REVIEWS

Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study

Baoxing Zhai1, Juan Du2, Xueping Li3, Congxin Xia1, and Zhongming Wei4,

+ Author Affiliations

 Corresponding author: C X Xia, xiacongxin@htu.edu.cn; Z M Wei, zmwei@semi.ac.cn

PDF

Turn off MathJax

Abstract: Since the successful fabrication of two-dimensional (2D) ferromagnetic (FM) monolayer CrI3 and Cr2Ge2Te6, 2D FM materials are becoming an exciting research topic in condensed matter physics and materials fields, as they provide a good platform to explore the fundamental physical properties of magnetic materials under 2D limit. In this review, we summarize the theoretical research progress of intrinsic 2D FM materials and related van der Waals heterostructures (vdWHs) including their electronic structures, magnetism, Curie temperature, valley polarization, and band alignment. Moreover, we also summarize recent researches on the methods that used to regulate the above properties of 2D FM materials and vdWHs, such as defects, doping, strain, electric field and interlayer coupling. These studies show that 2D FM materials have broad application prospects in spintronics and valleytronics. However, there are still many problems waiting to be solved on the way to practical application.

Key words: 2D FM materialsheterostructureCurie temperature



[1]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666 doi: 10.1126/science.1102896
[2]
Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17, 1133 doi: 10.1103/PhysRevLett.17.1133
[3]
Zheng H, Yang B, Wang D, et al. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl Phys Lett, 2014, 104, 132403 doi: 10.1063/1.4870532
[4]
Hashmi A, Hong J. Transition metal doped phosphorene: first-principles study. J Phys Chem C, 2015, 119, 9198 doi: 10.1021/jp511574n
[5]
Du J, Xia C, An Y, et al. Tunable electronic structures and magnetism in arsenene nanosheets via transition metal doping. J Mater Sci, 2016, 51, 9504 doi: 10.1007/s10853-016-0194-z
[6]
Yazyev O V, Helm L. Defect-induced magnetism in graphene. Phys Rev B, 2007, 75, 125408 doi: 10.1103/PhysRevB.75.125408
[7]
Nair R R, Sepioni M, Tsai I L, et al. Spin-half paramagnetism in graphene induced by point defects. Nat Phys, 2012, 8, 199 doi: 10.1038/nphys2183
[8]
Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270 doi: 10.1038/nature22391
[9]
Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265 doi: 10.1038/nature22060
[10]
Song T, Cai X, Tu M W Y, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 2018, 360, 1214 doi: 10.1126/science.aar4851
[11]
Seyler K L, Zhong D, Klein D R, et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat Phys, 2018, 14, 277 doi: 10.1038/s41567-017-0006-7
[12]
Cardoso C, Soriano D, García-Martínez N A, et al. Van der Waals spin valves. Phys Rev Lett, 2018, 121, 067701 doi: 10.1103/PhysRevLett.121.067701
[13]
Jiang S, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17, 406 doi: 10.1038/s41563-018-0040-6
[14]
Jiang S, Li L, Wang Z, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol, 2018, 13, 549 doi: 10.1038/s41565-018-0135-x
[15]
Lin G T, Luo X, Chen F C, et al. Critical behavior of two-dimensional intrinsically ferromagnetic semiconductor CrI3. Appl Phys Lett, 2018, 112, 072405 doi: 10.1063/1.5019286
[16]
Xu C, Feng J, Xiang H, et al. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput Mater, 2018, 4, 57 doi: 10.1038/s41524-018-0115-6
[17]
Wang K, Hu T, Jia F, et al. Magnetic and electronic properties of Cr2Ge2Te6 monolayer by strain and electric-field engineering. Appl Phys Lett, 2019, 114, 092405 doi: 10.1063/1.5083992
[18]
Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563, 94 doi: 10.1038/s41586-018-0626-9
[19]
Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13, 289 doi: 10.1038/s41565-018-0063-9
[20]
O’Hara D J, Zhu T, Trout A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 2018, 18, 3125 doi: 10.1021/acs.nanolett.8b00683
[21]
Zheng S, Huang C, Yu T, et al. High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. J Phys Chem Lett, 2019, 2733 doi: 10.1021/acs.jpclett.9b00970
[22]
Tian S, Zhang J-F, Li C, et al. Ferromagnetic van der Waals crystal VI3. J Am Chem Soc, 2019, 141, 5326 doi: 10.1021/jacs.8b13584
[23]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499, 419 doi: 10.1038/nature12385
[24]
Yao S, Wang E, Zhou S. Van der Waals heterostructures, a new world in the field of two-dimensional materials. Physics, 2017, 5, 322 doi: 10.7693/wl20170508
[25]
Unuchek D, Ciarrocchi A, Avsar A, et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 2018, 560, 340 doi: 10.1038/s41586-018-0357-y
[26]
Seyler K L, Rivera P, Yu H, et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567, 66 doi: 10.1038/s41586-019-0957-1
[27]
Jin C, Regan E C, Yan A, et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567, 76 doi: 10.1038/s41586-019-0976-y
[28]
Xia C, Xiong W, Du J, et al. Type-I transition metal dichalcogenides lateral homojunctions: layer thickness and external electric field effects. Small, 2018, 14, 1800365 doi: 10.1002/smll.v14.21
[29]
Xia C, Du J, Li M, et al. Effects of electric field on the electronic structures of broken-gap phosphorene/SnX2 (X = S, Se) van der Waals heterojunctions. Phys Rev Appl, 2018, 10, 054064 doi: 10.1103/PhysRevApplied.10.054064
[30]
Qi J, Li X, Niu Q, et al. Giant and tunable valley degeneracy splitting in MoTe2. Phys Rev B, 2015, 92, 121403 doi: 10.1103/PhysRevB.92.121403
[31]
Liang X, Deng L, Huang F, et al. The magnetic proximity effect and electrical field tunable valley degeneracy in MoS2/EuS van der Waals heterojunctions. Nanoscale, 2017, 9, 9502 doi: 10.1039/C7NR03317F
[32]
Xu L, Yang M, Shen L, et al. Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate. Phys Rev B, 2018, 97, 041405 doi: 10.1103/PhysRevB.97.041405
[33]
Jiang P, Li L, Liao Z, et al. Spin direction-controlled electronic band structure in two-dimensional ferromagnetic CrI3. Nano Lett, 2018, 18, 3844 doi: 10.1021/acs.nanolett.8b01125
[34]
Jin Y, Wang R, Xu H. Recipe for Dirac phonon states with a quantized valley berry phase in two-dimensional hexagonal lattices. Nano Lett, 2018, 18, 7755 doi: 10.1021/acs.nanolett.8b03492
[35]
Zhao Y, Lin L, Zhou Q, et al. Surface vacancy-induced switchable electric polarization and enhanced ferromagnetism in monolayer metal trihalides. Nano Lett, 2018, 18, 2943 doi: 10.1021/acs.nanolett.8b00314
[36]
Wang H, Fan F, Zhu S, et al. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. EPL Europhys Lett, 2016, 114, 47001 doi: 10.1209/0295-5075/114/47001
[37]
Gong S J, Gong C, Sun Y Y, et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc Natl Acad Sci, 2018, 115, 8511 doi: 10.1073/pnas.1715465115
[38]
Webster L, Yan J A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B, 2018, 98, 144411 doi: 10.1103/PhysRevB.98.144411
[39]
Haastrup S, Strange M, Pandey M, et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater, 2018, 5, 042002 doi: 10.1088/2053-1583/aacfc1
[40]
Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 2018, 13, 246 doi: 10.1038/s41565-017-0035-5
[41]
Zhu Y, Kong X, Rhone T D, et al. Systematic search for two-dimensional ferromagnetic materials. Phys Rev Mater, 2018, 2, 081001 doi: 10.1103/PhysRevMaterials.2.081001
[42]
Miao N, Xu B, Zhu L, et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 2018, 140, 2417 doi: 10.1021/jacs.7b12976
[43]
So much more to know. Science, 2005, 309, 78b
[44]
Jiang Z, Wang P, Xing J, et al. Screening and design of novel 2D ferromagnetic materials with high Curie temperature above room temperature. ACS Appl Mater Interfaces, 2018, 10, 39032 doi: 10.1021/acsami.8b14037
[45]
Huang C, Feng J, Wu F, et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J Am Chem Soc, 2018, 140, 11519 doi: 10.1021/jacs.8b07879
[46]
Li X, Yang J. Realizing two-dimensional magnetic semiconductors with enhanced Curie temperature by antiaromatic ring based organometallic frameworks. J Am Chem Soc, 2019, 141, 109 doi: 10.1021/jacs.8b11346
[47]
Xiong W, Xia C, Du J, et al. Electrostatic gating dependent multiple-band alignments in a high-temperature ferromagnetic Mg(OH)2/VS2 heterobilayer. Phys Rev B, 2017, 95, 245408 doi: 10.1103/PhysRevB.95.245408
[48]
Du J, Xia C, Xiong W, et al. Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals heterostructures. Nanoscale, 2017, 9, 17585 doi: 10.1039/C7NR06473J
[49]
Zhang Z, Ni X, Huang H, et al. Valley splitting in the van der Waals heterostructure WSe2/CrI3: The role of atom superposition. Phys Rev B, 2019, 99, 115441 doi: 10.1103/PhysRevB.99.115441
[50]
Farooq M U, Hong J. Switchable valley splitting by external electric field effect in graphene/CrI3 heterostructures. npj 2D Mater Appl, 2019, 3, 3 doi: 10.1038/s41699-019-0086-6
[51]
Zhang J, Zhao B, Zhou T, et al. Strong magnetization and Chern insulators in compressed graphene/CrI3 van der Waals heterostructures. Phys Rev B, 2018, 97, 085401 doi: 10.1103/PhysRevB.97.085401
[52]
Zhang H, Qin W, Chen M, et al. Converting a two-dimensional ferromagnetic insulator into a high-temperature quantum anomalous Hall system by means of an appropriate surface modification. Phys Rev B, 2019, 99, 165410 doi: 10.1103/PhysRevB.99.165410
[53]
Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363, 706 doi: 10.1126/science.aav4450
[54]
Mak K F, McGill K L, Park J, et al. The valley Hall effect in MoS2 transistors. Science, 2014, 344, 1489 doi: 10.1126/science.1250140
[55]
Seyler K L, Zhong D, Huang B, et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett, 2018, 18, 3823 doi: 10.1021/acs.nanolett.8b01105
[56]
Aivazian G, Gong Z, Jones A M, et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat Phys, 2015, 11, 148 doi: 10.1038/nphys3201
[57]
Peng R, Ma Y, Zhang S, et al. Valley polarization in janus single-layer MoSSe via magnetic doping. J Phys Chem Lett, 2018, 9, 3612 doi: 10.1021/acs.jpclett.8b01625
[58]
Pei Q, Zhou B, Mi W, et al. Triferroic material and electrical control of valley degree of freedom. ACS Appl Mater Interfaces, 2019, 11, 12675 doi: 10.1021/acsami.9b02095
[59]
Sun W, Wang W, Chen D, et al. Valence mediated tunable magnetism and electronic properties by ferroelectric polarization switching in 2D FeI2/In2Se3 van der Waals heterostructures. Nanoscale, 2019, 11, 9931 doi: 10.1039/C9NR01510H
Fig. 1.  (Color online) (a) The structure diagram of monolayer CrI3 (left) and monolayer Cr2Ge2Te6 (right). Reprinted with permission from Refs. [8, 9]. Copyright 2017, Springer Nature. The band structures and density of state (DOS) of (b) CrI3 and (c) Cr2Ge2Te6. Reprinted with permission from Ref. [17]. Copyright 2019, AIP Publishing. (d) The distributions of phonon Berry curvature near two inequivalent valleys K and K’, respectively, indicating that a phonon Dirac point is a singularity in momentum space. (e) The LDOS projected on edges of semi-infinite nanoribbons of (top) CrI3 and (down) YGaI along the zigzag direction. The nontrivial edge states terminated at the projection of phonon Dirac cones are clearly visible. Reprinted with permission from Ref. [34]. Copyright 2018, American Chemical Society (f) The band structure with magnetic moment along the out-of-plane c axis (left) and in-plane a axis (right). The red arrows depict the band gap that is direct with M//c and indirect with M//a. The insets show the side view and top view of the crystal structure with spin orientation along the c axis and a axis, respectively. Reprinted with permission from Ref. [33]. Copyright 2018, American Chemical Society.

Fig. 2.  (Color online) (a) The I-vacancies models of monolayer CrI3. Reprinted with permission from Ref. [35]. Copyright 2018, American Chemical Society. (b) The DOS of CrI3 monolayer doped with 0.5 hole or 0.5 electron, and (c) Relationship between ferromagnetic stability and carrier doping concentration. The dashed vertical lines in (b) refer to the shifting Fermi level[36]. (d) The strain engineering of monolayer Cr2Ge2Te6 shows that the bandgaps vary with the increase of biaxial strain for the FM state (the red line), and the black line represents the variety of total energy difference between the AFM and FM configurations with the strain in the monolayer Cr2Ge2Te6. (e) The dependence of PBE and HSE06 bandgaps under a perpendicular electric field with different field strengths. Reprinted with permission from Ref. [17]. Copyright 2019, AIP Publishing. (f) The side view of the bilayer 2H-VSe2, with the electric field applied perpendicularly from layer 2 to layer 1. (g) The schematic spin-polarized current versus the gate voltage, with Vc indicating the critical voltage. The switching of the spin-ɑ current Iɑ and spin-β current Iβ can be manipulated by the gate voltage. Reprinted with permission from Ref. [37]. Copyright 2017, National Academy of Sciences.

Fig. 3.  (Color online) (a) A schematic diagram to illustrate the search procedure for 2D FM materials. Reprinted with permission from Ref. [41]. Copyright 2018, American Physical Society. (b) A schematic diagram to obtain the 2D intrinsic ferromagnet from the van der waals antiferromagnetic bulk. Reprinted with permission from Ref. [42]. Copyright 2018, American Chemical Society. (c) the monolayer VI3 be exfoliated from the bulk VI3. Reprinted with permission from Ref. [22]. Copyright 2019, American Chemical Society.

Fig. 4.  (Color online) (a) The diagram of Tc and structural models of several high temperature FM materials. Reprinted with permission from Ref. [44]. Copyright 2018, American Chemical Society. (b) the mechanism of superexchange in two semiconducting alloy compounds CrWI6 and CrWGe2Te6 monolayers. The insert is the enhanced Tc of CrWI6 and CrWGe2Te6 compared to 2D CrI3 and CrGeTe3. Reprinted with permission from Ref. [45]. Copyright 2018, American Chemical Society. (c) The structural model of metal organic framework. (d) Spin density of ferrimagnetic (top) and FM (bottom) coupling for 2D Cr-pentalene with an isovalue of 0.05 e/Å3. Red and blue indicate spin up and spin down, respectively. (e) Variation of magnetic moment (M) per unit cell (black) and specific heat (CV) (red) with respect to temperature from classic Heisenberg model Monte Carlo simulation. Reprinted with permission from Ref. [46]. Copyright 2018, American Chemical Society.

Fig. 5.  (Color online) (a) The spin-polarized band structure of Mg(OH)2/VS2 heterostructure. (b) The band alignment and work function of the heterostructure, referring to the vacuum level (Evacuum). (c) Band alignments of Mg(OH)2/VS2 heterostructure at various electric field values: –0.3, 0, 0.6, and 0.7 V/Å, respectively, referring to the Evacuum. Reprinted with permission from Ref. [47]. Copyright 2017, American Physical Society.

Fig. 6.  (Color online) (a) The energy diagram of the monolayer WSe2 at the K, K’ valleys. E(σ+) and E(σ–) represent the interband optical transition energies of right-hand (σ+) and left-hand (σ–) circularly polarized photons, respectively. The spin-up and spin-down valley-spin states are denoted with orange up- and green down-arrows, respectively. (b) Energy diagram depicting the K and K’ valley degeneracy lifting. The VB and CB stand for the valence and conduction band valley splittings, respectively. The black-up arrow denotes the Cr spin is aligned vertically upward, i.e., the magnetization axis of the CrI3. Reprinted with permission from Ref. [49]. Copyright 2019, American Physical Society. (c) projection bands of graphene around ±K with SOC under the electric field. (d) schematics illustration of change of valley splitting at ±K under the electric field. Reprinted with permission from Ref. [51]. Copyright 2019, Springer Nature. (e) The calculated edge density of states of the semi-infinite armchair-edged graphene system. (f) A schematic diagram depicting the observation of the QAH effect in graphene/CrI3 heterobilayer. The vertical red arrow denotes the external compression. The small horizontal yellow arrows indicate the two dissipationless edge current channels owned in the heterostructure. Reprinted with permission from Ref. [51]. Copyright 2018, American Physical Society.

[1]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666 doi: 10.1126/science.1102896
[2]
Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17, 1133 doi: 10.1103/PhysRevLett.17.1133
[3]
Zheng H, Yang B, Wang D, et al. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl Phys Lett, 2014, 104, 132403 doi: 10.1063/1.4870532
[4]
Hashmi A, Hong J. Transition metal doped phosphorene: first-principles study. J Phys Chem C, 2015, 119, 9198 doi: 10.1021/jp511574n
[5]
Du J, Xia C, An Y, et al. Tunable electronic structures and magnetism in arsenene nanosheets via transition metal doping. J Mater Sci, 2016, 51, 9504 doi: 10.1007/s10853-016-0194-z
[6]
Yazyev O V, Helm L. Defect-induced magnetism in graphene. Phys Rev B, 2007, 75, 125408 doi: 10.1103/PhysRevB.75.125408
[7]
Nair R R, Sepioni M, Tsai I L, et al. Spin-half paramagnetism in graphene induced by point defects. Nat Phys, 2012, 8, 199 doi: 10.1038/nphys2183
[8]
Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270 doi: 10.1038/nature22391
[9]
Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265 doi: 10.1038/nature22060
[10]
Song T, Cai X, Tu M W Y, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 2018, 360, 1214 doi: 10.1126/science.aar4851
[11]
Seyler K L, Zhong D, Klein D R, et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat Phys, 2018, 14, 277 doi: 10.1038/s41567-017-0006-7
[12]
Cardoso C, Soriano D, García-Martínez N A, et al. Van der Waals spin valves. Phys Rev Lett, 2018, 121, 067701 doi: 10.1103/PhysRevLett.121.067701
[13]
Jiang S, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17, 406 doi: 10.1038/s41563-018-0040-6
[14]
Jiang S, Li L, Wang Z, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol, 2018, 13, 549 doi: 10.1038/s41565-018-0135-x
[15]
Lin G T, Luo X, Chen F C, et al. Critical behavior of two-dimensional intrinsically ferromagnetic semiconductor CrI3. Appl Phys Lett, 2018, 112, 072405 doi: 10.1063/1.5019286
[16]
Xu C, Feng J, Xiang H, et al. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput Mater, 2018, 4, 57 doi: 10.1038/s41524-018-0115-6
[17]
Wang K, Hu T, Jia F, et al. Magnetic and electronic properties of Cr2Ge2Te6 monolayer by strain and electric-field engineering. Appl Phys Lett, 2019, 114, 092405 doi: 10.1063/1.5083992
[18]
Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563, 94 doi: 10.1038/s41586-018-0626-9
[19]
Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13, 289 doi: 10.1038/s41565-018-0063-9
[20]
O’Hara D J, Zhu T, Trout A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 2018, 18, 3125 doi: 10.1021/acs.nanolett.8b00683
[21]
Zheng S, Huang C, Yu T, et al. High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. J Phys Chem Lett, 2019, 2733 doi: 10.1021/acs.jpclett.9b00970
[22]
Tian S, Zhang J-F, Li C, et al. Ferromagnetic van der Waals crystal VI3. J Am Chem Soc, 2019, 141, 5326 doi: 10.1021/jacs.8b13584
[23]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499, 419 doi: 10.1038/nature12385
[24]
Yao S, Wang E, Zhou S. Van der Waals heterostructures, a new world in the field of two-dimensional materials. Physics, 2017, 5, 322 doi: 10.7693/wl20170508
[25]
Unuchek D, Ciarrocchi A, Avsar A, et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 2018, 560, 340 doi: 10.1038/s41586-018-0357-y
[26]
Seyler K L, Rivera P, Yu H, et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567, 66 doi: 10.1038/s41586-019-0957-1
[27]
Jin C, Regan E C, Yan A, et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567, 76 doi: 10.1038/s41586-019-0976-y
[28]
Xia C, Xiong W, Du J, et al. Type-I transition metal dichalcogenides lateral homojunctions: layer thickness and external electric field effects. Small, 2018, 14, 1800365 doi: 10.1002/smll.v14.21
[29]
Xia C, Du J, Li M, et al. Effects of electric field on the electronic structures of broken-gap phosphorene/SnX2 (X = S, Se) van der Waals heterojunctions. Phys Rev Appl, 2018, 10, 054064 doi: 10.1103/PhysRevApplied.10.054064
[30]
Qi J, Li X, Niu Q, et al. Giant and tunable valley degeneracy splitting in MoTe2. Phys Rev B, 2015, 92, 121403 doi: 10.1103/PhysRevB.92.121403
[31]
Liang X, Deng L, Huang F, et al. The magnetic proximity effect and electrical field tunable valley degeneracy in MoS2/EuS van der Waals heterojunctions. Nanoscale, 2017, 9, 9502 doi: 10.1039/C7NR03317F
[32]
Xu L, Yang M, Shen L, et al. Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate. Phys Rev B, 2018, 97, 041405 doi: 10.1103/PhysRevB.97.041405
[33]
Jiang P, Li L, Liao Z, et al. Spin direction-controlled electronic band structure in two-dimensional ferromagnetic CrI3. Nano Lett, 2018, 18, 3844 doi: 10.1021/acs.nanolett.8b01125
[34]
Jin Y, Wang R, Xu H. Recipe for Dirac phonon states with a quantized valley berry phase in two-dimensional hexagonal lattices. Nano Lett, 2018, 18, 7755 doi: 10.1021/acs.nanolett.8b03492
[35]
Zhao Y, Lin L, Zhou Q, et al. Surface vacancy-induced switchable electric polarization and enhanced ferromagnetism in monolayer metal trihalides. Nano Lett, 2018, 18, 2943 doi: 10.1021/acs.nanolett.8b00314
[36]
Wang H, Fan F, Zhu S, et al. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. EPL Europhys Lett, 2016, 114, 47001 doi: 10.1209/0295-5075/114/47001
[37]
Gong S J, Gong C, Sun Y Y, et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc Natl Acad Sci, 2018, 115, 8511 doi: 10.1073/pnas.1715465115
[38]
Webster L, Yan J A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B, 2018, 98, 144411 doi: 10.1103/PhysRevB.98.144411
[39]
Haastrup S, Strange M, Pandey M, et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater, 2018, 5, 042002 doi: 10.1088/2053-1583/aacfc1
[40]
Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 2018, 13, 246 doi: 10.1038/s41565-017-0035-5
[41]
Zhu Y, Kong X, Rhone T D, et al. Systematic search for two-dimensional ferromagnetic materials. Phys Rev Mater, 2018, 2, 081001 doi: 10.1103/PhysRevMaterials.2.081001
[42]
Miao N, Xu B, Zhu L, et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 2018, 140, 2417 doi: 10.1021/jacs.7b12976
[43]
So much more to know. Science, 2005, 309, 78b
[44]
Jiang Z, Wang P, Xing J, et al. Screening and design of novel 2D ferromagnetic materials with high Curie temperature above room temperature. ACS Appl Mater Interfaces, 2018, 10, 39032 doi: 10.1021/acsami.8b14037
[45]
Huang C, Feng J, Wu F, et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J Am Chem Soc, 2018, 140, 11519 doi: 10.1021/jacs.8b07879
[46]
Li X, Yang J. Realizing two-dimensional magnetic semiconductors with enhanced Curie temperature by antiaromatic ring based organometallic frameworks. J Am Chem Soc, 2019, 141, 109 doi: 10.1021/jacs.8b11346
[47]
Xiong W, Xia C, Du J, et al. Electrostatic gating dependent multiple-band alignments in a high-temperature ferromagnetic Mg(OH)2/VS2 heterobilayer. Phys Rev B, 2017, 95, 245408 doi: 10.1103/PhysRevB.95.245408
[48]
Du J, Xia C, Xiong W, et al. Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals heterostructures. Nanoscale, 2017, 9, 17585 doi: 10.1039/C7NR06473J
[49]
Zhang Z, Ni X, Huang H, et al. Valley splitting in the van der Waals heterostructure WSe2/CrI3: The role of atom superposition. Phys Rev B, 2019, 99, 115441 doi: 10.1103/PhysRevB.99.115441
[50]
Farooq M U, Hong J. Switchable valley splitting by external electric field effect in graphene/CrI3 heterostructures. npj 2D Mater Appl, 2019, 3, 3 doi: 10.1038/s41699-019-0086-6
[51]
Zhang J, Zhao B, Zhou T, et al. Strong magnetization and Chern insulators in compressed graphene/CrI3 van der Waals heterostructures. Phys Rev B, 2018, 97, 085401 doi: 10.1103/PhysRevB.97.085401
[52]
Zhang H, Qin W, Chen M, et al. Converting a two-dimensional ferromagnetic insulator into a high-temperature quantum anomalous Hall system by means of an appropriate surface modification. Phys Rev B, 2019, 99, 165410 doi: 10.1103/PhysRevB.99.165410
[53]
Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363, 706 doi: 10.1126/science.aav4450
[54]
Mak K F, McGill K L, Park J, et al. The valley Hall effect in MoS2 transistors. Science, 2014, 344, 1489 doi: 10.1126/science.1250140
[55]
Seyler K L, Zhong D, Huang B, et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett, 2018, 18, 3823 doi: 10.1021/acs.nanolett.8b01105
[56]
Aivazian G, Gong Z, Jones A M, et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat Phys, 2015, 11, 148 doi: 10.1038/nphys3201
[57]
Peng R, Ma Y, Zhang S, et al. Valley polarization in janus single-layer MoSSe via magnetic doping. J Phys Chem Lett, 2018, 9, 3612 doi: 10.1021/acs.jpclett.8b01625
[58]
Pei Q, Zhou B, Mi W, et al. Triferroic material and electrical control of valley degree of freedom. ACS Appl Mater Interfaces, 2019, 11, 12675 doi: 10.1021/acsami.9b02095
[59]
Sun W, Wang W, Chen D, et al. Valence mediated tunable magnetism and electronic properties by ferroelectric polarization switching in 2D FeI2/In2Se3 van der Waals heterostructures. Nanoscale, 2019, 11, 9931 doi: 10.1039/C9NR01510H
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5947 Times PDF downloads: 360 Times Cited by: 0 Times

    History

    Received: 02 June 2019 Revised: 08 July 2019 Online: Accepted Manuscript: 11 July 2019Uncorrected proof: 15 July 2019Published: 09 August 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Baoxing Zhai, Juan Du, Xueping Li, Congxin Xia, Zhongming Wei. Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study[J]. Journal of Semiconductors, 2019, 40(8): 081509. doi: 10.1088/1674-4926/40/8/081509 B X Zhai, J Du, X P Li, C X Xia, Z M Wei, Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study[J]. J. Semicond., 2019, 40(8): 081509. doi: 10.1088/1674-4926/40/8/081509.Export: BibTex EndNote
      Citation:
      Baoxing Zhai, Juan Du, Xueping Li, Congxin Xia, Zhongming Wei. Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study[J]. Journal of Semiconductors, 2019, 40(8): 081509. doi: 10.1088/1674-4926/40/8/081509

      B X Zhai, J Du, X P Li, C X Xia, Z M Wei, Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study[J]. J. Semicond., 2019, 40(8): 081509. doi: 10.1088/1674-4926/40/8/081509.
      Export: BibTex EndNote

      Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study

      doi: 10.1088/1674-4926/40/8/081509
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return