ARTICLES

Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1000 h

Feng Liang1, Jing Yang1, , Degang Zhao1, 2, , Zongshun Liu1, Jianjun Zhu1, 2, Ping Chen1, Desheng Jiang1, Yongsheng Shi1, Hai Wang1, Lihong Duan1, Liqun Zhang3 and Hui Yang3

+ Author Affiliations

 Corresponding author: Jing Yang, Email: yangjing333@semi.ac.cn; Degang Zhao, dgzhao@red.semi.ac.cn

PDF

Turn off MathJax

Abstract: GaN-based continuous-wave operated blue-violet laser diodes (LDs) with long lifetime are demonstrated, which are grown on a c-plane GaN substrate by metal organic chemical vapor deposition with a 10 × 600 μm2 ridge waveguide structure. The electrical and optical characteristics of a blue-violet LD are investigated under direct-current injection at room temperature (25 °C). The stimulated emission wavelength and peak optical power of the LD are around 413 nm and over 600 mW, respectively. In addition, the threshold current density and voltage are as small as 1.46 kA/cm2 and 4.1 V, respectively. Moreover, the lifetime is longer than 1000 hours under room-temperature continuous-wave operation.

Key words: GaN-based blue-violet laser diodeslong lifetimethreshold voltage



[1]
Ruhnke N, Müller A, Eppich B, et al. Compact Deep UV System at 222.5 nm Based on Frequency Doubling of GaN Laser Diode Emission. IEEE Photonic Tech Lett, 2018, 30(3): 289. doi: 10.1109/LPT.2017.2787463
[2]
Goldberg G R, Ivanov P, Ozaki N, et al. Gallium nitride light sources for optical coherence tomography. Gallium Nitride Materials and Devices XII, 2017: 101041X doi: 10.1117/12.2252665
[3]
Wunderer T, Northrup J E, Yang Z, et al. Nitride VECSELs as light sources for biomedical applications. CLEO: Applications and Technology, 2013: JM3O.1 doi: 10.1364/CLEO_AT.2013.JM3O.1
[4]
Xue B, Liu Z, Yang J, et al. Characteristics of III-nitride based laser diode employed for short range underwater wireless optical communications. Opt Commun, 2018, 410: 525. doi: 10.1016/j.optcom.2017.10.086
[5]
Huang Y F, Tsai C T, Chi Y C, et al. Filtered Multicarrier OFDM Encoding on Blue Laser Diode for 14.8-Gbps Seawater Transmission. J Lightwave Technol, 2018, 36(9): 1739. doi: 10.1109/JLT.2017.2782840
[6]
Strauβ U, Brüninghoff S, Schillgalies M, et al. True-blue InGaN laser for pico size projectors. Gallium Nitride Materials and Devices III, 2008: 689417 doi: 10.1117/12.761720
[7]
Buckley E. Laser wavelength choices for pico-projector applications. J Display Technol, 2011, 7(7): 402. doi: 10.1109/JDT.2011.2125944
[8]
Essaian S and Khaydarov J. State of the art of compact green lasers for mobile projectors. Opt Rev, 2012, 19(6): 400. doi: 10.1007/s10043-012-0065-z
[9]
Gan Y, Lu Y, Xu Q Y et al. Compact integrated green laser module for Watt-level display applications. IEEE Photonic Tech Lett, 2013, 25(1): 75. doi: 10.1109/LPT.2012.2226938
[10]
Nakamura S, Senoh M, Nagahama S I, et al. Violet InGaN/GaN/AlGaN-based laser diodes with an output power of 420 mW. Jpn J Appl Phys, 1998, 37(6A): L627. doi: 10.1143/JJAP.37.L627
[11]
Nakamura S, Senoh M, Nagahama S I, et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn J Appl Phys, 1996, 35(1B): L74. doi: 10.1063/1.116570
[12]
Hardy M T, Feezell D F, DenBaars S P, et al. Group III-nitride lasers: a materials perspective. Mater Today, 2011, 14(9): 408. doi: 10.1016/S1369-7021(11)70185-7
[13]
Moustakas T D, Paiella R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep Prog Phys, 2017, 80(10): 106501. doi: 10.1088/1361-6633/aa7bb2
[14]
Kim J, Kim H, Lee S N. Thermal degradation in InGaN quantum wells in violet and blue GaN-based laser diodes. Curr Appl Phys, 2011, 11(4): S167. doi: 10.1016/j.cap.2011.07.024
[15]
Masui S, Nakatsu Y, Kasahara D, et al. Recent improvement in nitride lasers. Gallium Nitride Materials and Devices XII, 2017: 101041H doi: 10.1117/12.2247988
[16]
Najda S P, Perlin P, Suski T, et al. AlGaInN laser-diode technology for optical clocks and atom interferometry. Gallium Nitride Materials and Devices XII, 2017: 101041L doi: 10.1117/12.2250322
[17]
Najda S P, Stanczyk S, Kafar A, et al. Tapered waveguide high power AlGaInN laser diodes and amplifiers for optical integration and quantum technologies. Quantum Technologies & Quantum Information Science, 2017: 104420O doi: 10.1117/12.2279565
[18]
Najda S P, Perlin P, Suski T, et al. GaN laser diodes for high-power optical integration and quantum technologies. Gallium Nitride Materials and Devices XIII, 2018: 1053217 doi: 10.1117/12.2277001
[19]
Chen P, Zhao D G, Feng M X, et al. A high power InGaN-based blue-violet laser diode array with a broad-area stripe. Chin Phys Lett, 2013, 30(10): 104205. doi: 10.1088/0256-307X/30/10/104205
[20]
Zhao D G, Jiang D S, Le L C, et al. Performance improvement of GaN-based violet laser diodes. Chin Phys Lett, 2017, 34(1): 017101. doi: 10.1088/0256-307X/34/1/017101
[21]
Liang F, Zhao D G, Jiang D S, et al. Improvement of Ohmic contact to p-GaN by controlling the residual carbon concentration in p++-GaN layer. J Cryst Growth, 2017, 467: 1. doi: 10.1016/j.jcrysgro.2017.03.009
[22]
Liang F, Zhao D G, Jiang D S, et al. Influence of residual carbon impurities in a heavily Mg-doped GaN contact layer on an Ohmic contact. Appl Opt, 2017, 56(14): 4197. doi: 10.1364/AO.56.004197
[23]
Yang J, Zhao D G, Jiang D S, et al. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films. J Appl Phys, 2014, 115(16): 163704. doi: 10.1063/1.4873957
[24]
Yang J, Zhao D G, Jiang D S, et al. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films. J Vac Sci Technol A, 2015, 33(2): 021505. doi: 10.1116/1.4904035
[25]
Liang F, Yang J, Zhao D G, et al. Influence of hydrogen impurity on the resistivity of low temperature grown p-AlxGa1−xN layer (0.08 ≤ x ≤ 0.104). Superlattice Microstruct, 2018, 113: 720. doi: 10.1016/j.spmi.2017.12.002
[26]
Yang J, Zhao D G, Jiang D S, et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes. Opt Express, 2016, 24(13): 13824. doi: 10.1364/OE.24.013824
[27]
Liang F, Zhao D G, Jiang D S, et al. Performance enhancement of the GaN-based laser diode by using an unintentionally doped GaN upper waveguide. Jpn J Appl Phys, 2018, 57: 070307. doi: 10.7567/JJAP.57.070307
Fig. 1.  Schematic diagram of the epitaxial structure for the GaN-based blue-violet LDs.

Fig. 2.  (Color online) The optical spectrum of stimulated emission for a GaN-based blue-violet LD. The inset shows the far field pattern of laser beam.

Fig. 3.  (Color online) Power–current–voltage (P–I–V) curves of a GaN-based blue-violet LD at room temperature.

Fig. 4.  (Color online) (a) Current–voltage characteristics obtained for different values of R between 215 and 260 μm, and (b) the measured data of total resistance (Rt, black squares) as a function of ln(R/r) and the fitting line (red), by using the circular transmission line model for p-GaN Ohmic contact in the GaN-based blue-violet laser diode. The specific contact resistance is as low as 1.1 × 10−6 Ω·cm2.

Fig. 5.  Optical power of blue-violet LD as a function of the aging time with a fixed injection current at room temperature.

[1]
Ruhnke N, Müller A, Eppich B, et al. Compact Deep UV System at 222.5 nm Based on Frequency Doubling of GaN Laser Diode Emission. IEEE Photonic Tech Lett, 2018, 30(3): 289. doi: 10.1109/LPT.2017.2787463
[2]
Goldberg G R, Ivanov P, Ozaki N, et al. Gallium nitride light sources for optical coherence tomography. Gallium Nitride Materials and Devices XII, 2017: 101041X doi: 10.1117/12.2252665
[3]
Wunderer T, Northrup J E, Yang Z, et al. Nitride VECSELs as light sources for biomedical applications. CLEO: Applications and Technology, 2013: JM3O.1 doi: 10.1364/CLEO_AT.2013.JM3O.1
[4]
Xue B, Liu Z, Yang J, et al. Characteristics of III-nitride based laser diode employed for short range underwater wireless optical communications. Opt Commun, 2018, 410: 525. doi: 10.1016/j.optcom.2017.10.086
[5]
Huang Y F, Tsai C T, Chi Y C, et al. Filtered Multicarrier OFDM Encoding on Blue Laser Diode for 14.8-Gbps Seawater Transmission. J Lightwave Technol, 2018, 36(9): 1739. doi: 10.1109/JLT.2017.2782840
[6]
Strauβ U, Brüninghoff S, Schillgalies M, et al. True-blue InGaN laser for pico size projectors. Gallium Nitride Materials and Devices III, 2008: 689417 doi: 10.1117/12.761720
[7]
Buckley E. Laser wavelength choices for pico-projector applications. J Display Technol, 2011, 7(7): 402. doi: 10.1109/JDT.2011.2125944
[8]
Essaian S and Khaydarov J. State of the art of compact green lasers for mobile projectors. Opt Rev, 2012, 19(6): 400. doi: 10.1007/s10043-012-0065-z
[9]
Gan Y, Lu Y, Xu Q Y et al. Compact integrated green laser module for Watt-level display applications. IEEE Photonic Tech Lett, 2013, 25(1): 75. doi: 10.1109/LPT.2012.2226938
[10]
Nakamura S, Senoh M, Nagahama S I, et al. Violet InGaN/GaN/AlGaN-based laser diodes with an output power of 420 mW. Jpn J Appl Phys, 1998, 37(6A): L627. doi: 10.1143/JJAP.37.L627
[11]
Nakamura S, Senoh M, Nagahama S I, et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn J Appl Phys, 1996, 35(1B): L74. doi: 10.1063/1.116570
[12]
Hardy M T, Feezell D F, DenBaars S P, et al. Group III-nitride lasers: a materials perspective. Mater Today, 2011, 14(9): 408. doi: 10.1016/S1369-7021(11)70185-7
[13]
Moustakas T D, Paiella R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep Prog Phys, 2017, 80(10): 106501. doi: 10.1088/1361-6633/aa7bb2
[14]
Kim J, Kim H, Lee S N. Thermal degradation in InGaN quantum wells in violet and blue GaN-based laser diodes. Curr Appl Phys, 2011, 11(4): S167. doi: 10.1016/j.cap.2011.07.024
[15]
Masui S, Nakatsu Y, Kasahara D, et al. Recent improvement in nitride lasers. Gallium Nitride Materials and Devices XII, 2017: 101041H doi: 10.1117/12.2247988
[16]
Najda S P, Perlin P, Suski T, et al. AlGaInN laser-diode technology for optical clocks and atom interferometry. Gallium Nitride Materials and Devices XII, 2017: 101041L doi: 10.1117/12.2250322
[17]
Najda S P, Stanczyk S, Kafar A, et al. Tapered waveguide high power AlGaInN laser diodes and amplifiers for optical integration and quantum technologies. Quantum Technologies & Quantum Information Science, 2017: 104420O doi: 10.1117/12.2279565
[18]
Najda S P, Perlin P, Suski T, et al. GaN laser diodes for high-power optical integration and quantum technologies. Gallium Nitride Materials and Devices XIII, 2018: 1053217 doi: 10.1117/12.2277001
[19]
Chen P, Zhao D G, Feng M X, et al. A high power InGaN-based blue-violet laser diode array with a broad-area stripe. Chin Phys Lett, 2013, 30(10): 104205. doi: 10.1088/0256-307X/30/10/104205
[20]
Zhao D G, Jiang D S, Le L C, et al. Performance improvement of GaN-based violet laser diodes. Chin Phys Lett, 2017, 34(1): 017101. doi: 10.1088/0256-307X/34/1/017101
[21]
Liang F, Zhao D G, Jiang D S, et al. Improvement of Ohmic contact to p-GaN by controlling the residual carbon concentration in p++-GaN layer. J Cryst Growth, 2017, 467: 1. doi: 10.1016/j.jcrysgro.2017.03.009
[22]
Liang F, Zhao D G, Jiang D S, et al. Influence of residual carbon impurities in a heavily Mg-doped GaN contact layer on an Ohmic contact. Appl Opt, 2017, 56(14): 4197. doi: 10.1364/AO.56.004197
[23]
Yang J, Zhao D G, Jiang D S, et al. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films. J Appl Phys, 2014, 115(16): 163704. doi: 10.1063/1.4873957
[24]
Yang J, Zhao D G, Jiang D S, et al. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films. J Vac Sci Technol A, 2015, 33(2): 021505. doi: 10.1116/1.4904035
[25]
Liang F, Yang J, Zhao D G, et al. Influence of hydrogen impurity on the resistivity of low temperature grown p-AlxGa1−xN layer (0.08 ≤ x ≤ 0.104). Superlattice Microstruct, 2018, 113: 720. doi: 10.1016/j.spmi.2017.12.002
[26]
Yang J, Zhao D G, Jiang D S, et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes. Opt Express, 2016, 24(13): 13824. doi: 10.1364/OE.24.013824
[27]
Liang F, Zhao D G, Jiang D S, et al. Performance enhancement of the GaN-based laser diode by using an unintentionally doped GaN upper waveguide. Jpn J Appl Phys, 2018, 57: 070307. doi: 10.7567/JJAP.57.070307
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4086 Times PDF downloads: 103 Times Cited by: 0 Times

    History

    Received: 03 July 2018 Revised: 04 September 2018 Online: Uncorrected proof: 09 October 2018Accepted Manuscript: 01 November 2018Published: 01 February 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Feng Liang, Jing Yang, Degang Zhao, Zongshun Liu, Jianjun Zhu, Ping Chen, Desheng Jiang, Yongsheng Shi, Hai Wang, Lihong Duan, Liqun Zhang, Hui Yang. Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1000 h[J]. Journal of Semiconductors, 2019, 40(2): 022801. doi: 10.1088/1674-4926/40/2/022801 F Liang, J Yang, D G Zhao, Z S Liu, J J Zhu, P Chen, D S Jiang, Y S Shi, H Wang, L H Duan, L Q Zhang, H Yang, Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1000 h[J]. J. Semicond., 2019, 40(2): 022801. doi: 10.1088/1674-4926/40/2/022801.Export: BibTex EndNote
      Citation:
      Feng Liang, Jing Yang, Degang Zhao, Zongshun Liu, Jianjun Zhu, Ping Chen, Desheng Jiang, Yongsheng Shi, Hai Wang, Lihong Duan, Liqun Zhang, Hui Yang. Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1000 h[J]. Journal of Semiconductors, 2019, 40(2): 022801. doi: 10.1088/1674-4926/40/2/022801

      F Liang, J Yang, D G Zhao, Z S Liu, J J Zhu, P Chen, D S Jiang, Y S Shi, H Wang, L H Duan, L Q Zhang, H Yang, Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1000 h[J]. J. Semicond., 2019, 40(2): 022801. doi: 10.1088/1674-4926/40/2/022801.
      Export: BibTex EndNote

      Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1000 h

      doi: 10.1088/1674-4926/40/2/022801
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return