NEWS AND VIEWS

Exciton–polaritons in semiconductors

Qing Zhang1, and Xinfeng Liu2,

+ Author Affiliations

 Corresponding author: Qing Zhang, Email: Q_zhang@pku.edu.cn; Xinfeng Liu, liuxf@nanoctr.cn

PDF

Turn off MathJax



[1]
Huang K. Lattice vibrations and optical waves in ionic crystals. Nature, 1951, 167, 779 doi: 10.1038/167779b0
[2]
Henry C, Hopfield J. Raman scattering by polaritons. Phys Rev Lett, 1965, 15, 964 doi: 10.1103/PhysRevLett.15.964
[3]
Hopfield J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys Rev, 1958, 112, 1555 doi: 10.1103/PhysRev.112.1555
[4]
Kasprzak J, Richard M, Kundermann S, et al. Bose–Einstein condensation of exciton polaritons. Nature, 2006, 443, 409 doi: 10.1038/nature05131
[5]
Deng H, Weihs G, Santori C, et al. Condensation of semiconductor microcavity exciton polaritons. Science, 2002, 298, 199 doi: 10.1126/science.1074464
[6]
Christopoulos S, Von Högersthal G B H, Grundy A, et al. Room-temperature polariton lasing in semiconductor microcavities. Phys Rev Lett, 2007, 98, 126405 doi: 10.1103/PhysRevLett.98.126405
[7]
Byrnes T, Kim N Y, Yamamoto Y. Exciton–polariton condensates. Nat Phys, 2014, 10, 803 doi: 10.1038/nphys3143
[8]
Kéna-Cohen S, Forrest S. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat Photon, 2010, 4, 371 doi: 10.1038/nphoton.2010.86
[9]
Plumhof J D, Stöferle T, Mai L, et al. Room-temperature Bose–Einstein condensation of cavity exciton-polaritons in a polymer. Nat Mater, 2013, 13, 247 doi: 10.1038/nmat3825
[10]
Schneider C, Rahimi-Iman A, Kim N Y, et al. An electrically pumped polariton laser. Nature, 2013, 497, 348 doi: 10.1038/nature12036
[11]
Cui Q H, Peng Q, Luo Y, et al. Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. Sci Adv, 2018, 4, eaap9861 doi: 10.1126/sciadv.aap9861
[12]
Ballarini D, De Giorgi M, Cancellieri E, et al. All-optical polariton transistor. Nat Commun, 2013, 4, 1778 doi: 10.1038/ncomms2734
[13]
Gao T, Eldridge P S, Liew T C H, et al. Polariton condensate transistor switch. Phys Rev B, 2012, 85, 235102 doi: 10.1103/PhysRevB.85.235102
[14]
Lien J Y, Chen Y N, Ishida N, et al. Multistability and condensation of exciton–polaritons below threshold. Phys Rev B, 2015, 91, 024511 doi: 10.1103/PhysRevB.91.024511
[15]
Evans T J, Schlaus A, Fu Y, et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv Opt Mater, 2018, 6, 1700982 doi: 10.1002/adom.201700982
[16]
Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 2017, 17, 3982 doi: 10.1021/acs.nanolett.7b01956
[17]
Zhang S, Shang Q, Du W, et al. Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv Opt Mater, 2018, 6, 1701032 doi: 10.1002/adom.201701032
[18]
Shang Q, Zhang S, Liu Z, et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett, 2018, 18, 3335 doi: 10.1021/acs.nanolett.7b04847
[19]
Dufferwiel S, Schwarz S, Withers F, et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat Commun, 2015, 6, 8579 doi: 10.1038/ncomms9579
[20]
Lundt N, Klembt S, Cherotchenko E, et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat Commun, 2016, 7, 13328 doi: 10.1038/ncomms13328
[21]
Low T, Chaves A, Caldwell J D, et al. Polaritons in layered two-dimensional materials. Nat Mater, 2017, 16, 182 doi: 10.1038/nmat4792
[22]
Stranks S D, Snaith H J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotech, 2015, 10, 391 doi: 10.1038/nnano.2015.90
[23]
Sutherland B R, Sargent E H. Perovskite photonic sources. Nat Photon, 2016, 10, 295 doi: 10.1038/nphoton.2016.62
[24]
Zhang Q, Su R, Du W, et al. Advances in small perovskite-based lasers. Small Methods, 2017, 1, 1700163 doi: 10.1002/smtd.201700163
[25]
Fieramosca A, Polimeno L, Ardizzone V, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci Adv, 2019, 5, eaav9967 doi: 10.1126/sciadv.aav9967
Fig. 1.  The principle of the interaction between photons and lattice vibration.

[1]
Huang K. Lattice vibrations and optical waves in ionic crystals. Nature, 1951, 167, 779 doi: 10.1038/167779b0
[2]
Henry C, Hopfield J. Raman scattering by polaritons. Phys Rev Lett, 1965, 15, 964 doi: 10.1103/PhysRevLett.15.964
[3]
Hopfield J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys Rev, 1958, 112, 1555 doi: 10.1103/PhysRev.112.1555
[4]
Kasprzak J, Richard M, Kundermann S, et al. Bose–Einstein condensation of exciton polaritons. Nature, 2006, 443, 409 doi: 10.1038/nature05131
[5]
Deng H, Weihs G, Santori C, et al. Condensation of semiconductor microcavity exciton polaritons. Science, 2002, 298, 199 doi: 10.1126/science.1074464
[6]
Christopoulos S, Von Högersthal G B H, Grundy A, et al. Room-temperature polariton lasing in semiconductor microcavities. Phys Rev Lett, 2007, 98, 126405 doi: 10.1103/PhysRevLett.98.126405
[7]
Byrnes T, Kim N Y, Yamamoto Y. Exciton–polariton condensates. Nat Phys, 2014, 10, 803 doi: 10.1038/nphys3143
[8]
Kéna-Cohen S, Forrest S. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat Photon, 2010, 4, 371 doi: 10.1038/nphoton.2010.86
[9]
Plumhof J D, Stöferle T, Mai L, et al. Room-temperature Bose–Einstein condensation of cavity exciton-polaritons in a polymer. Nat Mater, 2013, 13, 247 doi: 10.1038/nmat3825
[10]
Schneider C, Rahimi-Iman A, Kim N Y, et al. An electrically pumped polariton laser. Nature, 2013, 497, 348 doi: 10.1038/nature12036
[11]
Cui Q H, Peng Q, Luo Y, et al. Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. Sci Adv, 2018, 4, eaap9861 doi: 10.1126/sciadv.aap9861
[12]
Ballarini D, De Giorgi M, Cancellieri E, et al. All-optical polariton transistor. Nat Commun, 2013, 4, 1778 doi: 10.1038/ncomms2734
[13]
Gao T, Eldridge P S, Liew T C H, et al. Polariton condensate transistor switch. Phys Rev B, 2012, 85, 235102 doi: 10.1103/PhysRevB.85.235102
[14]
Lien J Y, Chen Y N, Ishida N, et al. Multistability and condensation of exciton–polaritons below threshold. Phys Rev B, 2015, 91, 024511 doi: 10.1103/PhysRevB.91.024511
[15]
Evans T J, Schlaus A, Fu Y, et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv Opt Mater, 2018, 6, 1700982 doi: 10.1002/adom.201700982
[16]
Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 2017, 17, 3982 doi: 10.1021/acs.nanolett.7b01956
[17]
Zhang S, Shang Q, Du W, et al. Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv Opt Mater, 2018, 6, 1701032 doi: 10.1002/adom.201701032
[18]
Shang Q, Zhang S, Liu Z, et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett, 2018, 18, 3335 doi: 10.1021/acs.nanolett.7b04847
[19]
Dufferwiel S, Schwarz S, Withers F, et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat Commun, 2015, 6, 8579 doi: 10.1038/ncomms9579
[20]
Lundt N, Klembt S, Cherotchenko E, et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat Commun, 2016, 7, 13328 doi: 10.1038/ncomms13328
[21]
Low T, Chaves A, Caldwell J D, et al. Polaritons in layered two-dimensional materials. Nat Mater, 2017, 16, 182 doi: 10.1038/nmat4792
[22]
Stranks S D, Snaith H J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotech, 2015, 10, 391 doi: 10.1038/nnano.2015.90
[23]
Sutherland B R, Sargent E H. Perovskite photonic sources. Nat Photon, 2016, 10, 295 doi: 10.1038/nphoton.2016.62
[24]
Zhang Q, Su R, Du W, et al. Advances in small perovskite-based lasers. Small Methods, 2017, 1, 1700163 doi: 10.1002/smtd.201700163
[25]
Fieramosca A, Polimeno L, Ardizzone V, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci Adv, 2019, 5, eaav9967 doi: 10.1126/sciadv.aav9967
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3827 Times PDF downloads: 286 Times Cited by: 0 Times

    History

    Received: Revised: Online: Accepted Manuscript: 28 August 2019Uncorrected proof: 28 August 2019Published: 01 September 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qing Zhang, Xinfeng Liu. Exciton–polaritons in semiconductors[J]. Journal of Semiconductors, 2019, 40(9): 090401. doi: 10.1088/1674-4926/40/9/090401 Q Zhang, X F Liu, Exciton–polaritons in semiconductors[J]. J. Semicond., 2019, 40(9): 090401. doi: 10.1088/1674-4926/40/9/090401.Export: BibTex EndNote
      Citation:
      Qing Zhang, Xinfeng Liu. Exciton–polaritons in semiconductors[J]. Journal of Semiconductors, 2019, 40(9): 090401. doi: 10.1088/1674-4926/40/9/090401

      Q Zhang, X F Liu, Exciton–polaritons in semiconductors[J]. J. Semicond., 2019, 40(9): 090401. doi: 10.1088/1674-4926/40/9/090401.
      Export: BibTex EndNote

      Exciton–polaritons in semiconductors

      doi: 10.1088/1674-4926/40/9/090401
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return