. Sensor Actuat B, 2017, 253: 584 doi: 10.1016/j.snb.2017.06.115
[23]
Wang C, Liu J, Yang Q, et al. Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sensor Actuat B, 2015, 220: 59 doi: 10.1016/j.snb.2015.05.037
[24]
Hu X, Zhu Z, Chen C, et al. Highly sensitive H2S gas sensors based on Pd-doped CuO nanoflowers with low operating temperature. Sensor Actuat B, 2017, 253: 809 doi: 10.1016/j.snb.2017.06.183
[25]
Park S, Cai Z, Lee J, et al. Fabrication of a low-concentration H2S gas sensor using CuO nanorods decorated with Fe2O3 nanoparticles. Mater Lett, 2016, 181: 231 doi: 10.1016/j.matlet.2016.06.043
[26]
Wang L, Han B, Wang Z, et al. Effective improvement of sensing performance of amperometric NO2 sensor by Ag-modified nano-structured CuO sensing electrode. Sensor Actuat B, 2015, 207: 791 doi: 10.1016/j.snb.2014.10.125
[27]
Lee J S, Katoch A, Kim J H, et al. Effect of Au nanoparticle size on the gas-sensing performance of p-CuO nanowires. Sensor Actuat B, 2016, 222: 307 doi: 10.1016/j.snb.2015.08.037
[28]
Kim S, Park S, Park S, et al. Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sensor Actuat B, 2015, 209: 180 doi: 10.1016/j.snb.2014.11.106
[29]
Zhang S, Song P, Zhang J, et al. Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles. Sensor Actuat B, 2017, 242: 983 doi: 10.1016/j.snb.2016.09.155
[30]
Zhang J, Song P, Li Z, et al. Enhanced trimethylamine sensing performance of single-crystal MoO3 nanobelts decorated with Au nanoparticles. J Alloy Compd, 2016, 685: 1024 doi: 10.1016/j.jallcom.2016.06.257
[31]
Li Z, Wang N, Lin Z, et al. Room-temperature high-performance H2S sensor based on porous CuO nanosheets prepared by hydrothermal method. ACS Appl Mater Inter, 2016, 8(32): 20962 doi: 10.1021/acsami.6b02893
[32]
Umar A, Alshahrani A A, Algarni H, et al. CuO nanosheets as potential scaffolds for gas sensing applications. Sensor Actuat B, 2017, 250: 24 doi: 10.1016/j.snb.2017.04.062
[33]
Liu X, Sun Y, Yu M, et al. Enhanced ethanol sensing properties of ultrathin ZnO nanosheets decorated with CuO nanoparticles. Sensor Actuat B, 2018, 255: 3384 doi: 10.1016/j.snb.2017.09.165
[34]
Sun X M, Li Y D. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly. Langmuir, 2005, 21(13): 6019 doi: 10.1021/la050193+
[35]
Yang H, Liu Z H. Preparation and properties of flower-like CuO nanostructures. J Shaanxi Normal University, 2009, 37(6): 60
[36]
Liu X, Chen N, Han B, et al. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale, 2015, 7(36): 14872 doi: 10.1039/C5NR03585F
[37]
Bai S, Liu X, Li D, et al. Synthesis of ZnO nanorods and its application in NO2 sensors. Sensor Actuat B, 2011, 153(1): 110 doi: 10.1016/j.snb.2010.10.010
[38]
Guo G S, Lin K W, Han D M, et al. Functionalization of flower-like ZnO nanostructures with Au@CuO nanoparticles for detection of ethanol. IEEE Sens J, 2014, 14(6): 1797 doi: 10.1109/JSEN.2014.2303479
[39]
Li X, Feng W, Xiao Y, et al. Hollow zinc oxide microspheres functionalized by Au nanoparticles for gas sensors. RSC Adv, 2014, 4(53): 28005 doi: 10.1039/c4ra02541e
[40]
Li X, Zhou X, Guo H, et al. Design of Au@ZnO yolk-shell nanospheres with enhanced gas sensing properties. ACS Appl Mater Inter, 2014, 6(21): 18661 doi: 10.1021/am5057322
[41]
Wang L, Wang S, Xu M, et al. A Au-functionalized ZnO nanowire gas sensor for detection of benzene and toluene. Phys Chem Chem Phys, 2013, 15(40): 17179 doi: 10.1039/c3cp52392f
[42]
Guo J, Zhang J, Zhu M, et al. High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sensor Actuat B, 2014, 199: 339 doi: 10.1016/j.snb.2014.04.010
[43]
Dong C, Li Q, Chen G, et al. Enhanced formaldehyde sensing performance of 3D hierarchical porous structure Pt-functionalized NiO via a facile solution combustion synthesis. Sensor Actuat B, 2015, 220: 171 doi: 10.1016/j.snb.2015.05.056
[44]
Park J, Shen X, Wang G. Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres. Sensor Actuat B, 2009, 136(2): 494 doi: 10.1016/j.snb.2008.11.041
[45]
Liu C, Navale ST, Yang ZB, et al. Ethanol gas sensing properties of hydrothermally grown α-MnO2 nanorods. J Alloy Compd, 2017, 727: 362 doi: 10.1016/j.jallcom.2017.08.150
[46]
Guan L, Pang H, Wang J, et al. Fabrication of novel comb-like Cu2O nanorod-based structures through an interface etching method and their application as ethanol sensors. Chem Commun, 2010, 46(37): 7022 doi: 10.1039/c0cc02331k
[47]
Parmar M, Bhatia R, Prasad V, et al. Ethanol sensing using CuO/MWNT thin film. Sensor Actuat B, 2011, 158(1): 229 doi: 10.1016/j.snb.2011.06.010
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4124 Times PDF downloads: 97 Times Cited by: 0 Times

    History

    Received: 11 July 2018 Revised: 21 August 2018 Online: Uncorrected proof: 09 October 2018Accepted Manuscript: 01 November 2018Published: 01 February 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qi Lei, Hairong Li, Huan Zhang, Jianan Wang, Wenhao Fan, Lina Cai. Three-dimensional hierarchical CuO gas sensor modified by Au nanoparticles[J]. Journal of Semiconductors, 2019, 40(2): 022101. doi: 10.1088/1674-4926/40/2/022101 Q Lei, H R Li, H Zhang, J N Wang, W H Fan, L N Cai, Three-dimensional hierarchical CuO gas sensor modified by Au nanoparticles[J]. J. Semicond., 2019, 40(2): 022101. doi: 10.1088/1674-4926/40/2/022101.Export: BibTex EndNote
      Citation:
      Qi Lei, Hairong Li, Huan Zhang, Jianan Wang, Wenhao Fan, Lina Cai. Three-dimensional hierarchical CuO gas sensor modified by Au nanoparticles[J]. Journal of Semiconductors, 2019, 40(2): 022101. doi: 10.1088/1674-4926/40/2/022101

      Q Lei, H R Li, H Zhang, J N Wang, W H Fan, L N Cai, Three-dimensional hierarchical CuO gas sensor modified by Au nanoparticles[J]. J. Semicond., 2019, 40(2): 022101. doi: 10.1088/1674-4926/40/2/022101.
      Export: BibTex EndNote

      Three-dimensional hierarchical CuO gas sensor modified by Au nanoparticles

      doi: 10.1088/1674-4926/40/2/022101
      More Information
      • Corresponding author: Email: lzulihairong@163.com
      • Received Date: 2018-07-11
      • Revised Date: 2018-08-21
      • Published Date: 2019-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return