ARTICLES

Comparative study of various methods for extraction of multi- quantum wells Schottky diode parameters

Elyes Garoudja1, , Walid Filali1, Slimane Oussalah2, Noureddine Sengouga3 and Mohamed Henini4

+ Author Affiliations

 Corresponding author: Elyes Garoudja, egaroudja@cdta.dz

PDF

Turn off MathJax

Abstract: In this work, forward current voltage characteristics for multi-quantum wells Al0.33Ga0.67As Schottky diode were measured at temperature ranges from 100 to 300 K. The main parameters of this Schottky diode, such as the ideality factor, barrier height, series resistance and saturation current, have been extracted using both analytical and heuristics methods. Differential evolution (DE), particle swarm optimization (PSO) and artificial bee colony (ABC) have been chosen as candidate heuristics algorithms, while Cheung technic was selected as analytical extraction method. The obtained results show clearly the high performance of DE algorithms in terms of parameters accuracy, convergence speed and robustness.

Key words: barrier heightheuristic methodsmulti-quantum wellsparameters extractionSchottky diode



[1]
Cheung S, Cheung N. Extraction of Schottky diode parameters from forward current–voltage characteristics. Appl Phys Lett, 1986, 49(2), 85 doi: 10.1063/1.97359
[2]
Werner J H. Schottky barrier and pn-junction I/V plots—Small signal evaluation. Appl Phys A, 1988, 47(3), 291 doi: 10.1007/BF00615935
[3]
Karataş Ş, Altındal Ş. Temperature dependence of barrier heights of Au/n-type GaAs Schottky diodes. Solid-State Electron, 2005, 49(6), 1052 doi: 10.1016/j.sse.2005.02.005
[4]
Dökme İ, Altindal Ş, Bülbül M M. The barrier height inhomogeneity in Al/p-Si Schottky barrier diodes with native insulator layer. Appl Surf Sci, 2006, 252(22), 7749 doi: 10.1016/j.apsusc.2005.09.046
[5]
Karaboga N, Kockanat S, Dogan H. Parameter determination of the schottky barrier diode using by artificial bee colony algorithm. International Symposium on Innovations in Intelligent Systems and Applications, 2011, 6
[6]
Sellai A, Ouennoughi Z. Extraction of illuminated solar cell and Schottky diode parameters using a genetic algorithm. Int J Mod Phys C, 2005, 16(07), 1043 doi: 10.1142/S0129183105007704
[7]
Werner J H, Güttler H H. Barrier inhomogeneities at Schottky contacts. J Appl Phys, 1991, 69(3), 1522 doi: 10.1063/1.347243
[8]
Norde H. A modified forward I–V plot for Schottky diodes with high series resistance. J Appl Phys, 1979, 50(7), 5052 doi: 10.1063/1.325607
[9]
Garoudja E, Kara K, Chouder A, et al. Parameters extraction of photovoltaic module for long-term prediction using artifical bee colony optimization. 3rd International Conference on Control, Engineering & Information Technology (CEIT), 2015, 1
[10]
Li F, Mudanai S P, Fan Y Y, et al. A simulated annealing approach for automatic extraction of device and material parameters of MOS with SiO2 high-K gate stacks. Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium (Cat. No. 03CH37488), 2003, 218
[11]
Wang K, Ye M. Parameter determination of Schottky-barrier diode model using differential evolution. Solid-State Electron, 2009, 53(2), 234 doi: 10.1016/j.sse.2008.11.010
[12]
Kennedy J. Particle swarm optimization. Encyclopedia of Machine Learning, 2010, 760
[13]
Schroder D K. Semiconductor material and device characterization. John Wiley & Sons, 2006
[14]
Mathieu H, Fanet H. Physique des semiconducteurs et des composants électroniques. Dunod Paris, 2001 (in French)
[15]
Sze S M, Ng K K. Physics of semiconductor devices. John Wiley & Sons, 2006
[16]
Filali W, Sengouga N, Oussalah S, et al. Characterisation of temperature dependent parameters of multi-quantum well (MQW) Ti/Au/n-AlGaAs/n-GaAs/n-AlGaAs Schottky diodes. Superlattices Microstruct, 2017, 111, 1010 doi: 10.1016/j.spmi.2017.07.059
[17]
Mari R. Electrical characterization of defects in III–V compound semiconductors by DLTS. PhD Thesis, University of Nottingham, 2011
[18]
Filali W, Oussalah S, Sengouga N, et al. Simulation of p-type Schottky diode based on Al0.29Ga0.71As with titanium/gold Schottky contact. 30th International Conference on Microelectronics (ICM), 2019, 272
Fig. 1.  (Color online) The Schottky diode parameters extraction strategy.

Fig. 2.  (Color online) The DLTS characterization bench at Nottingham University.

Fig. 3.  (Color online) The I–V characteristics of n-type Al0.33Ga0.67As Schottky diode for different temperatures.

Fig. 4.  (Color online) Experimental and simulated I–V characteristics from 0 to 0.7 V at 100 K.

Fig. 5.  (Color online) Experimental and simulated I–V characteristics from 0 to 0.7 V at 300 K.

Fig. 6.  (Color online) Convergence characteristics of DE, PSO and ABC algorithms for T = 100 K.

Fig. 7.  (Color online) Variation of RMSE at each running cycle for DE, PSO and ABC algorithm for T = 100 K.

Table 1.   The setting parameters of DE, PSO and ABC algorithms.

DEPSOABC
Population size: 40
CR: 0.2
MF: 0.5
Swarm size: 100
Inertia weight: 0.4–0.7
C1, C2: 1.2,1.6
Colony size: 160
Limit: 3 × 160 = 480
Cycle: 5000
DownLoad: CSV

Table 2.   The variation range of SBD parameters.

ParameterIs (A)nRs (Ω)
Variation boundary[10–9, 10–6][0, 20][0, 104]
DownLoad: CSV

Table 3.   The obtained results for the temperature range (100–160 K).

TemparatureParameterDEPSOABCCheung
T = 100 KIs1.069 × 10–71.352 × 10–74.816 × 10–75.00 × 10–8
n9.60210.07613.288.61
Rs1.717 × 1031.633 × 1031.286 × 1032217.09
фb0.1760.1740.1630.20
RMSE1.816 × 10–72.715 × 10–72.131 × 10–61.064 × 10–5
Mean1.816 × 10–71.086 × 10–72.693 × 10–6
STD8.050 × 10–221.487 × 10–74.180 × 10–7
T = 120 KIs1.105 × 10–71.083 × 10–71.784 × 10–75.00 × 10–8
n7.9077.8758.6647.12
Rs1.630 × 1031.637 × 1031.520 × 1032.114 × 103
фb0.2140.2150.200.24
RMSE1.679 × 10–71.690 × 10–71.498 × 10–61.305 × 10–5
Mean1.679 × 10–76.763 × 10–82.635 × 10–6
STD2.813 × 10–229.261 × 10–84.234 × 10–7
T = 160 KIs1.437 × 10–71.402 × 10–79.953 × 10–76.00 × 10–8
n5.9625.9379.9355.27
Rs1.483 × 1031.482 × 1034.58 × 1021.875 × 103
фb0.2900.2910.260.33
RMSE4.011 × 10–74.116 × 10–72.601 × 10–61.394 × 10–5
Mean4.011 × 10–71.646 × 10–72.831 × 10–6
STD1.123 × 10–212.254 × 10–74.306 × 10–7
DownLoad: CSV

Table 4.   The obtained results for the temperature range (200–300 K).

TemparatureParameterDEPSOABCCheung
T = 200 KIs2.347 × 10–72.304 × 10–75.560 × 10–77.00 × 10–8
n5.0645.0516.2044.19
Rs1.282 × 1031.280 × 1031.017 × 1031.758 × 103
фb0.3620.3630.3470.42
RMSE7.96 × 10–78.005 × 10–71.441 × 10–61.829 × 10–5
Mean7.968 × 10–73.202 × 10–72.970 × 10–6
STD5.989 × 10–224.384 × 10–78.012 × 10–7
T = 220 KIs9.245 × 10–79.165 × 10–71 × 10–68.00 × 10–8
n6.6236.6046.7993.79
Rs4.871 × 1024.92 × 1024.405 × 1021.736 × 103
фb0.3760.3760.3750.46
RMSE2.119 × 10–62.149 × 10–62.211 × 10–62.315 × 10–5
Mean2.119 × 10–68.596 × 10–73.134 × 10–6
STD9.470 × 10–221.177 × 10–62.519 × 10–7
T = 240 KIs1.212 × 10-71.364 × 10–78.229 × 10–71.00 × 10–7
n3.3723.4866.0783.46
Rs1.799 × 1031.622 × 103100.231.693 × 103
фb0.4560.4540.4160.51
RMSE1.768 × 10–85.763 × 10–84.810 × 10–64.147 × 10–5
Mean1.768 × 10–82.307 × 10–86.223 × 10–6
STD1.544 × 10–223.159 × 10–86.973 × 10–7
T = 300 KIs2.063 × 10–74.208 × 10–78.450 × 10–81.00 × 10–7
n2.7623.4682.8742.82
Rs1.560 × 1036.496 × 10217.6761.480 × 103
фb0.5680.5490.5910.63
RMSE2.539 × 10–83.959 × 10–79.856 × 10–61.971 × 10–4
Mean2.539 × 10–81.583 × 10–71.329 × 10–5
STD3.766 × 10–222.168 × 10–71.170 × 10–5
DownLoad: CSV
[1]
Cheung S, Cheung N. Extraction of Schottky diode parameters from forward current–voltage characteristics. Appl Phys Lett, 1986, 49(2), 85 doi: 10.1063/1.97359
[2]
Werner J H. Schottky barrier and pn-junction I/V plots—Small signal evaluation. Appl Phys A, 1988, 47(3), 291 doi: 10.1007/BF00615935
[3]
Karataş Ş, Altındal Ş. Temperature dependence of barrier heights of Au/n-type GaAs Schottky diodes. Solid-State Electron, 2005, 49(6), 1052 doi: 10.1016/j.sse.2005.02.005
[4]
Dökme İ, Altindal Ş, Bülbül M M. The barrier height inhomogeneity in Al/p-Si Schottky barrier diodes with native insulator layer. Appl Surf Sci, 2006, 252(22), 7749 doi: 10.1016/j.apsusc.2005.09.046
[5]
Karaboga N, Kockanat S, Dogan H. Parameter determination of the schottky barrier diode using by artificial bee colony algorithm. International Symposium on Innovations in Intelligent Systems and Applications, 2011, 6
[6]
Sellai A, Ouennoughi Z. Extraction of illuminated solar cell and Schottky diode parameters using a genetic algorithm. Int J Mod Phys C, 2005, 16(07), 1043 doi: 10.1142/S0129183105007704
[7]
Werner J H, Güttler H H. Barrier inhomogeneities at Schottky contacts. J Appl Phys, 1991, 69(3), 1522 doi: 10.1063/1.347243
[8]
Norde H. A modified forward I–V plot for Schottky diodes with high series resistance. J Appl Phys, 1979, 50(7), 5052 doi: 10.1063/1.325607
[9]
Garoudja E, Kara K, Chouder A, et al. Parameters extraction of photovoltaic module for long-term prediction using artifical bee colony optimization. 3rd International Conference on Control, Engineering & Information Technology (CEIT), 2015, 1
[10]
Li F, Mudanai S P, Fan Y Y, et al. A simulated annealing approach for automatic extraction of device and material parameters of MOS with SiO2 high-K gate stacks. Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium (Cat. No. 03CH37488), 2003, 218
[11]
Wang K, Ye M. Parameter determination of Schottky-barrier diode model using differential evolution. Solid-State Electron, 2009, 53(2), 234 doi: 10.1016/j.sse.2008.11.010
[12]
Kennedy J. Particle swarm optimization. Encyclopedia of Machine Learning, 2010, 760
[13]
Schroder D K. Semiconductor material and device characterization. John Wiley & Sons, 2006
[14]
Mathieu H, Fanet H. Physique des semiconducteurs et des composants électroniques. Dunod Paris, 2001 (in French)
[15]
Sze S M, Ng K K. Physics of semiconductor devices. John Wiley & Sons, 2006
[16]
Filali W, Sengouga N, Oussalah S, et al. Characterisation of temperature dependent parameters of multi-quantum well (MQW) Ti/Au/n-AlGaAs/n-GaAs/n-AlGaAs Schottky diodes. Superlattices Microstruct, 2017, 111, 1010 doi: 10.1016/j.spmi.2017.07.059
[17]
Mari R. Electrical characterization of defects in III–V compound semiconductors by DLTS. PhD Thesis, University of Nottingham, 2011
[18]
Filali W, Oussalah S, Sengouga N, et al. Simulation of p-type Schottky diode based on Al0.29Ga0.71As with titanium/gold Schottky contact. 30th International Conference on Microelectronics (ICM), 2019, 272
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3728 Times PDF downloads: 85 Times Cited by: 0 Times

    History

    Received: 28 November 2019 Revised: 04 February 2020 Online: Accepted Manuscript: 07 April 2020Uncorrected proof: 24 April 2020Published: 01 October 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Elyes Garoudja, Walid Filali, Slimane Oussalah, Noureddine Sengouga, Mohamed Henini. Comparative study of various methods for extraction of multi- quantum wells Schottky diode parameters[J]. Journal of Semiconductors, 2020, 41(10): 102401. doi: 10.1088/1674-4926/41/10/102401 E Garoudja, W Filali, S Oussalah, N Sengouga, M Henini, Comparative study of various methods for extraction of multi- quantum wells Schottky diode parameters[J]. J. Semicond., 2020, 41(10): 102401. doi: 10.1088/1674-4926/41/10/102401.Export: BibTex EndNote
      Citation:
      Elyes Garoudja, Walid Filali, Slimane Oussalah, Noureddine Sengouga, Mohamed Henini. Comparative study of various methods for extraction of multi- quantum wells Schottky diode parameters[J]. Journal of Semiconductors, 2020, 41(10): 102401. doi: 10.1088/1674-4926/41/10/102401

      E Garoudja, W Filali, S Oussalah, N Sengouga, M Henini, Comparative study of various methods for extraction of multi- quantum wells Schottky diode parameters[J]. J. Semicond., 2020, 41(10): 102401. doi: 10.1088/1674-4926/41/10/102401.
      Export: BibTex EndNote

      Comparative study of various methods for extraction of multi- quantum wells Schottky diode parameters

      doi: 10.1088/1674-4926/41/10/102401
      More Information
      • Corresponding author: egaroudja@cdta.dz
      • Received Date: 2019-11-28
      • Revised Date: 2020-02-04
      • Published Date: 2020-10-04

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return