ARTICLES

High-performance RF Switch in 0.13 μm RF SOI process

Hong Guan1, , Hao Sun2, Junlin Bao1, Zhipeng Wang2, Shuguang Zhou2 and Hongwei Zhu2

+ Author Affiliations

 Corresponding author: Hong Guan, Email: guanhong116@163.com

PDF

Turn off MathJax

Abstract: A high-performance single-pole single-throw (SPST) RF switch for mobile phone RF front-end modules (FEMs) was designed and characterized in a 0.13 μm partially depleted silicon-on-insulator (PD SOI) process. In this paper, the traditional series-shunt configuration design was improved by introducing a suitably large DC bias resistor and leakage-preventing PMOS, together with the floating body technique. The performance of the RF switch is greatly improved. Furthermore, a new Ron × Coff testing method is also proposed. The size of this SPST RF switch is 0.2 mm2. This switch can be widely used for present 4G and forthcoming 5G mobile phone FEMs.

Key words: RF switchSOIinsertion lossisolationlinearity



[1]
C L Chen, P W Wyatt, D R Yost. Fully depleted SOI RF switch with dynamic biasing. IEEE Radio Frequency Integrated Circuits Symposium, 2007: 175 doi: 10.1109/RFIC.2007.380859
[2]
D Kelly, C Brindle, C Kemerling. The state-of-the-art of silicon-on-sapphire CMOS RF switches. Compound Semiconductor Integrated Circuit Symposium, 2005: 200 doi: 10.1109/CSICS.2005.1531812
[3]
S Makioka, Y Anda, K Miyatsuji. Super self-aligned GaAs RF switch IC with 0.25 dB extremely low insertion loss for mobile communication systems. IEEE Trans Electron Devices, 2001, 48(8): 1500. doi: 10.1109/16.936499
[4]
F J Huang, O Kenneth. A 0.5-μm CMOS T/R switch for 900 MHz wireless applications. IEEE J Solid-State Circuit, 2001, 36(3): 486. doi: 10.1109/4.910487
[5]
F Gianesello, A Momroy, V Vialla. Highly linear and sub 120 fs Ron × Coff 130 nm RF SOI technology targeting 5G carrier aggregation RF switches and FEM SOC. IEEE Silicon Monolithic Integrated Circuits in RF Systems, 2016: 9. doi: 10.1109/SIRF.2016.7445454
[6]
P A Rabbeni, A Joseph. RF SOI: revolutionizing RF system design. Microwave J, 2015, 58(10): 22.
[7]
X S Wang, X Wang, F Lu. Concurrent design analysis of high-linearity SP10T switch with 8.5 kV ESD protection. IEEE J Solid-State Circuit, 2014, 49(9): 1927. doi: 10.1109/JSSC.2014.2331956
[8]
X S Wang, X Wang, F Lu. A smartphone SP10T T/R switch in 180-nm SOI CMOS with 8kV + ESD protection by co-design. Custom Integrated Circuit Conference, 2013: 1 doi: 10.1109/CICC.2013.6658474
[9]
B K Esfeh, M Rack, S Makovejev. A SPDT RF switch small and large signal characteristics on TR-HR SOI substrates. IEEE J Electron Devices Soc, 2018,(6): 543. doi: 10.1109/JEDS.2018.2805780
[10]
C Tinella, O Richard, A Cathelin. 0.13μm CMOS SOI SP6T antenna switch for multi-standard handsets. IEEE Silicon Monolithic Integrated Circuits in RF Systems, 2006: 4. doi: 10.1109/SMIC.2005.1587904
[11]
I Song, M K Cho. PNP-based RF switches for the mitigation of single-event transients in a complementary SiGe BiCMOS platform. IEEE Trans Nucl Sci, 2017, 65(1): 391. doi: 10.1109/TNS.2017.2780120
[12]
M D Wei, R Negra. High-isolation stacked RF switch using dc-lift and feed forward cancellation techniques in standard 65 nm CMOS. IEEE International Symposium, 2018: 1 doi: 10.1109/ISCAS.2018.8351259
Fig. 1.  (Color online) Simplified capacitive models.

Fig. 2.  Proposed RF switch.

Fig. 3.  (Color online) (a) Simulated IL for varying widths of NFETs at 0.9 and 1.9 GHz. (b) Simulated ISO for varying widths of NFETs at 0.9 and 1.9 GHz.

Fig. 4.  (Color online) Photomicrograph of RF switch chip.

Fig. 5.  Measured Ron × Coff for RF switch.

Fig. 6.  (Color online) Measured IL for RF switch.

Fig. 7.  (Color online) Measured ISO for RF switch.

Fig. 8.  (Color online) Measured P0.1 dB for RF switch.

Fig. 9.  (Color online) Measured harmonics for RF switch.

Table 1.   Comparison of RF switch performance.

Reference[7][9][10][11][12]This work
RF switchSP10TSPDTSP6TPNP SPSTSPSTSPST
Freq (GHz)0.9/1.910.9/1.912.550.9/1.9
IL (dB)0.48/0.810.40.7/0.71.61.80.24/0.34
ISO (dB)43.1/404040/30364128.8/22.4
P0.1 dB (dB)363623.2(P1 dB)36
Technology0.18 μm SOIHR SOI0.13 μm SOI0.25 μm SiGe BiCMOS65 nm CMOS0.13 μm SOI
DownLoad: CSV
[1]
C L Chen, P W Wyatt, D R Yost. Fully depleted SOI RF switch with dynamic biasing. IEEE Radio Frequency Integrated Circuits Symposium, 2007: 175 doi: 10.1109/RFIC.2007.380859
[2]
D Kelly, C Brindle, C Kemerling. The state-of-the-art of silicon-on-sapphire CMOS RF switches. Compound Semiconductor Integrated Circuit Symposium, 2005: 200 doi: 10.1109/CSICS.2005.1531812
[3]
S Makioka, Y Anda, K Miyatsuji. Super self-aligned GaAs RF switch IC with 0.25 dB extremely low insertion loss for mobile communication systems. IEEE Trans Electron Devices, 2001, 48(8): 1500. doi: 10.1109/16.936499
[4]
F J Huang, O Kenneth. A 0.5-μm CMOS T/R switch for 900 MHz wireless applications. IEEE J Solid-State Circuit, 2001, 36(3): 486. doi: 10.1109/4.910487
[5]
F Gianesello, A Momroy, V Vialla. Highly linear and sub 120 fs Ron × Coff 130 nm RF SOI technology targeting 5G carrier aggregation RF switches and FEM SOC. IEEE Silicon Monolithic Integrated Circuits in RF Systems, 2016: 9. doi: 10.1109/SIRF.2016.7445454
[6]
P A Rabbeni, A Joseph. RF SOI: revolutionizing RF system design. Microwave J, 2015, 58(10): 22.
[7]
X S Wang, X Wang, F Lu. Concurrent design analysis of high-linearity SP10T switch with 8.5 kV ESD protection. IEEE J Solid-State Circuit, 2014, 49(9): 1927. doi: 10.1109/JSSC.2014.2331956
[8]
X S Wang, X Wang, F Lu. A smartphone SP10T T/R switch in 180-nm SOI CMOS with 8kV + ESD protection by co-design. Custom Integrated Circuit Conference, 2013: 1 doi: 10.1109/CICC.2013.6658474
[9]
B K Esfeh, M Rack, S Makovejev. A SPDT RF switch small and large signal characteristics on TR-HR SOI substrates. IEEE J Electron Devices Soc, 2018,(6): 543. doi: 10.1109/JEDS.2018.2805780
[10]
C Tinella, O Richard, A Cathelin. 0.13μm CMOS SOI SP6T antenna switch for multi-standard handsets. IEEE Silicon Monolithic Integrated Circuits in RF Systems, 2006: 4. doi: 10.1109/SMIC.2005.1587904
[11]
I Song, M K Cho. PNP-based RF switches for the mitigation of single-event transients in a complementary SiGe BiCMOS platform. IEEE Trans Nucl Sci, 2017, 65(1): 391. doi: 10.1109/TNS.2017.2780120
[12]
M D Wei, R Negra. High-isolation stacked RF switch using dc-lift and feed forward cancellation techniques in standard 65 nm CMOS. IEEE International Symposium, 2018: 1 doi: 10.1109/ISCAS.2018.8351259
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5200 Times PDF downloads: 164 Times Cited by: 0 Times

    History

    Received: 06 June 2018 Revised: 21 September 2018 Online: Accepted Manuscript: 05 November 2018Uncorrected proof: 05 November 2018Published: 01 February 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hong Guan, Hao Sun, Junlin Bao, Zhipeng Wang, Shuguang Zhou, Hongwei Zhu. High-performance RF Switch in 0.13 μm RF SOI process[J]. Journal of Semiconductors, 2019, 40(2): 022401. doi: 10.1088/1674-4926/40/2/022401 H Guan, H Sun, J L Bao, Z P Wang, S G Zhou, H W Zhu, High-performance RF Switch in 0.13 μm RF SOI process[J]. J. Semicond., 2019, 40(2): 022401. doi: 10.1088/1674-4926/40/2/022401.Export: BibTex EndNote
      Citation:
      Hong Guan, Hao Sun, Junlin Bao, Zhipeng Wang, Shuguang Zhou, Hongwei Zhu. High-performance RF Switch in 0.13 μm RF SOI process[J]. Journal of Semiconductors, 2019, 40(2): 022401. doi: 10.1088/1674-4926/40/2/022401

      H Guan, H Sun, J L Bao, Z P Wang, S G Zhou, H W Zhu, High-performance RF Switch in 0.13 μm RF SOI process[J]. J. Semicond., 2019, 40(2): 022401. doi: 10.1088/1674-4926/40/2/022401.
      Export: BibTex EndNote

      High-performance RF Switch in 0.13 μm RF SOI process

      doi: 10.1088/1674-4926/40/2/022401
      More Information
      • Corresponding author: Email: guanhong116@163.com
      • Received Date: 2018-06-06
      • Revised Date: 2018-09-21
      • Published Date: 2019-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return