REVIEWS

CMOS analog and mixed-signal phase-locked loops: An overview

Zhao Zhang1, 2,

+ Author Affiliations

 Corresponding author: Zhao Zhang, Email: zhangzhao11@semi.ac.cn

PDF

Turn off MathJax

Abstract: CMOS analog and mixed-signal phase-locked loops (PLL) are widely used in varies of the system-on-chips (SoC) as the clock generator or frequency synthesizer. This paper presents an overview of the AMS-PLL, including: 1) a brief introduction of the basics of the charge-pump based PLL, which is the most widely used AMS-PLL architecture due to its simplicity and robustness; 2) a summary of the design issues of the basic CPPLL architecture; 3) a systematic introduction of the techniques for the performance enhancement of the CPPLL; 4) a brief overview of ultra-low-jitter AMS-PLL architectures which can achieve lower jitter (< 100 fs) with lower power consumption compared with the CPPLL, including the injection-locked PLL (ILPLL), sub-sampling (SSPLL) and sampling PLL (SPLL); 5) a discussion about the consideration of the AMS-PLL architecture selection, which could help designers meet their performance requirements.

Key words: phase-locked loop (PLL)charge-pump based PLL (CPPLL)ultra-low-jitter PLLinjection-locked PLL (ILPLL)sub-sampling PLL (SSPLL)sampling PLL (SPLL)



[1]
Liu H L, Shirane A, Okada K, et al. A 265-μW fractional-N digital PLL with seamless automatic switching sub-sampling/sampling feedback path and duty-cycled frequency-locked loop in 65-nm CMOS. IEEE J Solid-State Circuits, 2019, 54, 3478 doi: 10.1109/JSSC.2019.2936967
[2]
Fan Y P, Xiang B, Zhang D, et al. Digital leakage compensation for a low-power and low-jitter 0.5-to-5GHz PLL in 10nm FinFET CMOS technology. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 320
[3]
Lazavi B. RF microelectronics. 2nd ed. Los Angeles: Pearson, 2012
[4]
Riley T A D, Copeland M A, Kwasniewski T A. Delta-sigma modulation in fractional-N frequency synthesis. IEEE J Solid-State Circuits, 1993, 28, 553 doi: 10.1109/4.229400
[5]
Shu K, Sinencio S. PLL frequency synthesizer. CMOS PLL Synthesizers: Analysis and design. New York: Springer-Verlag, 2006, 31
[6]
Perrott M H, Trott M D, Sodini C G. A modeling approach for Σ-Δ fractional-N frequency synthesizers allowing straightforward noise analysis. IEEE J Solid-State Circuits, 2002, 37, 1028 doi: 10.1109/JSSC.2002.800925
[7]
Ho C R, Chen M S W. Smoothing the way for digital phase-locked loops: Clock generation in the future with digital signal processing for mitigating spur and interference. IEEE Microw, 2019, 20, 80 doi: 10.1109/MMM.2019.2898022
[8]
Hedayati H, Khalil W, Bakkaloglu B. A 1 MHz bandwidth, 6 GHz 0.18 μm CMOS type-I ΔΣ fractional-N synthesizer for WiMAX applications. IEEE J Solid-State Circuits, 2009, 44, 3244 doi: 10.1109/JSSC.2009.2032713
[9]
Lin T H, Ti C L, Liu Y H. Dynamic current-matching charge pump and gated-offset linearization technique for delta-sigma fractional-N PLLs. IEEE Trans Circuits Syst I, 2009, 56, 877 doi: 10.1109/TCSI.2009.2016180
[10]
Sadeghi V S, Miar Naimi H, Kennedy M P. The role of charge pump mismatch in the generation of integer boundary spurs in fractional-N frequency synthesizers: Why worse can be better. IEEE Trans Circuits Syst II, 2013, 60, 862 doi: 10.1109/TCSII.2013.2285968
[11]
Temporiti E, Albasini G, Bietti I, et al. A 700-kHz bandwidth ΔΣ fractional synthesizer with spurs compensation and linearization techniques for WCDMA applications. IEEE J Solid-State Circuits, 2004, 39, 1446 doi: 10.1109/JSSC.2004.831598
[12]
Arora H, Klemmer N, Morizio J C, et al. Enhanced phase noise modeling of fractional-N frequency synthesizers. IEEE Trans Circuits Syst I, 2005, 52, 379 doi: 10.1109/TCSI.2004.841594
[13]
Khalil W, Hedayati H, Bakkaloglu B, et al. Analysis and modeling of noise folding and spurious emission in wideband fractional-N synthesizers. 2008 IEEE Radio Freq Integr Circuits Symp, 2008, 291
[14]
Lee J S, Keel M S, Lim S I, et al. Charge pump with perfect current matching characteristics in phase-locked loops. Electron Lett, 2000, 36, 1907 doi: 10.1049/el:20001358
[15]
Hwang I C, Baek D. A 0.93-mA spur-enhanced frequency synthesizer for L1/L5 dual-band GPS/Galileo RF receiver. IEEE Microw Wirel Compon Lett, 2010, 20, 355 doi: 10.1109/LMWC.2010.2047533
[16]
Mazzanti A, Vahidfar M B, Sosio M, et al. A low phase-noise multi-phase LO generator for wideband demodulators based on reconfigurable sub-harmonic mixers. IEEE J Solid-State Circuits, 2010, 45, 2104 doi: 10.1109/JSSC.2010.2060258
[17]
Chen W H, Loke W F, Jung B. A 0.5-V, 440-μW frequency synthesizer for implantable medical devices. IEEE J Solid-State Circuits, 2012, 47, 1896 doi: 10.1109/JSSC.2012.2196315
[18]
Lou W F, Feng P, Wang H Y, et al. Low power fast settling multi-standard current reusing CMOS fractional-N frequency synthesizer. J Semicond, 2012, 33, 045004 doi: 10.1088/1674-4926/33/4/045004
[19]
Choi Y C, Seong Y J, Yoo Y J, et al. Multi-standard hybrid PLL with low phase-noise characteristics for GSM/EDGE and LTE applications. IEEE Trans Microw Theory Tech, 2015, 63, 3254 doi: 10.1109/TMTT.2015.2469251
[20]
Lai C M, Tan K W, Chen Y J, et al. A UWB impulse-radio timed-array radar with time-shifted direct-sampling architecture in 0.18- $\mu{\rm m}$ CMOS. IEEE Trans Circuits Syst I, 2014, 61, 2074 doi: 10.1109/TCSI.2013.2295896
[21]
Larsson P. A 2-1600-MHz CMOS clock recovery PLL with low-Vdd capability. IEEE J Solid-State Circuits, 1999, 34, 1951 doi: 10.1109/4.808920
[22]
Shi X T, Imfeld K, Tanner S, et al. A low-jitter and low-power CMOS PLL for clock multiplication. 2006 Proc 32nd Eur Solid-State Circuits Conf, 2006, 174
[23]
Lahiri A, Gupta N, Kumar A, et al. A 600 μA 32 kHz input 960 MHz output CP-PLL with 530 ps integrated jitter in 28 nm FD-SOI process. IEEE J Solid-State Circuits, 2015, 50, 1680 doi: 10.1109/JSSC.2015.2412680
[24]
Jung W, Choi H, Jeong C, et al. A 1.2mW 0.02mm2 2GHz current-controlled PLL based on a self-biased voltage-to-current converter. 2007 IEEE International Solid-State Circuits Conference, 2007, 310
[25]
Cheng S, Tong H, Silva-Martinez J, et al. Design and analysis of an ultrahigh-speed glitch-free fully differential charge pump with minimum output current variation and accurate matching. IEEE Trans Circuits Syst II, 2006, 53, 843 doi: 10.1109/TCSII.2006.879100
[26]
Yang Y C, Lu S S. A single-VCO fractional-N frequency synthesizer for digital TV tuners. IEEE Trans Ind Electron, 2010, 57, 3207 doi: 10.1109/TIE.2009.2038394
[27]
Abdulaziz M, Forsberg T, Tormanen M, et al. A 10-mW mm-wave phase-locked loop with improved lock time in 28-nm FD-SOI CMOS. IEEE Trans Microw Theory Tech, 2019, 67, 1588 doi: 10.1109/TMTT.2019.2896566
[28]
Liang C F, Chen S H, Liu S I. A digital calibration technique for charge pumps in phase-locked systems. IEEE J Solid-State Circuits, 2008, 43, 390 doi: 10.1109/JSSC.2007.914283
[29]
Chiu W H, Chang T S, Lin T H. A charge pump current mismatch calibration technique for ΔΣ fractional-N PLLs in 0.18-μm CMOS. IEEE Asian Solid-State Circuit Conference, 2009, 73
[30]
Chen Y W, Yu Y H, Chen Y J E. A 0.18-μm CMOS dual-band frequency synthesizer with spur reduction calibration. IEEE Microw Wirel Compon Lett, 2013, 23, 551 doi: 10.1109/LMWC.2013.2279113
[31]
Liu S B, Sun D P, Ding R X, et al. A multiplexing DAPD technique for fast-locking and charge pumps calibration in PLLs. IEEE Microw Wirel Compon Lett, 2019, 29, 535 doi: 10.1109/LMWC.2019.2923891
[32]
Zhang Z, Liu L Y, Wu N J, et al. Source-switched charge pump with reverse leakage compensation technique for spur reduction of wideband PLL. Electron Lett, 2016, 52, 1211 doi: 10.1049/el.2016.1036
[33]
Shen K Y, Syed Farooq S F, Fan Y P, et al. A flexible, low-power analog PLL for SoC and processors in 14nm CMOS. IEEE Trans Circuits Syst I, 2018, 65, 2109 doi: 10.1109/TCSI.2017.2784319
[34]
Xiang B, Fan Y P, Ayers J, et al. A 0.5V-to-0.9V 0.2GHz-to-5GHz ultra-low-power digitally-assisted analog ring PLL with less than 200ns lock time in 22nm FinFET CMOS technology. 2020 IEEE Custom Integrated Circuits Conference (CICC), 2020, 1
[35]
Shekhar S, Gangopadhyay D, Woo E C, et al. A 2.4-GHz extended-range type-I ΔΣ fractional-N synthesizer with 1.8-MHz loop bandwidth and −110-dBc/Hz phase noise. IEEE Trans Circuits Syst II, 2011, 58, 472 doi: 10.1109/TCSII.2011.2158752
[36]
Lu L, Chen J H, Yuan L, et al. An 18-mW 1.175–2-GHz frequency synthesizer with constant bandwidth for DVB-T tuners. IEEE Trans Microw Theory Tech, 2009, 57, 928 doi: 10.1109/TMTT.2009.2014449
[37]
Lou W F, Liu X D, Feng P, et al. An integrated 0.38–6 GHz, 9–12 GHz fully differential fractional-N frequency synthesizer for multi-standard reconfigurable MIMO communication application. Analog Integr Circ Sig Process, 2014, 78, 807 doi: 10.1007/s10470-013-0246-0
[38]
Zhang Z, Yang J C, Liu L Y, et al. 0.1–5 GHz wideband ΔΣ fractional-N frequency synthesiser for software-defined radio application. IET Circuits Devices Syst, 2019, 13, 1071 doi: 10.1049/iet-cds.2018.5271
[39]
Zhang Z, Liu L Y, Feng P, et al. A 2.4–3.6-GHz wideband subharmonically injection-locked PLL with adaptive injection timing alignment technique. IEEE Trans VLSI Syst, 2017, 25, 929 doi: 10.1109/TVLSI.2016.2619362
[40]
Elsayed M M, Abdul-Latif M, Sanchez-Sinencio E. A spur-frequency-boosting PLL with a –74 dBc reference-spur suppression in 90 nm digital CMOS. IEEE J Solid-State Circuits, 2013, 48, 2104 doi: 10.1109/JSSC.2013.2266865
[41]
Lee T C, Lee W L. A spur suppression technique for phase-locked frequency synthesizers. 2006 IEEE International Solid State Circuits Conference, 2006, 2432
[42]
Çatlı B, Nazemi A, Ali T, et al. A sub-200 fs RMS jitter capacitor multiplier loop filter-based PLL in 28 nm CMOS for high-speed serial communication applications. Proceedings of the IEEE 2013 Custom Integrated Circuits Conference, 2013, 1
[43]
Lahiri A, Gupta N. A 0.0175mm2 600μW 32kHz input 307MHz output PLL with 190psrms jitter in 28nm FD-SOI. 42nd Eur Solid-State Circuits Conf, 2016, 339
[44]
Sadhu B, Ferriss M A, Natarajan A S, et al. A linearized, low-phase-noise VCO-based 25-GHz PLL with autonomic biasing. IEEE J Solid-State Circuits, 2013, 48, 1138 doi: 10.1109/JSSC.2013.2252513
[45]
Ferriss M, Plouchart J O, Natarajan A, et al. An integral path self-calibration scheme for a dual-loop PLL. IEEE J Solid-State Circuits, 2013, 48, 996 doi: 10.1109/JSSC.2013.2239114
[46]
Zhang Z, Zhu G, Yue C P. A 0.25-0.4V, sub-0.11mW/GHz, 0.15-1.6GHz PLL using an offset dual-path loop architecture with dynamic charge pumps. 2019 Symp VLSI Circuits, 2019, C158
[47]
Sun Y F, Zhang Z, Xu N, et al. A 1.75 mW 1.1 GHz semi-digital fractional-N PLL with TDC-less hybrid loop control. IEEE Microw Wirel Compon Lett, 2012, 22, 654 doi: 10.1109/LMWC.2012.2228178
[48]
Ferriss M, Rylyakov A, Tierno J A, et al. A 28 GHz Hybrid PLL in 32 nm SOI CMOS. IEEE J Solid-State Circuits, 2014, 49, 1027 doi: 10.1109/JSSC.2014.2299273
[49]
Ferriss M, Sadhu B, Rylyakov A, et al. A 13.1-to-28GHz fractional-N PLL in 32nm SOI CMOS with a ΔΣ noise-cancellation scheme. IEEE International Solid-State Circuit Conference, 2015, 192
[50]
Yin W J, Inti R, Elshazly A, et al. A 0.7-to-3.5 GHz 0.6-to-2.8 mW highly digital phase-locked loop with bandwidth tracking. IEEE J Solid-State Circuits, 2011, 46, 1870 doi: 10.1109/JSSC.2011.2157259
[51]
Kim D, Cho S. A hybrid PLL using low-power GRO-TDC for reduced in-band phase noise. IEEE Trans Circuits Syst II, 2019, 66, 232 doi: 10.1109/TCSII.2018.2848218
[52]
Zhu J H, Nandwana R K, Shu G H, et al. A 0.0021 mm2 1.82 mW 2.2 GHz PLL using time-based integral control in 65 nm CMOS. IEEE J Solid-State Circuits, 2017, 52, 8 doi: 10.1109/JSSC.2016.2598768
[53]
Chuang J, Krishnaswamy H. A 0.0049mm2 2.3GHz sub-sampling ring-oscillator PLL with time-based loop filter achieving −236.2dB jitter-FOM. 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, 328
[54]
Homayoun A, Razavi B. Analysis of phase noise in phase/frequency detectors. IEEE Trans Circuits Syst I, 2013, 60, 529 doi: 10.1109/TCSI.2012.2215792
[55]
Vlachogiannakis G, Basetas C, Tsirimokou G, et al. A self-calibrated fractional-N PLL for WiFi 6 / 802.11ax in 28nm FDSOI CMOS. IEEE 45th Eur Solid State Circuits Conf ESSCIRC, 2019, 105
[56]
Jin J, Liu X M, Mo T T, et al. Quantization noise suppression in fractional-N PLLs utilizing glitch-free phase switching multi-modulus frequency divider. IEEE Trans Circuits Syst I, 2012, 59, 926 doi: 10.1109/TCSI.2012.2189042
[57]
Levantino S, Marzin G, Samori C, et al. A wideband fractional-N PLL with suppressed charge-pump noise and automatic loop filter calibration. IEEE J Solid-State Circuits, 2013, 48, 2419 doi: 10.1109/JSSC.2013.2273836
[58]
Kong L, Razavi B. A 2.4 GHz 4 mW integer-N inductorless RF synthesizer. IEEE J Solid-State Circuits, 2016, 51, 626 doi: 10.1109/JSSC.2015.2511157
[59]
Levantino S, Romano L, Pellerano S, et al. Phase noise in digital frequency dividers. IEEE J Solid-State Circuits, 2004, 39, 775 doi: 10.1109/JSSC.2004.826338
[60]
Tasca D, Zanuso M, Levantino S, et al. Low-power divider retiming in a 3–4 GHz fractional-N PLL. IEEE Trans Circuits Syst II, 2011, 58, 200 doi: 10.1109/TCSII.2011.2124510
[61]
Shen K Y J, Farooq S F S, Fan Y P, et al. A 0.17-to-3.5mW 0.15-to-5GHz SoC PLL with 15dB built-in supply noise rejection and self-bandwidth control in 14nm CMOS. 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, 330
[62]
Zhang Z, Yang J C, Liu L Y, et al. A 0.9–2.25-GHz sub-0.2-mW/GHz compact low-voltage low-power hybrid digital PLL with loop bandwidth-tracking technique. IEEE Trans VLSI Syst, 2018, 26, 933 doi: 10.1109/TVLSI.2018.2797280
[63]
Lee J, Park S, Cho S. A 470-μW 5-GHz digitally controlled injection-locked multi-modulus frequency divider with an in-phase dual-input injection scheme. IEEE Trans VLSI Syst, 2011, 19, 61 doi: 10.1109/TVLSI.2009.2030575
[64]
Wu L, Luong H C. Analysis and design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz divide-by-4 injection-locked frequency divider with harmonic boosting. IEEE Trans Circuits Syst I, 2013, 60, 2001 doi: 10.1109/TCSI.2013.2256240
[65]
Jang S L, Lai W C, Lin G Y, et al. Injection-locked frequency divider with a resistively distributed resonator for wide-locking-range performance. IEEE Trans Microw Theory Tech, 2019, 67, 505 doi: 10.1109/TMTT.2018.2876826
[66]
Yeh Y L, Chang H Y. Design and analysis of a W-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique. IEEE Trans Microw Theory Tech, 2012, 60, 1617 doi: 10.1109/TMTT.2012.2189244
[67]
Ghilioni A, Mazzanti A, Svelto F. Analysis and design of mm-wave frequency dividers based on dynamic latches with load modulation. IEEE J Solid-State Circuits, 2013, 48, 1842 doi: 10.1109/JSSC.2013.2258793
[68]
Hussein A I, Paramesh J. Design and self-calibration techniques for inductor-less millimeter-wave frequency dividers. IEEE J Solid-State Circuits, 2017, 52, 1521 doi: 10.1109/JSSC.2017.2681801
[69]
Chen Y, Yang Z S, Zhao X T, et al. A 6.5 × 7 μm2 0.98-to-1.5 mW nonself-oscillation-mode frequency divider-by-2 achieving a single-band untuned locking range of 166.6% (4–44 GHz). IEEE Solid-State Circuits Lett, 2019, 2, 37 doi: 10.1109/LSSC.2019.2920226
[70]
Krishna M V, Jain A, Quadir N A, et al. A 1V 2mW 17GHz multi-modulus frequency divider based on TSPC logic using 65nm CMOS. 40th Eur Solid State Circuits Conf ESSCIRC, 2014, 431
[71]
Park D, Lee W, Jeon S, et al. A 2.5-GHz 860μW charge-recycling fractional-N frequency synthesizer in 130nm CMOS. 2008 IEEE Symp VLSI Circuits, 2008, 88
[72]
Chang C H, Yang C Y, Lee Y, et al. A 3.4mW 2.3-to-2.7GHz frequency synthesizer in 0.18-µm CMOS. 2013 Proceedings of the ESSCIRC (ESSCIRC), 2013, 53
[73]
Moon J W, Kim S G, Kwon D H, et al. A 0.4-V, 500-MHz, ultra-low-power phase-locked loop for near-threshold voltage operation. Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, 2014, 1
[74]
Moon J W, Choi K C, Choi W Y. A 0.4-V, 90~350-MHz PLL with an active loop-filter charge pump. IEEE Trans Circuits Syst II, 2014, 61, 319 doi: 10.1109/TCSII.2014.2312800
[75]
Cheng K H, Tsai Y C, Lo Y L, et al. A 0.5-V 0.4–2.24-GHz inductorless phase-locked loop in a system-on-chip. IEEE Trans Circuits Syst I, 2011, 58, 849 doi: 10.1109/TCSI.2010.2089559
[76]
Lo Y L, Yang W B, Chao T S, et al. Designing an ultralow-voltage phase-locked loop using a bulk-driven technique. IEEE Trans Circuits Syst II, 2009, 56, 339 doi: 10.1109/TCSII.2009.2019160
[77]
Ikeda S, Kamimura T, Lee S, et al. A sub-1mW 5.5-GHz PLL with digitally-calibrated ILFD and linearized varactor for low supply voltage operation. 2013 IEEE Radio Freq Integr Circuits Symp RFIC, 2013, 439
[78]
Hsieh H H, Lu C T, Lu L H. A 0.5-V 1.9-GHz low-power phase-locked loop in 0.18-μm CMOS. 2007 IEEE Symp VLSI Circuits, 2007, 164
[79]
Ikeda S, Lee S Y, Ito H, et al. A 0.5 V 5.96-GHz PLL with amplitude-regulated current-reuse VCO. IEEE Microw Wirel Compon Lett, 2017, 27, 302 doi: 10.1109/LMWC.2017.2662001
[80]
Gangasani G R, Kinget P R. A 0.5 V, 9-GHz sub-integer frequency synthesizer using multi-phase injection-locked prescaler for phase-switching-based programmable division with automatic injection-lock calibration in 45-nm CMOS. IEEE Trans Circuits Syst II, 2019, 66, 803 doi: 10.1109/TCSII.2019.2910075
[81]
Hegazi E, Abidi A A. Varactor characteristics, oscillator tuning curves, and AM-FM conversion. IEEE J Solid-State Circuits, 2003, 38, 1033 doi: 10.1109/JSSC.2003.811968
[82]
Lin T H, Kaiser W J. A 900-MHz 2.5-mA CMOS frequency synthesizer with an automatic SC tuning loop. IEEE J Solid-State Circuits, 2001, 36, 424 doi: 10.1109/4.910481
[83]
Aktas A, Ismail M. CMOS PLL calibration techniques. IEEE Circuits Devices Mag, 2004, 20, 6 doi: 10.1109/MCD.2004.1343243
[84]
Lin T H, Lai Y J. An agile VCO frequency calibration technique for a 10-GHz CMOS PLL. IEEE J Solid-State Circuits, 2007, 42, 340 doi: 10.1109/JSSC.2006.889360
[85]
Lee J, Kim K, Lee J, et al. A 480-MHz to 1-GHz sub-picosecond clock generator with a fast and accurate automatic frequency calibration in 0.13-µm CMOS. 2007 IEEE Asian Solid-State Circuits Conf, 2007, 67
[86]
Huang D P, Li W, Zhou J, et al. A frequency synthesizer with optimally coupled QVCO and harmonic-rejection SSBmixer for multi-standard wireless receiver. IEEE J Solid-State Circuits, 2011, 46, 1307 doi: 10.1109/JSSC.2011.2124970
[87]
Shin J, Shin H. A fast and high-precision VCO frequency calibration technique for wideband ΔΣ fractional-N frequency synthesizers. IEEE Trans Circuits Syst I, 2010, 57, 1573 doi: 10.1109/TCSI.2009.2036057
[88]
Shin J, Shin H. A 1.9–3.8 GHz ΔΣ fractional-N PLL frequency synthesizer with fast auto-calibration of loop bandwidth and VCO frequency. IEEE J Solid-State Circuits, 2012, 47, 665 doi: 10.1109/JSSC.2011.2179733
[89]
Lu L, Gong Z C, Liao Y C, et al. A 975-to-1960MHz fast-locking fractional-N synthesizer with adaptive bandwidth control and 4/4.5 prescaler for digital TV tuners. 2009 IEEE International Solid-State Circuits Conference, 2009, 396
[90]
Zhang Z, Yang J C, Liu L Y, et al. A fast auto-frequency calibration technique for wideband PLL with wide reference frequency range. 2018 IEEE Asian Solid-State Circuits Conf (A-SSCC), 2018, 227
[91]
Hu A, Liu D S, Zhang K F, et al. A 0.045- to 2.5- GHz frequency synthesizer with TDC-based AFC and phase switching multi-modulus divider. 2019 IEEE 62nd Int Midwest Symp Circuits Syst MWSCAS, 2019, 722
[92]
Li C Y, Lee C L, Hu M H, et al. A fast locking-in and low jitter PLLWith a process-immune locking-in monitor. IEEE Trans Very Large Scale Integr VLSI Syst, 2014, 22, 2216 doi: 10.1109/TVLSI.2013.2285977
[93]
Zhao B, Lian Y, Yang H Z. A low-power fast-settling bond-wire frequency synthesizer with a dynamic-bandwidth scheme. IEEE Trans Circuits Syst I, 2013, 60, 1188 doi: 10.1109/TCSI.2013.2249177
[94]
Kuang X F, Wu N J. A fast-settling PLL frequency synthesizer with direct frequency presetting. 2006 IEEE International Solid State Circuits Conference, 2006, 741
[95]
Yan X Z, Kuang X F, Wu N J. A smart frequency presetting technique for fast lock-in LC-PLL frequency synthesizer. 2009 IEEE Int Symp Circuits Syst, 2009, 1525
[96]
Liu X D, Feng P, Liu L Y, et al. Low power low phase noise phase locked loop frequency synthesizer with fast locking mode for 2.4 GHz applications. Jpn J Appl Phys, 2014, 53, 04EE18 doi: 10.7567/JJAP.53.04EE18
[97]
Chiu W H, Huang Y H, Lin T H. A dynamic phase error compensation technique for fast-locking phase-locked loops. IEEE J Solid-State Circuits, 2010, 45, 1137 doi: 10.1109/JSSC.2010.2046235
[98]
Siriburanon T, Liu H L, Nakata K, et al. A 28-GHz fractional-N frequency synthesizer with reference and frequency doublers for 5G cellular. 41st Eur Solid-State Circuits Conf ESSCIRC, 2015, 76
[99]
Hsueh Y L, Cho L C, Shen C H, et al. A 0.29mm2 frequency synthesizer in 40nm CMOS with 0.19psrms jitter and –100dBc reference spur for 802.11ac. 2014 IEEE International Solid-State Circuits (ISSCC), 2014, 472
[100]
Zhang G. Linearised charge pump independent of current mismatch through timing rearrangement. Electron Lett, 2010, 46, 33 doi: 10.1049/el.2010.2555
[101]
Tang Z W, Wan X X, Wang M G, et al. A 50-to-930MHz quadrature-output fractional-N frequency synthesizer with 770-to-1860MHz single-inductor LC-VCO and without noise folding effect for multistandard DTV tuners. 2013 IEEE International Solid-State Circuits Conference, 2013, 358
[102]
Jee D W, Suh Y, Kim B, et al. A FIR-embedded phase interpolator based noise filtering for wide-bandwidth fractional-N PLL. IEEE J Solid-State Circuits, 2013, 48, 2795 doi: 10.1109/JSSC.2013.2282620
[103]
Kao T K, Liang C F, Chiu H H, et al. A wideband fractional-N ring PLL with fractional-spur suppression using spectrally shaped segmentation. 2013 IEEE International Solid-State Circuits Conference, 2013, 416
[104]
Heng C H, Song B S. A 1.8-GHz CMOS fractional-N frequency synthesizer with randomized multiphase VCO. IEEE J Solid-State Circuits, 2003, 38, 848 doi: 10.1109/JSSC.2003.811872
[105]
Hung C C, Liu S I. A noise filtering technique for fractional-N frequency synthesizers. IEEE Trans Circuits Syst II, 2011, 58, 139 doi: 10.1109/TCSII.2011.2110390
[106]
Park P, Park D, Cho S. A 2.4 GHz fractional-N frequency synthesizer with high-OSR ΔΣ modulator and nested PLL. IEEE J Solid-State Circuits, 2012, 47, 2433 doi: 10.1109/JSSC.2012.2209809
[107]
Song F, Zhao Y, Wu B, et al. A fractional-N synthesizer with 110fsrms jitter and a reference quadrupler for wideband 802.11ax. 2019 IEEE International Solid- State Circuits Conference (ISSCC), 2019, 264
[108]
Park D, Cho S. A 14.2 mW 2.55-to-3 GHz cascaded PLL with reference injection and 800 MHz delta-sigma modulator in 0.13 μm CMOS. IEEE J Solid-State Circuits, 2012, 47, 2989 doi: 10.1109/JSSC.2012.2217856
[109]
Nandwana R K, Anand T, Saxena S, et al. A calibration-free fractional-N ring PLL using hybrid phase/current-mode phase interpolation method. IEEE J Solid-State Circuits, 2015, 50, 882 doi: 10.1109/JSSC.2014.2385756
[110]
Gupta M, Song B S. A 1.8-GHz spur-cancelled fractional-N frequency synthesizer with LMS-based DAC gain calibration. IEEE J Solid-State Circuits, 2006, 41, 2842 doi: 10.1109/JSSC.2006.884829
[111]
Swaminathan A, Wang K J, Galton I. A wide-bandwidth 2.4 GHz ISM band fractional-N PLL with adaptive phase noise cancellation. IEEE J Solid-State Circuits, 2007, 42, 2639 doi: 10.1109/JSSC.2007.908763
[112]
Zhang Y, Mueller J H, Mohr B, et al. A wideband fractional-N synthesizer with low effort adaptive phase noise cancellation for low-power short-range standards. 2015 IEEE Radio Freq Integr Circuits Symp RFIC, 2015, 71
[113]
Meninger S E, Perrott M H. A 1-MHz bandwidth 3.6-GHz 0.18-μm CMOS fractional-N synthesizer utilizing a hybrid PFD/DAC structure for reduced broadband phase noise. IEEE J Solid-State Circuits, 2006, 41, 966 doi: 10.1109/JSSC.2006.870894
[114]
Jian H Y, Xu Z W, Wu Y C, et al. A fractional-N PLL for multiband (0.8–6 GHz) communications using binary-weighted D/A differentiator and offset-frequency Δ-Σ modulator. IEEE J Solid-State Circuits, 2010, 45, 768 doi: 10.1109/JSSC.2010.2040232
[115]
Liang C F, Wang P Y. A wideband fractional-N ring PLL using a near-ground pre-distorted switched-capacitor loop filter. 2015 IEEE International Solid-State Circuits Conference (ISSCC), 2015, 1
[116]
Yu X Y, Sun Y F, Rhee W, et al. An FIR-embedded noise filtering method for ΔΣ fractional-N PLL clock generators. IEEE J Solid-State Circuits, 2009, 44, 2426 doi: 10.1109/JSSC.2009.2021086
[117]
Yu X Y, Sun Y F, Rhee W, et al. A ΔΣ fractional-N synthesizer with customized noise shaping for WCDMA/HSDPA applications. IEEE J Solid-State Circuits, 2009, 44, 2193 doi: 10.1109/JSSC.2009.2022301
[118]
Kong L, Razavi B. A 2.4-GHz RF fractional-N synthesizer with BW = 0.25fREF. IEEE J Solid-State Circuits, 2018, 53, 1707 doi: 10.1109/JSSC.2018.2796544
[119]
Sanyal A, Sun N, Yu X Y, et al. Fractional-N PLL with multi-element fractional divider for noise reduction. Electron Lett, 2016, 52, 809 doi: 10.1049/el.2016.0680
[120]
Zhang Y L, Sanyal A, Yu X Y, et al. A fractional-N PLL with space–time averaging for quantization noise reduction. IEEE J Solid-State Circuits, 2020, 55, 602 doi: 10.1109/JSSC.2019.2950154
[121]
Hu Y Z, Chen X, Siriburanon T, et al. A 21.7-to-26.5GHz charge-sharing locking quadrature PLL with implicit digital frequency-tracking loop achieving 75fs jitter and −250dB FoM. 2020 IEEE International Solid- State Circuits Conference (ISSCC), 2020, 276
[122]
Turker D, Bekele A, Upadhyaya P, et al. A 7.4-to-14GHz PLL with 54fsrms jitter in 16nm FinFET for integrated RF-data-converter SoCs. 2018 IEEE International Solid-State Circuits Conference (ISSCC), 2018, 378
[123]
Lee J, Wang H D. Study of subharmonically injection-locked PLLs. IEEE J Solid-State Circuits, 2009, 44, 1539 doi: 10.1109/JSSC.2009.2016701
[124]
Zhang Z, Yang J C, Liu L Y, et al. An 18–23 GHz 57.4-fs RMS jitter −253.5-dB FoM sub-harmonically injection-locked all-digital PLL with single-ended injection technique and ILFD aided adaptive injection timing alignment technique. IEEE Trans Circuits Syst I, 2019, 66, 3733 doi: 10.1109/TCSI.2019.2911531
[125]
Huang Y C, Liu S I. A 2.4-GHz subharmonically injection-locked PLL with self-calibrated injection timing. IEEE J Solid-State Circuits, 2013, 48, 417 doi: 10.1109/JSSC.2012.2227609
[126]
Wei C L, Kuan T K, Liu S I. A subharmonically injection-locked PLL with calibrated injection pulsewidth. IEEE Trans Circuits Syst II, 2015, 62, 548 doi: 10.1109/TCSII.2015.2407753
[127]
Liang C F, Hsiao K J. An injection-locked ring PLL with self-aligned injection window. 2011 IEEE International Solid-State Circuits Conference, 2011, 90
[128]
Lee I T, Chen Y J, Liu S I, et al. A divider-less sub-harmonically injection-locked PLL with self-adjusted injection timing. 2013 IEEE International Solid-State Circuits Conference, 2013, 414
[129]
Zhang Z, Liu L Y, Wu N J. A novel 2.4-to-3.6 GHz wideband subharmonically injection-locked PLL with adaptively-aligned injection timing. 2014 IEEE Asian Solid-State Circuits Conf (A-SSCC), 2014, 369
[130]
Choi S, Yoo S, Lim Y, et al. A PVT-robust and low-jitter ring-VCO-based injection-locked clock multiplier with a continuous frequency-tracking loop using a replica-delay cell and a dual-edge phase detector. IEEE J Solid-State Circuits, 2016, 51, 1878 doi: 10.1109/JSSC.2016.2574804
[131]
Kim M, Choi S, Seong T, et al. A low-jitter and fractional-resolution injection-locked clock multiplier using a DLL-based real-time PVT calibrator with replica-delay cells. IEEE J Solid-State Circuits, 2016, 51, 401 doi: 10.1109/JSSC.2015.2496781
[132]
Lee D, Lee T, Kim Y J, et al. A 21%-jitter-improved self-aligned dividerless injection-locked PLL with a VCO control voltage ripple-compensated phase detector. IEEE Trans Circuits Syst II, 2016, 63, 733 doi: 10.1109/TCSII.2016.2530098
[133]
Chang H Y, Yeh Y L, Liu Y C, et al. A low-jitter low-phase-noise 10-GHz sub-harmonically injection-locked PLL with self-aligned DLL in 65-nm CMOS technology. IEEE Trans Microw Theory Tech, 2014, 62, 543 doi: 10.1109/TMTT.2014.2302747
[134]
Chang H Y, Chan C C, Shen I Y E, et al. Design and analysis of CMOS low-phase-noise low-jitter subharmonically injection-locked VCO with FLL self-alignment technique. IEEE Trans Microw Theory Tech, 2016, 64, 4632 doi: 10.1109/TMTT.2016.2623784
[135]
Huang K, Wang Z Q, Zheng X Q, et al. A 80 mW 40 Gb/s transmitter with automatic serializing time window search and 2-tap pre-emphasis in 65 nm CMOS technology. IEEE Trans Circuits Syst I, 2015, 62, 1441 doi: 10.1109/TCSI.2015.2411791
[136]
Yoo S, Choi S, Kim J, et al. A low-integrated-phase-noise 27–30-GHz injection-locked frequency multiplier with an ultra-low-power frequency-tracking loop for mm-wave-band 5G transceivers. IEEE J Solid-State Circuits, 2018, 53, 375 doi: 10.1109/JSSC.2017.2749420
[137]
Yoon H, Park S, Choi J. A low-jitter injection-locked multi-frequency generator using digitally controlled oscillators and time-interleaved calibration. IEEE J Solid-State Circuits, 2019, 54, 1564 doi: 10.1109/JSSC.2019.2893513
[138]
Yoon H, Kim J, Park S, et al. A −31dBc integrated-phase-noise 29GHz fractional-N frequency synthesizer supporting multiple frequency bands for backward-compatible 5G using a frequency doubler and injection-locked frequency multipliers. 2018 IEEE International Solid-State Circuits Conference (ISSCC), 2018, 366
[139]
Choi S, Yoo S, Lee Y, et al. An ultra-low-jitter 22.8-GHz ring-LC-hybrid injection-locked clock multiplier with a multiplication factor of 114. IEEE J Solid-State Circuits, 2019, 54, 927 doi: 10.1109/JSSC.2018.2883090
[140]
Shin D, Koh K J. An injection frequency-locked loop: Autonomous injection frequency tracking loop with phase noise self-calibration for power-efficient mm-wave signal sources. IEEE J Solid-State Circuits, 2018, 53, 825 doi: 10.1109/JSSC.2017.2782762
[141]
Yoo S, Choi S, Lee Y, et al. A 140fsrms-jitter and –72dBc-reference-spur ring-VCO-based injection-locked clock multiplier using a background triple-point frequency/phase/slope calibrator. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 490
[142]
Liu X L, Luong H C. A fully integrated 0.27-THz injection-locked frequency synthesizer with frequency-tracking loop in 65-nm CMOS. IEEE J Solid-State Circuits, 2020, 55, 1051 doi: 10.1109/JSSC.2019.2954232
[143]
Tseng Y H, Yeh C W, Liu S I. A 2.25–2.7 GHz area-efficient subharmonically injection-locked fractional-N frequency synthesizer with a fast-converging correlation loop. IEEE Trans Circuits Syst I, 2017, 64, 811 doi: 10.1109/TCSI.2016.2620151
[144]
Yang J C, Zhang Z, Qi N, et al. 2.4–3.2 GHz robust self-injecting injection-locked phase-locked loop. Jpn J Appl Phys, 2018, 57, 04FF05 doi: 10.7567/JJAP.57.04FF05
[145]
Zhang H S, Narayanan A T, Herdian H, et al. 0.2mW 70fs rms-jitter injection-locked PLL using de-sensitized SSPD-based injecting-time self-alignment achieving –270dB FoM and –66dBc reference spur. 2019 Symposium on VLSI Circuits, 2019, C38
[146]
Yang J C, Zhang Z, Qi N, et al. A 0.45-to-1.8 GHz synthesized injection-locked bang-bang phase locked loop with fine frequency tuning circuits. Sci China Inf Sci, 2019, 62, 62405 doi: 10.1007/s11432-018-9423-y
[147]
Lin C Y, Hung Y T, Lin T H. A 2.4-GHz 500-µW 370-fsrms integrated jitter sub-sampling sub-harmonically injection-locked PLL in 90-nm CMOS. 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2019, 91
[148]
Gao X, Klumperink E A M, Bohsali M, et al. A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N2. IEEE J Solid-State Circuits, 2009, 44, 3253 doi: 10.1109/JSSC.2009.2032723
[149]
Gao X, Klumperink E A M, Socci G, et al. Spur reduction techniques for phase-locked loops exploiting A sub-sampling phase detector. IEEE J Solid-State Circuits, 2010, 45, 1809 doi: 10.1109/JSSC.2010.2053094
[150]
Gao X, Klumperink E, Socci G, et al. A 2.2GHz sub-sampling PLL with 0.16psrms jitter and −125dBc/Hz in-band phase noise at 700µW loop-components power. 2010 Symposium on VLSI Circuits, 139
[151]
Szortyka V, Shi Q X, Raczkowski K, et al. A 42 mW 200 fs-jitter 60 GHz sub-sampling PLL in 40 nm CMOS. IEEE J Solid-State Circuits, 2015, 50, 2025 doi: 10.1109/JSSC.2015.2442998
[152]
Sharkia A, Mirabbasi S, Shekhar S. A type-I sub-sampling PLL with a 100 × 100 μm2 footprint and –255-dB FOM. IEEE J Solid-State Circuits, 2018, 53, 3553 doi: 10.1109/JSSC.2018.2874013
[153]
Yang X F, Chan C H, Zhu Y, et al. A −246dB jitter-FoM 2.4GHz calibration-free ring-oscillator PLL achieving 9% jitter variation over PVT. 2019 IEEE International Solid- State Circuits Conference (ISSCC), 2019, 260
[154]
Hsu C W, Tripurari K, Yu S A, et al. A sub-sampling-assisted phase-frequency detector for low-noise PLLs with robust operation under supply interference. IEEE Trans Circuits Syst I, 2015, 62, 90 doi: 10.1109/TCSI.2014.2359719
[155]
Lee D G, Mercier P P. A sub-mW 2.4-GHz active-mixer-adopted sub-sampling PLL achieving an FoM of –256 dB. IEEE J Solid-State Circuits, 2019, 1 doi: 10.1109/JSSC.2019.2951377
[156]
Qian Y C, Chao Y, Liu S I. A sub-sampling PLL with robust operation under supply interference and short re-locking time. 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2019, 95
[157]
Jiang B W, Luong H C. A 23-mW 60-GHz differential sub-sampling PLL with an NMOS-only differential-inductively-tuned VCO. 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2019, 279
[158]
Siriburanon T, Kondo S, Katsuragi M, et al. A low-power low-noise mm-wave subsampling PLL using dual-step-mixing ILFD and tail-coupling quadrature injection-locked oscillator for IEEE 802.11ad. IEEE J Solid-State Circuits, 2016, 51, 1246 doi: 10.1109/JSSC.2016.2529004
[159]
Wang H, Momeni O. A 9.6 mW low-noise millimeter-wave sub-sampling PLL with a divider-less sub-sampling lock detector in 65 nm CMOS. 2019 IEEE Radio Freq Integr Circuits Symp RFIC, 2019, 171
[160]
Yi X, Liang Z P, Feng G Y, et al. A 93.4-to-104.8 GHz 57 mW fractional-N cascaded sub-sampling PLL with true in-phase injection-coupled QVCO in 65 nm CMOS. 2016 IEEE Radio Freq Integr Circuits Symp RFIC, 2016, 122
[161]
Lee S, Takano K, Hara S, et al. A −40-dBc integrated-phase-noise 45-GHz sub-sampling PLL with 3.9-dBm output and 2.1% DC-to-RF efficiency. 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2019, 175
[162]
El-Halwagy W, Nag A, Hisayasu P, et al. A 28-GHz quadrature fractional-N frequency synthesizer for 5G transceivers with less than 100-fs jitter based on cascaded PLL architecture. IEEE Trans Microw Theory Tech, 2017, 65, 396 doi: 10.1109/TMTT.2016.2647698
[163]
Ting H H, Lee T C. A 5.25GHz subsampling PLL with a VCO-phase-noise suppression technique. 2020 IEEE International Solid- State Circuits Conference (ISSCC), 2020, 390
[164]
Nagam S S, Kinget P R. A low-jitter ring-oscillator phase-locked loop using feedforward noise cancellation with a sub-sampling phase detector. IEEE J Solid-State Circuits, 2018, 53, 703 doi: 10.1109/JSSC.2017.2788876
[165]
Kim J, Lim Y, Yoon H, et al. An ultra-low-jitter, mmW-band frequency synthesizer based on digital subsampling PLL using optimally spaced voltage comparators. IEEE J Solid-State Circuits, 2019, 54, 3466 doi: 10.1109/JSSC.2019.2936765
[166]
Yang Z S, Chen Y, Yang S H, et al. A 25.4-to-29.5GHz 10.2mW isolated sub-sampling PLL achieving –252.9dB jitter-power FoM and –63dBc reference spur. 2019 IEEE International Solid- State Circuits Conference (ISSCC), 2019, 270
[167]
Zhang Z, Zhu G, Yue C P. A 0.65V 12-to-16GHz sub-sampling PLL with 56.4fsrms integrated jitter and –256.4dB FoM. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 488
[168]
Zhang Z, Zhu G, Yue C P. A 0.65-V 12-16-GHz sub-sampling PLL with 56.4-fsrms integrated jitter and –256.4-dB FoM. IEEE J Solid-State Circuits, 2020, 55, 1665 doi: 10.1109/JSSC.2020.2967562
[169]
Lim Y, Kim J, Jo Y, et al. A 170MHz-lock-in-range and −253dB-FoM jitter 12-to-14.5GHz subsampling PLL with a 150µW frequency-disturbance-correcting loop using a low-power unevenly spaced edge generator. 2020 IEEE International Solid- State Circuits Conference (ISSCC), 2020, 280
[170]
Liao D Y, Dai F F, Nauta B, et al. A 2.4-GHz 16-phase sub-sampling fractional-N PLL with robust soft loop switching. IEEE J Solid-State Circuits, 2018, 53, 715 doi: 10.1109/JSSC.2018.2791486
[171]
Liao D Y, Wang R X, Dai F F. A low-noise inductor-less fractional-N sub-sampling PLL with multi-ring oscillator. 2017 IEEE Radio Freq Integr Circuits Symp RFIC, 2017, 108
[172]
Chang W S, Huang P C, Lee T C. A fractional-N divider-less phase-locked loop with a subsampling phase detector. IEEE J Solid-State Circuits, 2014, 49, 2964 doi: 10.1109/JSSC.2014.2359670
[173]
Bajestan M M, Attah H, Entesari K. A 2.8–4.3GHz wideband fractional-N sub-sampling synthesizer with −112.5dBc/Hz in-band phase noise. 2016 IEEE Radio Freq Integr Circuits Symp RFIC, 2016, 126
[174]
Narayanan A T, Katsuragi M, Kimura K, et al. A fractional-N sub-sampling PLL using a pipelined phase-interpolator with an FoM of –250 dB. IEEE J Solid-State Circuits, 2016, 51, 1630 doi: 10.1109/JSSC.2016.2539344
[175]
Raczkowski K, Markulic N, Hershberg B, et al. A 9.2–12.7 GHz wideband fractional-N subsampling PLL in 28 nm CMOS with 280 fs RMS jitter. IEEE J Solid-State Circuits, 2015, 50, 1203 doi: 10.1109/JSSC.2015.2403373
[176]
Markulic N, Raczkowski K, Martens E, et al. A DTC-based subsampling PLL capable of self-calibrated fractional synthesis and two-point modulation. IEEE J Solid-State Circuits, 2016, 51, 3078 doi: 10.1109/JSSC.2016.2596766
[177]
Markulic N, Renukaswamy P T, Martens E, et al. A 5.5-GHz background-calibrated subsampling polar transmitter with –41.3-dB EVM at 1024 QAM in 28-nm CMOS. IEEE J Solid-State Circuits, 2019, 54, 1059 doi: 10.1109/JSSC.2018.2886324
[178]
Shi Q X, Bunsen K, Markulic N, et al. A self-calibrated 16-GHz subsampling-PLL-based fast-chirp FMCW modulator with 1.5-GHz bandwidth. IEEE J Solid-State Circuits, 2019, 54, 3503 doi: 10.1109/JSSC.2019.2941113
[179]
Renukaswamy P T, Markulic N, Park S, et al. A 12mW 10GHz FMCW PLL based on an integrating DAC with 90kHz rms frequency error for 23MHz/µs slope and 1.2GHz chirp bandwidth. 2020 IEEE International Solid- State Circuits Conference (ISSCC), 2020, 278
[180]
Siriburanon T, Kondo S, Kimura K, et al. A 2.2 GHz –242 dB-FOM 4.2 mW ADC-PLL using digital sub-sampling architecture. IEEE J Solid-State Circuits, 2016, 51, 1385 doi: 10.1109/JSSC.2016.2546304
[181]
Chen Z Z, Wang Y H, Shin J, et al. Sub-sampling all-digital fractional-N frequency synthesizer with −111dBc/Hz in-band phase noise and an FOM of −242dB. 2015 IEEE International Solid-State Circuits Conference (ISSCC), 2015, 1
[182]
Chang W S, Lee T C. A 5 GHz fractional-N ADC-based digital phase-locked loops with –243.8 dB FOM. IEEE Trans Circuits Syst I, 2016, 63, 1845 doi: 10.1109/TCSI.2016.2599516
[183]
Liu M L, Ma R, Liu S B, et al. A 5-GHz low-power low-noise integer-N digital subsampling PLL with SAR ADC PD. IEEE Trans Microw Theory Tech, 2018, 66, 4078 doi: 10.1109/TMTT.2018.2840987
[184]
Liao D Y, Zhang Y C, Dai F F, et al. An mm-wave synthesizer with robust locking reference-sampling PLL and wide-range injection-locked VCO. IEEE J Solid-State Circuits, 2020, 55, 536 doi: 10.1109/JSSC.2019.2959513
[185]
Yang Z S, Chen Y, Mak P I, et al. A 0.003-mm2 440fsRMS-jitter and -64dBc-reference-spur ring-VCO-based type-I PLL using a current-reuse sampling phase detector in 28-nm CMOS. 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2019, 283
[186]
Ko C T, Kuan T K, Shen R P, et al. A 7-nm FinFET CMOS PLL with 388-fs jitter and –80-dBc reference spur featuring a track-and-hold charge pump and automatic loop gain control. IEEE J Solid-State Circuits, 2020, 55, 1043 doi: 10.1109/JSSC.2019.2959735
[187]
Sharma J, Krishnaswamy H. A 2.4-GHz reference-sampling phase-locked loop that simultaneously achieves low-noise and low-spur performance. IEEE J Solid-State Circuits, 2019, 54, 1407 doi: 10.1109/JSSC.2018.2889690
[188]
Raj M, Bekele A, Turker D, et al. A 164fsrms 9-to-18GHz sampling phase detector based PLL with in-band noise suppression and robust frequency acquisition in 16nm FinFET. 2017 Symposium on VLSI Circuits, 2017, 182
[189]
Gao X, Burg O, Wang H S, et al. A 2.7-to-4.3GHz, 0.16psrms-jitter, −246.8dB-FOM, digital fractional-N sampling PLL in 28nm CMOS. 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, 174
[190]
Wu W H, Yao C W, Godbole K, et al. A 28-nm 75-fsrms analog fractional-N sampling PLL with a highly linear DTC incorporating background DTC gain calibration and reference clock duty cycle correction. IEEE J Solid-State Circuits, 2019, 54, 1254 doi: 10.1109/JSSC.2019.2899726
[191]
Mercandelli M, Santiccioli A, Parisi A, et al. A 12.5GHz fractional-N type-I sampling PLL achieving 58fs integrated jitter. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 274
[192]
Tao J C, Heng C H. A 2.2-GHz 3.2-mW DTC-free sampling ΔΣ fractional-N PLL with –110-dBc/Hz in-band phase noise and –246-dB FoM and –83-dBc reference spur. IEEE Trans Circuits Syst I, 2019, 66, 3317 doi: 10.1109/TCSI.2019.2926326
Fig. 1.  (a). Block diagram of the basic CPPLL. (b) Transfer curve of PFD and CP. (c) Timing diagram.

Fig. 2.  Linear phase noise model, CPPLL loop dynamics, and noise transfer functions of each building blocks.

Fig. 3.  (Color online) (a) Timing diagram of the CPPLL with CP current mismatch. (b) VC-ripple-induced reference spur on the PLL output spectrum. (c) VC-ripple-induced deterministic jitter (DJ) on the PLL output clock eye.

Fig. 4.  (Color online) Quantization noise effect with (a) narrow and (b) wide loop bandwidth, respectively.

Fig. 5.  (Color online) Degradation of the in-band phase noise and fractional spur due to the PFD/CP nonlinearity.

Fig. 6.  Schematics of CPs with current mismatch suppression techniques.

Fig. 7.  Conceptual block diagram of the CPPLL with CP current mismatch calibration technique.

Fig. 8.  Examples of (a) SC-LPF[33] and (b) SC-LPF with RC-LPF (sampling loop filter)[3].

Fig. 9.  (Color online) Conceptual block diagram of (a) fully differential CPPLL and (b) CPPLL with spur frequency boosting technique.

Fig. 10.  (Color online) Area reduction techniques: (a) capacitance multiplier, (b) dual-path loop CPPLL, (c) hybrid digital PLL, and (d) time-based PLL.

Fig. 11.  (a) Divider with retiming DFF. (b) Divider with retiming DFF and calibration circuit for preventing metastability issue.

Fig. 12.  (Color online) (a) Gated CP. (b) Gated CP with current mismatch suppression technique. (c) Retiming DFF operates at prescaler output frequency. (d) PLL with current reuse technique.

Fig. 13.  AFC techniques: (a) Vtune monitoring technique, (b) relative period comparison technique, (c) counter-based AFC, (d) VCO-counting AFC, (e) four-phase counting AFC, and (f) TDC-assisted AFC.

Fig. 14.  Fast fine locking techniques: (a) dynamic loop bandwidth switching technique, (b) frequency presetting technique, and (c) dynamic phase error compensation (DPEC) technique.

Fig. 15.  (Color online) CP linearization techniques: (a) basic idea, (b) CP offset current technique, (c) CP offset current technique with sampling loop filter, and (d) PFD offset delay technique.

Fig. 16.  Quantization noise suppression techniques: (a) sub-integer-N divider technique, (b) phase-interpolator (PI) based compensation technique, (c) DTC-based compensation technique, (d) phase-domain quantization noise filtering technique, (e) reference frequency multiplication technique, (f) current-mode DAC based compensation technique, (g) finite-impulse-response-embedded (FIR-embedded) noise filtering technique, and (h) space-time averaging technique.

Fig. 17.  (Color online) ILPLL: (a) Block diagram of the basic ILPLL and the principle of the phase noise suppression of the ILPLL, (b) schematic of DILO and SILO with their injection timing, (c) ILPLL with injection timing calibration, and (d) conceptual block diagram of the ILPLL with adaptive injection timing alignment techniques.

Fig. 18.  (Color online) SSPLL: (a) block diagram of the integer-N SSPLL, (b) timing diagram and the transfer characteristics of the SSPD/SSCP, (c) simplified block diagram of the fractional-N SSPLL, and (d) simplified block diagram of the digital SSPLL.

Fig. 19.  SPLL: simplified block diagram of (a) the integer-N SPLL and (b) fractional-N SPLL.

Table 1.   Summary of the features of the AMS-PLL architectures

Architecture Pros Cons Suitable application scenarios
CPPLL Simple and robust 1. CP-induced in-band phase noise is multiplied by N2 (N is division ratio)
2. Divider noise contributes in-band phase noise
1. Jitter and PLL power requirements are not stringent
2. Generates low-jitter clock without ultra-low jitter reference clock
ILPLL Both in-band and outband phase noise are suppressed simultaneously Large spur induced at large division ratio N Generates ultra-low-jitter clock with small N and ultra-low-jitter reference clock
SSPLL 1. Ultra-low in-band phase noise
2. No divider-induced phase noise
Narrow PD monotonic input range Generates high frequency (e. g. > 20 GHz) ultra-low-jitter clock with large N and ultra-low-jitter reference clock
SPLL 1. Ultra-low in-band phase noise
2. Wider PD monotonic input range than that of SSPLL
Divider-induced phase noise still exists Generates low frequency (e. g. < 10 GHz) ultra-low-jitter clock with large N and ultra-low-jitter reference clock
DownLoad: CSV
[1]
Liu H L, Shirane A, Okada K, et al. A 265-μW fractional-N digital PLL with seamless automatic switching sub-sampling/sampling feedback path and duty-cycled frequency-locked loop in 65-nm CMOS. IEEE J Solid-State Circuits, 2019, 54, 3478 doi: 10.1109/JSSC.2019.2936967
[2]
Fan Y P, Xiang B, Zhang D, et al. Digital leakage compensation for a low-power and low-jitter 0.5-to-5GHz PLL in 10nm FinFET CMOS technology. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 320
[3]
Lazavi B. RF microelectronics. 2nd ed. Los Angeles: Pearson, 2012
[4]
Riley T A D, Copeland M A, Kwasniewski T A. Delta-sigma modulation in fractional-N frequency synthesis. IEEE J Solid-State Circuits, 1993, 28, 553 doi: 10.1109/4.229400
[5]
Shu K, Sinencio S. PLL frequency synthesizer. CMOS PLL Synthesizers: Analysis and design. New York: Springer-Verlag, 2006, 31
[6]
Perrott M H, Trott M D, Sodini C G. A modeling approach for Σ-Δ fractional-N frequency synthesizers allowing straightforward noise analysis. IEEE J Solid-State Circuits, 2002, 37, 1028 doi: 10.1109/JSSC.2002.800925
[7]
Ho C R, Chen M S W. Smoothing the way for digital phase-locked loops: Clock generation in the future with digital signal processing for mitigating spur and interference. IEEE Microw, 2019, 20, 80 doi: 10.1109/MMM.2019.2898022
[8]
Hedayati H, Khalil W, Bakkaloglu B. A 1 MHz bandwidth, 6 GHz 0.18 μm CMOS type-I ΔΣ fractional-N synthesizer for WiMAX applications. IEEE J Solid-State Circuits, 2009, 44, 3244 doi: 10.1109/JSSC.2009.2032713
[9]
Lin T H, Ti C L, Liu Y H. Dynamic current-matching charge pump and gated-offset linearization technique for delta-sigma fractional-N PLLs. IEEE Trans Circuits Syst I, 2009, 56, 877 doi: 10.1109/TCSI.2009.2016180
[10]
Sadeghi V S, Miar Naimi H, Kennedy M P. The role of charge pump mismatch in the generation of integer boundary spurs in fractional-N frequency synthesizers: Why worse can be better. IEEE Trans Circuits Syst II, 2013, 60, 862 doi: 10.1109/TCSII.2013.2285968
[11]
Temporiti E, Albasini G, Bietti I, et al. A 700-kHz bandwidth ΔΣ fractional synthesizer with spurs compensation and linearization techniques for WCDMA applications. IEEE J Solid-State Circuits, 2004, 39, 1446 doi: 10.1109/JSSC.2004.831598
[12]
Arora H, Klemmer N, Morizio J C, et al. Enhanced phase noise modeling of fractional-N frequency synthesizers. IEEE Trans Circuits Syst I, 2005, 52, 379 doi: 10.1109/TCSI.2004.841594
[13]
Khalil W, Hedayati H, Bakkaloglu B, et al. Analysis and modeling of noise folding and spurious emission in wideband fractional-N synthesizers. 2008 IEEE Radio Freq Integr Circuits Symp, 2008, 291
[14]
Lee J S, Keel M S, Lim S I, et al. Charge pump with perfect current matching characteristics in phase-locked loops. Electron Lett, 2000, 36, 1907 doi: 10.1049/el:20001358
[15]
Hwang I C, Baek D. A 0.93-mA spur-enhanced frequency synthesizer for L1/L5 dual-band GPS/Galileo RF receiver. IEEE Microw Wirel Compon Lett, 2010, 20, 355 doi: 10.1109/LMWC.2010.2047533
[16]
Mazzanti A, Vahidfar M B, Sosio M, et al. A low phase-noise multi-phase LO generator for wideband demodulators based on reconfigurable sub-harmonic mixers. IEEE J Solid-State Circuits, 2010, 45, 2104 doi: 10.1109/JSSC.2010.2060258
[17]
Chen W H, Loke W F, Jung B. A 0.5-V, 440-μW frequency synthesizer for implantable medical devices. IEEE J Solid-State Circuits, 2012, 47, 1896 doi: 10.1109/JSSC.2012.2196315
[18]
Lou W F, Feng P, Wang H Y, et al. Low power fast settling multi-standard current reusing CMOS fractional-N frequency synthesizer. J Semicond, 2012, 33, 045004 doi: 10.1088/1674-4926/33/4/045004
[19]
Choi Y C, Seong Y J, Yoo Y J, et al. Multi-standard hybrid PLL with low phase-noise characteristics for GSM/EDGE and LTE applications. IEEE Trans Microw Theory Tech, 2015, 63, 3254 doi: 10.1109/TMTT.2015.2469251
[20]
Lai C M, Tan K W, Chen Y J, et al. A UWB impulse-radio timed-array radar with time-shifted direct-sampling architecture in 0.18- $\mu{\rm m}$ CMOS. IEEE Trans Circuits Syst I, 2014, 61, 2074 doi: 10.1109/TCSI.2013.2295896
[21]
Larsson P. A 2-1600-MHz CMOS clock recovery PLL with low-Vdd capability. IEEE J Solid-State Circuits, 1999, 34, 1951 doi: 10.1109/4.808920
[22]
Shi X T, Imfeld K, Tanner S, et al. A low-jitter and low-power CMOS PLL for clock multiplication. 2006 Proc 32nd Eur Solid-State Circuits Conf, 2006, 174
[23]
Lahiri A, Gupta N, Kumar A, et al. A 600 μA 32 kHz input 960 MHz output CP-PLL with 530 ps integrated jitter in 28 nm FD-SOI process. IEEE J Solid-State Circuits, 2015, 50, 1680 doi: 10.1109/JSSC.2015.2412680
[24]
Jung W, Choi H, Jeong C, et al. A 1.2mW 0.02mm2 2GHz current-controlled PLL based on a self-biased voltage-to-current converter. 2007 IEEE International Solid-State Circuits Conference, 2007, 310
[25]
Cheng S, Tong H, Silva-Martinez J, et al. Design and analysis of an ultrahigh-speed glitch-free fully differential charge pump with minimum output current variation and accurate matching. IEEE Trans Circuits Syst II, 2006, 53, 843 doi: 10.1109/TCSII.2006.879100
[26]
Yang Y C, Lu S S. A single-VCO fractional-N frequency synthesizer for digital TV tuners. IEEE Trans Ind Electron, 2010, 57, 3207 doi: 10.1109/TIE.2009.2038394
[27]
Abdulaziz M, Forsberg T, Tormanen M, et al. A 10-mW mm-wave phase-locked loop with improved lock time in 28-nm FD-SOI CMOS. IEEE Trans Microw Theory Tech, 2019, 67, 1588 doi: 10.1109/TMTT.2019.2896566
[28]
Liang C F, Chen S H, Liu S I. A digital calibration technique for charge pumps in phase-locked systems. IEEE J Solid-State Circuits, 2008, 43, 390 doi: 10.1109/JSSC.2007.914283
[29]
Chiu W H, Chang T S, Lin T H. A charge pump current mismatch calibration technique for ΔΣ fractional-N PLLs in 0.18-μm CMOS. IEEE Asian Solid-State Circuit Conference, 2009, 73
[30]
Chen Y W, Yu Y H, Chen Y J E. A 0.18-μm CMOS dual-band frequency synthesizer with spur reduction calibration. IEEE Microw Wirel Compon Lett, 2013, 23, 551 doi: 10.1109/LMWC.2013.2279113
[31]
Liu S B, Sun D P, Ding R X, et al. A multiplexing DAPD technique for fast-locking and charge pumps calibration in PLLs. IEEE Microw Wirel Compon Lett, 2019, 29, 535 doi: 10.1109/LMWC.2019.2923891
[32]
Zhang Z, Liu L Y, Wu N J, et al. Source-switched charge pump with reverse leakage compensation technique for spur reduction of wideband PLL. Electron Lett, 2016, 52, 1211 doi: 10.1049/el.2016.1036
[33]
Shen K Y, Syed Farooq S F, Fan Y P, et al. A flexible, low-power analog PLL for SoC and processors in 14nm CMOS. IEEE Trans Circuits Syst I, 2018, 65, 2109 doi: 10.1109/TCSI.2017.2784319
[34]
Xiang B, Fan Y P, Ayers J, et al. A 0.5V-to-0.9V 0.2GHz-to-5GHz ultra-low-power digitally-assisted analog ring PLL with less than 200ns lock time in 22nm FinFET CMOS technology. 2020 IEEE Custom Integrated Circuits Conference (CICC), 2020, 1
[35]
Shekhar S, Gangopadhyay D, Woo E C, et al. A 2.4-GHz extended-range type-I ΔΣ fractional-N synthesizer with 1.8-MHz loop bandwidth and −110-dBc/Hz phase noise. IEEE Trans Circuits Syst II, 2011, 58, 472 doi: 10.1109/TCSII.2011.2158752
[36]
Lu L, Chen J H, Yuan L, et al. An 18-mW 1.175–2-GHz frequency synthesizer with constant bandwidth for DVB-T tuners. IEEE Trans Microw Theory Tech, 2009, 57, 928 doi: 10.1109/TMTT.2009.2014449
[37]
Lou W F, Liu X D, Feng P, et al. An integrated 0.38–6 GHz, 9–12 GHz fully differential fractional-N frequency synthesizer for multi-standard reconfigurable MIMO communication application. Analog Integr Circ Sig Process, 2014, 78, 807 doi: 10.1007/s10470-013-0246-0
[38]
Zhang Z, Yang J C, Liu L Y, et al. 0.1–5 GHz wideband ΔΣ fractional-N frequency synthesiser for software-defined radio application. IET Circuits Devices Syst, 2019, 13, 1071 doi: 10.1049/iet-cds.2018.5271
[39]
Zhang Z, Liu L Y, Feng P, et al. A 2.4–3.6-GHz wideband subharmonically injection-locked PLL with adaptive injection timing alignment technique. IEEE Trans VLSI Syst, 2017, 25, 929 doi: 10.1109/TVLSI.2016.2619362
[40]
Elsayed M M, Abdul-Latif M, Sanchez-Sinencio E. A spur-frequency-boosting PLL with a –74 dBc reference-spur suppression in 90 nm digital CMOS. IEEE J Solid-State Circuits, 2013, 48, 2104 doi: 10.1109/JSSC.2013.2266865
[41]
Lee T C, Lee W L. A spur suppression technique for phase-locked frequency synthesizers. 2006 IEEE International Solid State Circuits Conference, 2006, 2432
[42]
Çatlı B, Nazemi A, Ali T, et al. A sub-200 fs RMS jitter capacitor multiplier loop filter-based PLL in 28 nm CMOS for high-speed serial communication applications. Proceedings of the IEEE 2013 Custom Integrated Circuits Conference, 2013, 1
[43]
Lahiri A, Gupta N. A 0.0175mm2 600μW 32kHz input 307MHz output PLL with 190psrms jitter in 28nm FD-SOI. 42nd Eur Solid-State Circuits Conf, 2016, 339
[44]
Sadhu B, Ferriss M A, Natarajan A S, et al. A linearized, low-phase-noise VCO-based 25-GHz PLL with autonomic biasing. IEEE J Solid-State Circuits, 2013, 48, 1138 doi: 10.1109/JSSC.2013.2252513
[45]
Ferriss M, Plouchart J O, Natarajan A, et al. An integral path self-calibration scheme for a dual-loop PLL. IEEE J Solid-State Circuits, 2013, 48, 996 doi: 10.1109/JSSC.2013.2239114
[46]
Zhang Z, Zhu G, Yue C P. A 0.25-0.4V, sub-0.11mW/GHz, 0.15-1.6GHz PLL using an offset dual-path loop architecture with dynamic charge pumps. 2019 Symp VLSI Circuits, 2019, C158
[47]
Sun Y F, Zhang Z, Xu N, et al. A 1.75 mW 1.1 GHz semi-digital fractional-N PLL with TDC-less hybrid loop control. IEEE Microw Wirel Compon Lett, 2012, 22, 654 doi: 10.1109/LMWC.2012.2228178
[48]
Ferriss M, Rylyakov A, Tierno J A, et al. A 28 GHz Hybrid PLL in 32 nm SOI CMOS. IEEE J Solid-State Circuits, 2014, 49, 1027 doi: 10.1109/JSSC.2014.2299273
[49]
Ferriss M, Sadhu B, Rylyakov A, et al. A 13.1-to-28GHz fractional-N PLL in 32nm SOI CMOS with a ΔΣ noise-cancellation scheme. IEEE International Solid-State Circuit Conference, 2015, 192
[50]
Yin W J, Inti R, Elshazly A, et al. A 0.7-to-3.5 GHz 0.6-to-2.8 mW highly digital phase-locked loop with bandwidth tracking. IEEE J Solid-State Circuits, 2011, 46, 1870 doi: 10.1109/JSSC.2011.2157259
[51]
Kim D, Cho S. A hybrid PLL using low-power GRO-TDC for reduced in-band phase noise. IEEE Trans Circuits Syst II, 2019, 66, 232 doi: 10.1109/TCSII.2018.2848218
[52]
Zhu J H, Nandwana R K, Shu G H, et al. A 0.0021 mm2 1.82 mW 2.2 GHz PLL using time-based integral control in 65 nm CMOS. IEEE J Solid-State Circuits, 2017, 52, 8 doi: 10.1109/JSSC.2016.2598768
[53]
Chuang J, Krishnaswamy H. A 0.0049mm2 2.3GHz sub-sampling ring-oscillator PLL with time-based loop filter achieving −236.2dB jitter-FOM. 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, 328
[54]
Homayoun A, Razavi B. Analysis of phase noise in phase/frequency detectors. IEEE Trans Circuits Syst I, 2013, 60, 529 doi: 10.1109/TCSI.2012.2215792
[55]
Vlachogiannakis G, Basetas C, Tsirimokou G, et al. A self-calibrated fractional-N PLL for WiFi 6 / 802.11ax in 28nm FDSOI CMOS. IEEE 45th Eur Solid State Circuits Conf ESSCIRC, 2019, 105
[56]
Jin J, Liu X M, Mo T T, et al. Quantization noise suppression in fractional-N PLLs utilizing glitch-free phase switching multi-modulus frequency divider. IEEE Trans Circuits Syst I, 2012, 59, 926 doi: 10.1109/TCSI.2012.2189042
[57]
Levantino S, Marzin G, Samori C, et al. A wideband fractional-N PLL with suppressed charge-pump noise and automatic loop filter calibration. IEEE J Solid-State Circuits, 2013, 48, 2419 doi: 10.1109/JSSC.2013.2273836
[58]
Kong L, Razavi B. A 2.4 GHz 4 mW integer-N inductorless RF synthesizer. IEEE J Solid-State Circuits, 2016, 51, 626 doi: 10.1109/JSSC.2015.2511157
[59]
Levantino S, Romano L, Pellerano S, et al. Phase noise in digital frequency dividers. IEEE J Solid-State Circuits, 2004, 39, 775 doi: 10.1109/JSSC.2004.826338
[60]
Tasca D, Zanuso M, Levantino S, et al. Low-power divider retiming in a 3–4 GHz fractional-N PLL. IEEE Trans Circuits Syst II, 2011, 58, 200 doi: 10.1109/TCSII.2011.2124510
[61]
Shen K Y J, Farooq S F S, Fan Y P, et al. A 0.17-to-3.5mW 0.15-to-5GHz SoC PLL with 15dB built-in supply noise rejection and self-bandwidth control in 14nm CMOS. 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, 330
[62]
Zhang Z, Yang J C, Liu L Y, et al. A 0.9–2.25-GHz sub-0.2-mW/GHz compact low-voltage low-power hybrid digital PLL with loop bandwidth-tracking technique. IEEE Trans VLSI Syst, 2018, 26, 933 doi: 10.1109/TVLSI.2018.2797280
[63]
Lee J, Park S, Cho S. A 470-μW 5-GHz digitally controlled injection-locked multi-modulus frequency divider with an in-phase dual-input injection scheme. IEEE Trans VLSI Syst, 2011, 19, 61 doi: 10.1109/TVLSI.2009.2030575
[64]
Wu L, Luong H C. Analysis and design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz divide-by-4 injection-locked frequency divider with harmonic boosting. IEEE Trans Circuits Syst I, 2013, 60, 2001 doi: 10.1109/TCSI.2013.2256240
[65]
Jang S L, Lai W C, Lin G Y, et al. Injection-locked frequency divider with a resistively distributed resonator for wide-locking-range performance. IEEE Trans Microw Theory Tech, 2019, 67, 505 doi: 10.1109/TMTT.2018.2876826
[66]
Yeh Y L, Chang H Y. Design and analysis of a W-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique. IEEE Trans Microw Theory Tech, 2012, 60, 1617 doi: 10.1109/TMTT.2012.2189244
[67]
Ghilioni A, Mazzanti A, Svelto F. Analysis and design of mm-wave frequency dividers based on dynamic latches with load modulation. IEEE J Solid-State Circuits, 2013, 48, 1842 doi: 10.1109/JSSC.2013.2258793
[68]
Hussein A I, Paramesh J. Design and self-calibration techniques for inductor-less millimeter-wave frequency dividers. IEEE J Solid-State Circuits, 2017, 52, 1521 doi: 10.1109/JSSC.2017.2681801
[69]
Chen Y, Yang Z S, Zhao X T, et al. A 6.5 × 7 μm2 0.98-to-1.5 mW nonself-oscillation-mode frequency divider-by-2 achieving a single-band untuned locking range of 166.6% (4–44 GHz). IEEE Solid-State Circuits Lett, 2019, 2, 37 doi: 10.1109/LSSC.2019.2920226
[70]
Krishna M V, Jain A, Quadir N A, et al. A 1V 2mW 17GHz multi-modulus frequency divider based on TSPC logic using 65nm CMOS. 40th Eur Solid State Circuits Conf ESSCIRC, 2014, 431
[71]
Park D, Lee W, Jeon S, et al. A 2.5-GHz 860μW charge-recycling fractional-N frequency synthesizer in 130nm CMOS. 2008 IEEE Symp VLSI Circuits, 2008, 88
[72]
Chang C H, Yang C Y, Lee Y, et al. A 3.4mW 2.3-to-2.7GHz frequency synthesizer in 0.18-µm CMOS. 2013 Proceedings of the ESSCIRC (ESSCIRC), 2013, 53
[73]
Moon J W, Kim S G, Kwon D H, et al. A 0.4-V, 500-MHz, ultra-low-power phase-locked loop for near-threshold voltage operation. Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, 2014, 1
[74]
Moon J W, Choi K C, Choi W Y. A 0.4-V, 90~350-MHz PLL with an active loop-filter charge pump. IEEE Trans Circuits Syst II, 2014, 61, 319 doi: 10.1109/TCSII.2014.2312800
[75]
Cheng K H, Tsai Y C, Lo Y L, et al. A 0.5-V 0.4–2.24-GHz inductorless phase-locked loop in a system-on-chip. IEEE Trans Circuits Syst I, 2011, 58, 849 doi: 10.1109/TCSI.2010.2089559
[76]
Lo Y L, Yang W B, Chao T S, et al. Designing an ultralow-voltage phase-locked loop using a bulk-driven technique. IEEE Trans Circuits Syst II, 2009, 56, 339 doi: 10.1109/TCSII.2009.2019160
[77]
Ikeda S, Kamimura T, Lee S, et al. A sub-1mW 5.5-GHz PLL with digitally-calibrated ILFD and linearized varactor for low supply voltage operation. 2013 IEEE Radio Freq Integr Circuits Symp RFIC, 2013, 439
[78]
Hsieh H H, Lu C T, Lu L H. A 0.5-V 1.9-GHz low-power phase-locked loop in 0.18-μm CMOS. 2007 IEEE Symp VLSI Circuits, 2007, 164
[79]
Ikeda S, Lee S Y, Ito H, et al. A 0.5 V 5.96-GHz PLL with amplitude-regulated current-reuse VCO. IEEE Microw Wirel Compon Lett, 2017, 27, 302 doi: 10.1109/LMWC.2017.2662001
[80]
Gangasani G R, Kinget P R. A 0.5 V, 9-GHz sub-integer frequency synthesizer using multi-phase injection-locked prescaler for phase-switching-based programmable division with automatic injection-lock calibration in 45-nm CMOS. IEEE Trans Circuits Syst II, 2019, 66, 803 doi: 10.1109/TCSII.2019.2910075
[81]
Hegazi E, Abidi A A. Varactor characteristics, oscillator tuning curves, and AM-FM conversion. IEEE J Solid-State Circuits, 2003, 38, 1033 doi: 10.1109/JSSC.2003.811968
[82]
Lin T H, Kaiser W J. A 900-MHz 2.5-mA CMOS frequency synthesizer with an automatic SC tuning loop. IEEE J Solid-State Circuits, 2001, 36, 424 doi: 10.1109/4.910481
[83]
Aktas A, Ismail M. CMOS PLL calibration techniques. IEEE Circuits Devices Mag, 2004, 20, 6 doi: 10.1109/MCD.2004.1343243
[84]
Lin T H, Lai Y J. An agile VCO frequency calibration technique for a 10-GHz CMOS PLL. IEEE J Solid-State Circuits, 2007, 42, 340 doi: 10.1109/JSSC.2006.889360
[85]
Lee J, Kim K, Lee J, et al. A 480-MHz to 1-GHz sub-picosecond clock generator with a fast and accurate automatic frequency calibration in 0.13-µm CMOS. 2007 IEEE Asian Solid-State Circuits Conf, 2007, 67
[86]
Huang D P, Li W, Zhou J, et al. A frequency synthesizer with optimally coupled QVCO and harmonic-rejection SSBmixer for multi-standard wireless receiver. IEEE J Solid-State Circuits, 2011, 46, 1307 doi: 10.1109/JSSC.2011.2124970
[87]
Shin J, Shin H. A fast and high-precision VCO frequency calibration technique for wideband ΔΣ fractional-N frequency synthesizers. IEEE Trans Circuits Syst I, 2010, 57, 1573 doi: 10.1109/TCSI.2009.2036057
[88]
Shin J, Shin H. A 1.9–3.8 GHz ΔΣ fractional-N PLL frequency synthesizer with fast auto-calibration of loop bandwidth and VCO frequency. IEEE J Solid-State Circuits, 2012, 47, 665 doi: 10.1109/JSSC.2011.2179733
[89]
Lu L, Gong Z C, Liao Y C, et al. A 975-to-1960MHz fast-locking fractional-N synthesizer with adaptive bandwidth control and 4/4.5 prescaler for digital TV tuners. 2009 IEEE International Solid-State Circuits Conference, 2009, 396
[90]
Zhang Z, Yang J C, Liu L Y, et al. A fast auto-frequency calibration technique for wideband PLL with wide reference frequency range. 2018 IEEE Asian Solid-State Circuits Conf (A-SSCC), 2018, 227
[91]
Hu A, Liu D S, Zhang K F, et al. A 0.045- to 2.5- GHz frequency synthesizer with TDC-based AFC and phase switching multi-modulus divider. 2019 IEEE 62nd Int Midwest Symp Circuits Syst MWSCAS, 2019, 722
[92]
Li C Y, Lee C L, Hu M H, et al. A fast locking-in and low jitter PLLWith a process-immune locking-in monitor. IEEE Trans Very Large Scale Integr VLSI Syst, 2014, 22, 2216 doi: 10.1109/TVLSI.2013.2285977
[93]
Zhao B, Lian Y, Yang H Z. A low-power fast-settling bond-wire frequency synthesizer with a dynamic-bandwidth scheme. IEEE Trans Circuits Syst I, 2013, 60, 1188 doi: 10.1109/TCSI.2013.2249177
[94]
Kuang X F, Wu N J. A fast-settling PLL frequency synthesizer with direct frequency presetting. 2006 IEEE International Solid State Circuits Conference, 2006, 741
[95]
Yan X Z, Kuang X F, Wu N J. A smart frequency presetting technique for fast lock-in LC-PLL frequency synthesizer. 2009 IEEE Int Symp Circuits Syst, 2009, 1525
[96]
Liu X D, Feng P, Liu L Y, et al. Low power low phase noise phase locked loop frequency synthesizer with fast locking mode for 2.4 GHz applications. Jpn J Appl Phys, 2014, 53, 04EE18 doi: 10.7567/JJAP.53.04EE18
[97]
Chiu W H, Huang Y H, Lin T H. A dynamic phase error compensation technique for fast-locking phase-locked loops. IEEE J Solid-State Circuits, 2010, 45, 1137 doi: 10.1109/JSSC.2010.2046235
[98]
Siriburanon T, Liu H L, Nakata K, et al. A 28-GHz fractional-N frequency synthesizer with reference and frequency doublers for 5G cellular. 41st Eur Solid-State Circuits Conf ESSCIRC, 2015, 76
[99]
Hsueh Y L, Cho L C, Shen C H, et al. A 0.29mm2 frequency synthesizer in 40nm CMOS with 0.19psrms jitter and –100dBc reference spur for 802.11ac. 2014 IEEE International Solid-State Circuits (ISSCC), 2014, 472
[100]
Zhang G. Linearised charge pump independent of current mismatch through timing rearrangement. Electron Lett, 2010, 46, 33 doi: 10.1049/el.2010.2555
[101]
Tang Z W, Wan X X, Wang M G, et al. A 50-to-930MHz quadrature-output fractional-N frequency synthesizer with 770-to-1860MHz single-inductor LC-VCO and without noise folding effect for multistandard DTV tuners. 2013 IEEE International Solid-State Circuits Conference, 2013, 358
[102]
Jee D W, Suh Y, Kim B, et al. A FIR-embedded phase interpolator based noise filtering for wide-bandwidth fractional-N PLL. IEEE J Solid-State Circuits, 2013, 48, 2795 doi: 10.1109/JSSC.2013.2282620
[103]
Kao T K, Liang C F, Chiu H H, et al. A wideband fractional-N ring PLL with fractional-spur suppression using spectrally shaped segmentation. 2013 IEEE International Solid-State Circuits Conference, 2013, 416
[104]
Heng C H, Song B S. A 1.8-GHz CMOS fractional-N frequency synthesizer with randomized multiphase VCO. IEEE J Solid-State Circuits, 2003, 38, 848 doi: 10.1109/JSSC.2003.811872
[105]
Hung C C, Liu S I. A noise filtering technique for fractional-N frequency synthesizers. IEEE Trans Circuits Syst II, 2011, 58, 139 doi: 10.1109/TCSII.2011.2110390
[106]
Park P, Park D, Cho S. A 2.4 GHz fractional-N frequency synthesizer with high-OSR ΔΣ modulator and nested PLL. IEEE J Solid-State Circuits, 2012, 47, 2433 doi: 10.1109/JSSC.2012.2209809
[107]
Song F, Zhao Y, Wu B, et al. A fractional-N synthesizer with 110fsrms jitter and a reference quadrupler for wideband 802.11ax. 2019 IEEE International Solid- State Circuits Conference (ISSCC), 2019, 264
[108]
Park D, Cho S. A 14.2 mW 2.55-to-3 GHz cascaded PLL with reference injection and 800 MHz delta-sigma modulator in 0.13 μm CMOS. IEEE J Solid-State Circuits, 2012, 47, 2989 doi: 10.1109/JSSC.2012.2217856
[109]
Nandwana R K, Anand T, Saxena S, et al. A calibration-free fractional-N ring PLL using hybrid phase/current-mode phase interpolation method. IEEE J Solid-State Circuits, 2015, 50, 882 doi: 10.1109/JSSC.2014.2385756
[110]
Gupta M, Song B S. A 1.8-GHz spur-cancelled fractional-N frequency synthesizer with LMS-based DAC gain calibration. IEEE J Solid-State Circuits, 2006, 41, 2842 doi: 10.1109/JSSC.2006.884829
[111]
Swaminathan A, Wang K J, Galton I. A wide-bandwidth 2.4 GHz ISM band fractional-N PLL with adaptive phase noise cancellation. IEEE J Solid-State Circuits, 2007, 42, 2639 doi: 10.1109/JSSC.2007.908763
[112]
Zhang Y, Mueller J H, Mohr B, et al. A wideband fractional-N synthesizer with low effort adaptive phase noise cancellation for low-power short-range standards. 2015 IEEE Radio Freq Integr Circuits Symp RFIC, 2015, 71
[113]
Meninger S E, Perrott M H. A 1-MHz bandwidth 3.6-GHz 0.18-μm CMOS fractional-N synthesizer utilizing a hybrid PFD/DAC structure for reduced broadband phase noise. IEEE J Solid-State Circuits, 2006, 41, 966 doi: 10.1109/JSSC.2006.870894
[114]
Jian H Y, Xu Z W, Wu Y C, et al. A fractional-N PLL for multiband (0.8–6 GHz) communications using binary-weighted D/A differentiator and offset-frequency Δ-Σ modulator. IEEE J Solid-State Circuits, 2010, 45, 768 doi: 10.1109/JSSC.2010.2040232
[115]
Liang C F, Wang P Y. A wideband fractional-N ring PLL using a near-ground pre-distorted switched-capacitor loop filter. 2015 IEEE International Solid-State Circuits Conference (ISSCC), 2015, 1
[116]
Yu X Y, Sun Y F, Rhee W, et al. An FIR-embedded noise filtering method for ΔΣ fractional-N PLL clock generators. IEEE J Solid-State Circuits, 2009, 44, 2426 doi: 10.1109/JSSC.2009.2021086
[117]
Yu X Y, Sun Y F, Rhee W, et al. A ΔΣ fractional-N synthesizer with customized noise shaping for WCDMA/HSDPA applications. IEEE J Solid-State Circuits, 2009, 44, 2193 doi: 10.1109/JSSC.2009.2022301
[118]
Kong L, Razavi B. A 2.4-GHz RF fractional-N synthesizer with BW = 0.25fREF. IEEE J Solid-State Circuits, 2018, 53, 1707 doi: 10.1109/JSSC.2018.2796544
[119]
Sanyal A, Sun N, Yu X Y, et al. Fractional-N PLL with multi-element fractional divider for noise reduction. Electron Lett, 2016, 52, 809 doi: 10.1049/el.2016.0680
[120]
Zhang Y L, Sanyal A, Yu X Y, et al. A fractional-N PLL with space–time averaging for quantization noise reduction. IEEE J Solid-State Circuits, 2020, 55, 602 doi: 10.1109/JSSC.2019.2950154
[121]
Hu Y Z, Chen X, Siriburanon T, et al. A 21.7-to-26.5GHz charge-sharing locking quadrature PLL with implicit digital frequency-tracking loop achieving 75fs jitter and −250dB FoM. 2020 IEEE International Solid- State Circuits Conference (ISSCC), 2020, 276
[122]
Turker D, Bekele A, Upadhyaya P, et al. A 7.4-to-14GHz PLL with 54fsrms jitter in 16nm FinFET for integrated RF-data-converter SoCs. 2018 IEEE International Solid-State Circuits Conference (ISSCC), 2018, 378
[123]
Lee J, Wang H D. Study of subharmonically injection-locked PLLs. IEEE J Solid-State Circuits, 2009, 44, 1539 doi: 10.1109/JSSC.2009.2016701
[124]
Zhang Z, Yang J C, Liu L Y, et al. An 18–23 GHz 57.4-fs RMS jitter −253.5-dB FoM sub-harmonically injection-locked all-digital PLL with single-ended injection technique and ILFD aided adaptive injection timing alignment technique. IEEE Trans Circuits Syst I, 2019, 66, 3733 doi: 10.1109/TCSI.2019.2911531
[125]
Huang Y C, Liu S I. A 2.4-GHz subharmonically injection-locked PLL with self-calibrated injection timing. IEEE J Solid-State Circuits, 2013, 48, 417 doi: 10.1109/JSSC.2012.2227609
[126]
Wei C L, Kuan T K, Liu S I. A subharmonically injection-locked PLL with calibrated injection pulsewidth. IEEE Trans Circuits Syst II, 2015, 62, 548 doi: 10.1109/TCSII.2015.2407753
[127]
Liang C F, Hsiao K J. An injection-locked ring PLL with self-aligned injection window. 2011 IEEE International Solid-State Circuits Conference, 2011, 90
[128]
Lee I T, Chen Y J, Liu S I, et al. A divider-less sub-harmonically injection-locked PLL with self-adjusted injection timing. 2013 IEEE International Solid-State Circuits Conference, 2013, 414
[129]
Zhang Z, Liu L Y, Wu N J. A novel 2.4-to-3.6 GHz wideband subharmonically injection-locked PLL with adaptively-aligned injection timing. 2014 IEEE Asian Solid-State Circuits Conf (A-SSCC), 2014, 369
[130]
Choi S, Yoo S, Lim Y, et al. A PVT-robust and low-jitter ring-VCO-based injection-locked clock multiplier with a continuous frequency-tracking loop using a replica-delay cell and a dual-edge phase detector. IEEE J Solid-State Circuits, 2016, 51, 1878 doi: 10.1109/JSSC.2016.2574804
[131]
Kim M, Choi S, Seong T, et al. A low-jitter and fractional-resolution injection-locked clock multiplier using a DLL-based real-time PVT calibrator with replica-delay cells. IEEE J Solid-State Circuits, 2016, 51, 401 doi: 10.1109/JSSC.2015.2496781
[132]
Lee D, Lee T, Kim Y J, et al. A 21%-jitter-improved self-aligned dividerless injection-locked PLL with a VCO control voltage ripple-compensated phase detector. IEEE Trans Circuits Syst II, 2016, 63, 733 doi: 10.1109/TCSII.2016.2530098
[133]
Chang H Y, Yeh Y L, Liu Y C, et al. A low-jitter low-phase-noise 10-GHz sub-harmonically injection-locked PLL with self-aligned DLL in 65-nm CMOS technology. IEEE Trans Microw Theory Tech, 2014, 62, 543 doi: 10.1109/TMTT.2014.2302747
[134]
Chang H Y, Chan C C, Shen I Y E, et al. Design and analysis of CMOS low-phase-noise low-jitter subharmonically injection-locked VCO with FLL self-alignment technique. IEEE Trans Microw Theory Tech, 2016, 64, 4632 doi: 10.1109/TMTT.2016.2623784
[135]
Huang K, Wang Z Q, Zheng X Q, et al. A 80 mW 40 Gb/s transmitter with automatic serializing time window search and 2-tap pre-emphasis in 65 nm CMOS technology. IEEE Trans Circuits Syst I, 2015, 62, 1441 doi: 10.1109/TCSI.2015.2411791
[136]
Yoo S, Choi S, Kim J, et al. A low-integrated-phase-noise 27–30-GHz injection-locked frequency multiplier with an ultra-low-power frequency-tracking loop for mm-wave-band 5G transceivers. IEEE J Solid-State Circuits, 2018, 53, 375 doi: 10.1109/JSSC.2017.2749420
[137]
Yoon H, Park S, Choi J. A low-jitter injection-locked multi-frequency generator using digitally controlled oscillators and time-interleaved calibration. IEEE J Solid-State Circuits, 2019, 54, 1564 doi: 10.1109/JSSC.2019.2893513
[138]
Yoon H, Kim J, Park S, et al. A −31dBc integrated-phase-noise 29GHz fractional-N frequency synthesizer supporting multiple frequency bands for backward-compatible 5G using a frequency doubler and injection-locked frequency multipliers. 2018 IEEE International Solid-State Circuits Conference (ISSCC), 2018, 366
[139]
Choi S, Yoo S, Lee Y, et al. An ultra-low-jitter 22.8-GHz ring-LC-hybrid injection-locked clock multiplier with a multiplication factor of 114. IEEE J Solid-State Circuits, 2019, 54, 927 doi: 10.1109/JSSC.2018.2883090
[140]
Shin D, Koh K J. An injection frequency-locked loop: Autonomous injection frequency tracking loop with phase noise self-calibration for power-efficient mm-wave signal sources. IEEE J Solid-State Circuits, 2018, 53, 825 doi: 10.1109/JSSC.2017.2782762
[141]
Yoo S, Choi S, Lee Y, et al. A 140fsrms-jitter and –72dBc-reference-spur ring-VCO-based injection-locked clock multiplier using a background triple-point frequency/phase/slope calibrator. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 490
[142]
Liu X L, Luong H C. A fully integrated 0.27-THz injection-locked frequency synthesizer with frequency-tracking loop in 65-nm CMOS. IEEE J Solid-State Circuits, 2020, 55, 1051 doi: 10.1109/JSSC.2019.2954232
[143]
Tseng Y H, Yeh C W, Liu S I. A 2.25–2.7 GHz area-efficient subharmonically injection-locked fractional-N frequency synthesizer with a fast-converging correlation loop. IEEE Trans Circuits Syst I, 2017, 64, 811 doi: 10.1109/TCSI.2016.2620151
[144]
Yang J C, Zhang Z, Qi N, et al. 2.4–3.2 GHz robust self-injecting injection-locked phase-locked loop. Jpn J Appl Phys, 2018, 57, 04FF05 doi: 10.7567/JJAP.57.04FF05
[145]
Zhang H S, Narayanan A T, Herdian H, et al. 0.2mW 70fs rms-jitter injection-locked PLL using de-sensitized SSPD-based injecting-time self-alignment achieving –270dB FoM and –66dBc reference spur. 2019 Symposium on VLSI Circuits, 2019, C38
[146]
Yang J C, Zhang Z, Qi N, et al. A 0.45-to-1.8 GHz synthesized injection-locked bang-bang phase locked loop with fine frequency tuning circuits. Sci China Inf Sci, 2019, 62, 62405 doi: 10.1007/s11432-018-9423-y
[147]
Lin C Y, Hung Y T, Lin T H. A 2.4-GHz 500-µW 370-fsrms integrated jitter sub-sampling sub-harmonically injection-locked PLL in 90-nm CMOS. 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2019, 91
[148]
Gao X, Klumperink E A M, Bohsali M, et al. A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N2. IEEE J Solid-State Circuits, 2009, 44, 3253 doi: 10.1109/JSSC.2009.2032723
[149]
Gao X, Klumperink E A M, Socci G, et al. Spur reduction techniques for phase-locked loops exploiting A sub-sampling phase detector. IEEE J Solid-State Circuits, 2010, 45, 1809 doi: 10.1109/JSSC.2010.2053094
[150]
Gao X, Klumperink E, Socci G, et al. A 2.2GHz sub-sampling PLL with 0.16psrms jitter and −125dBc/Hz in-band phase noise at 700µW loop-components power. 2010 Symposium on VLSI Circuits, 139
[151]
Szortyka V, Shi Q X, Raczkowski K, et al. A 42 mW 200 fs-jitter 60 GHz sub-sampling PLL in 40 nm CMOS. IEEE J Solid-State Circuits, 2015, 50, 2025 doi: 10.1109/JSSC.2015.2442998
[152]
Sharkia A, Mirabbasi S, Shekhar S. A type-I sub-sampling PLL with a 100 × 100 μm2 footprint and –255-dB FOM. IEEE J Solid-State Circuits, 2018, 53, 3553 doi: 10.1109/JSSC.2018.2874013
[153]
Yang X F, Chan C H, Zhu Y, et al. A −246dB jitter-FoM 2.4GHz calibration-free ring-oscillator PLL achieving 9% jitter variation over PVT. 2019 IEEE International Solid- State Circuits Conference (ISSCC), 2019, 260
[154]
Hsu C W, Tripurari K, Yu S A, et al. A sub-sampling-assisted phase-frequency detector for low-noise PLLs with robust operation under supply interference. IEEE Trans Circuits Syst I, 2015, 62, 90 doi: 10.1109/TCSI.2014.2359719
[155]
Lee D G, Mercier P P. A sub-mW 2.4-GHz active-mixer-adopted sub-sampling PLL achieving an FoM of –256 dB. IEEE J Solid-State Circuits, 2019, 1 doi: 10.1109/JSSC.2019.2951377
[156]
Qian Y C, Chao Y, Liu S I. A sub-sampling PLL with robust operation under supply interference and short re-locking time. 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2019, 95
[157]
Jiang B W, Luong H C. A 23-mW 60-GHz differential sub-sampling PLL with an NMOS-only differential-inductively-tuned VCO. 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2019, 279
[158]
Siriburanon T, Kondo S, Katsuragi M, et al. A low-power low-noise mm-wave subsampling PLL using dual-step-mixing ILFD and tail-coupling quadrature injection-locked oscillator for IEEE 802.11ad. IEEE J Solid-State Circuits, 2016, 51, 1246 doi: 10.1109/JSSC.2016.2529004
[159]
Wang H, Momeni O. A 9.6 mW low-noise millimeter-wave sub-sampling PLL with a divider-less sub-sampling lock detector in 65 nm CMOS. 2019 IEEE Radio Freq Integr Circuits Symp RFIC, 2019, 171
[160]
Yi X, Liang Z P, Feng G Y, et al. A 93.4-to-104.8 GHz 57 mW fractional-N cascaded sub-sampling PLL with true in-phase injection-coupled QVCO in 65 nm CMOS. 2016 IEEE Radio Freq Integr Circuits Symp RFIC, 2016, 122
[161]
Lee S, Takano K, Hara S, et al. A −40-dBc integrated-phase-noise 45-GHz sub-sampling PLL with 3.9-dBm output and 2.1% DC-to-RF efficiency. 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2019, 175
[162]
El-Halwagy W, Nag A, Hisayasu P, et al. A 28-GHz quadrature fractional-N frequency synthesizer for 5G transceivers with less than 100-fs jitter based on cascaded PLL architecture. IEEE Trans Microw Theory Tech, 2017, 65, 396 doi: 10.1109/TMTT.2016.2647698
[163]
Ting H H, Lee T C. A 5.25GHz subsampling PLL with a VCO-phase-noise suppression technique. 2020 IEEE International Solid- State Circuits Conference (ISSCC), 2020, 390
[164]
Nagam S S, Kinget P R. A low-jitter ring-oscillator phase-locked loop using feedforward noise cancellation with a sub-sampling phase detector. IEEE J Solid-State Circuits, 2018, 53, 703 doi: 10.1109/JSSC.2017.2788876
[165]
Kim J, Lim Y, Yoon H, et al. An ultra-low-jitter, mmW-band frequency synthesizer based on digital subsampling PLL using optimally spaced voltage comparators. IEEE J Solid-State Circuits, 2019, 54, 3466 doi: 10.1109/JSSC.2019.2936765
[166]
Yang Z S, Chen Y, Yang S H, et al. A 25.4-to-29.5GHz 10.2mW isolated sub-sampling PLL achieving –252.9dB jitter-power FoM and –63dBc reference spur. 2019 IEEE International Solid- State Circuits Conference (ISSCC), 2019, 270
[167]
Zhang Z, Zhu G, Yue C P. A 0.65V 12-to-16GHz sub-sampling PLL with 56.4fsrms integrated jitter and –256.4dB FoM. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 488
[168]
Zhang Z, Zhu G, Yue C P. A 0.65-V 12-16-GHz sub-sampling PLL with 56.4-fsrms integrated jitter and –256.4-dB FoM. IEEE J Solid-State Circuits, 2020, 55, 1665 doi: 10.1109/JSSC.2020.2967562
[169]
Lim Y, Kim J, Jo Y, et al. A 170MHz-lock-in-range and −253dB-FoM jitter 12-to-14.5GHz subsampling PLL with a 150µW frequency-disturbance-correcting loop using a low-power unevenly spaced edge generator. 2020 IEEE International Solid- State Circuits Conference (ISSCC), 2020, 280
[170]
Liao D Y, Dai F F, Nauta B, et al. A 2.4-GHz 16-phase sub-sampling fractional-N PLL with robust soft loop switching. IEEE J Solid-State Circuits, 2018, 53, 715 doi: 10.1109/JSSC.2018.2791486
[171]
Liao D Y, Wang R X, Dai F F. A low-noise inductor-less fractional-N sub-sampling PLL with multi-ring oscillator. 2017 IEEE Radio Freq Integr Circuits Symp RFIC, 2017, 108
[172]
Chang W S, Huang P C, Lee T C. A fractional-N divider-less phase-locked loop with a subsampling phase detector. IEEE J Solid-State Circuits, 2014, 49, 2964 doi: 10.1109/JSSC.2014.2359670
[173]
Bajestan M M, Attah H, Entesari K. A 2.8–4.3GHz wideband fractional-N sub-sampling synthesizer with −112.5dBc/Hz in-band phase noise. 2016 IEEE Radio Freq Integr Circuits Symp RFIC, 2016, 126
[174]
Narayanan A T, Katsuragi M, Kimura K, et al. A fractional-N sub-sampling PLL using a pipelined phase-interpolator with an FoM of –250 dB. IEEE J Solid-State Circuits, 2016, 51, 1630 doi: 10.1109/JSSC.2016.2539344
[175]
Raczkowski K, Markulic N, Hershberg B, et al. A 9.2–12.7 GHz wideband fractional-N subsampling PLL in 28 nm CMOS with 280 fs RMS jitter. IEEE J Solid-State Circuits, 2015, 50, 1203 doi: 10.1109/JSSC.2015.2403373
[176]
Markulic N, Raczkowski K, Martens E, et al. A DTC-based subsampling PLL capable of self-calibrated fractional synthesis and two-point modulation. IEEE J Solid-State Circuits, 2016, 51, 3078 doi: 10.1109/JSSC.2016.2596766
[177]
Markulic N, Renukaswamy P T, Martens E, et al. A 5.5-GHz background-calibrated subsampling polar transmitter with –41.3-dB EVM at 1024 QAM in 28-nm CMOS. IEEE J Solid-State Circuits, 2019, 54, 1059 doi: 10.1109/JSSC.2018.2886324
[178]
Shi Q X, Bunsen K, Markulic N, et al. A self-calibrated 16-GHz subsampling-PLL-based fast-chirp FMCW modulator with 1.5-GHz bandwidth. IEEE J Solid-State Circuits, 2019, 54, 3503 doi: 10.1109/JSSC.2019.2941113
[179]
Renukaswamy P T, Markulic N, Park S, et al. A 12mW 10GHz FMCW PLL based on an integrating DAC with 90kHz rms frequency error for 23MHz/µs slope and 1.2GHz chirp bandwidth. 2020 IEEE International Solid- State Circuits Conference (ISSCC), 2020, 278
[180]
Siriburanon T, Kondo S, Kimura K, et al. A 2.2 GHz –242 dB-FOM 4.2 mW ADC-PLL using digital sub-sampling architecture. IEEE J Solid-State Circuits, 2016, 51, 1385 doi: 10.1109/JSSC.2016.2546304
[181]
Chen Z Z, Wang Y H, Shin J, et al. Sub-sampling all-digital fractional-N frequency synthesizer with −111dBc/Hz in-band phase noise and an FOM of −242dB. 2015 IEEE International Solid-State Circuits Conference (ISSCC), 2015, 1
[182]
Chang W S, Lee T C. A 5 GHz fractional-N ADC-based digital phase-locked loops with –243.8 dB FOM. IEEE Trans Circuits Syst I, 2016, 63, 1845 doi: 10.1109/TCSI.2016.2599516
[183]
Liu M L, Ma R, Liu S B, et al. A 5-GHz low-power low-noise integer-N digital subsampling PLL with SAR ADC PD. IEEE Trans Microw Theory Tech, 2018, 66, 4078 doi: 10.1109/TMTT.2018.2840987
[184]
Liao D Y, Zhang Y C, Dai F F, et al. An mm-wave synthesizer with robust locking reference-sampling PLL and wide-range injection-locked VCO. IEEE J Solid-State Circuits, 2020, 55, 536 doi: 10.1109/JSSC.2019.2959513
[185]
Yang Z S, Chen Y, Mak P I, et al. A 0.003-mm2 440fsRMS-jitter and -64dBc-reference-spur ring-VCO-based type-I PLL using a current-reuse sampling phase detector in 28-nm CMOS. 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2019, 283
[186]
Ko C T, Kuan T K, Shen R P, et al. A 7-nm FinFET CMOS PLL with 388-fs jitter and –80-dBc reference spur featuring a track-and-hold charge pump and automatic loop gain control. IEEE J Solid-State Circuits, 2020, 55, 1043 doi: 10.1109/JSSC.2019.2959735
[187]
Sharma J, Krishnaswamy H. A 2.4-GHz reference-sampling phase-locked loop that simultaneously achieves low-noise and low-spur performance. IEEE J Solid-State Circuits, 2019, 54, 1407 doi: 10.1109/JSSC.2018.2889690
[188]
Raj M, Bekele A, Turker D, et al. A 164fsrms 9-to-18GHz sampling phase detector based PLL with in-band noise suppression and robust frequency acquisition in 16nm FinFET. 2017 Symposium on VLSI Circuits, 2017, 182
[189]
Gao X, Burg O, Wang H S, et al. A 2.7-to-4.3GHz, 0.16psrms-jitter, −246.8dB-FOM, digital fractional-N sampling PLL in 28nm CMOS. 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, 174
[190]
Wu W H, Yao C W, Godbole K, et al. A 28-nm 75-fsrms analog fractional-N sampling PLL with a highly linear DTC incorporating background DTC gain calibration and reference clock duty cycle correction. IEEE J Solid-State Circuits, 2019, 54, 1254 doi: 10.1109/JSSC.2019.2899726
[191]
Mercandelli M, Santiccioli A, Parisi A, et al. A 12.5GHz fractional-N type-I sampling PLL achieving 58fs integrated jitter. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 274
[192]
Tao J C, Heng C H. A 2.2-GHz 3.2-mW DTC-free sampling ΔΣ fractional-N PLL with –110-dBc/Hz in-band phase noise and –246-dB FoM and –83-dBc reference spur. IEEE Trans Circuits Syst I, 2019, 66, 3317 doi: 10.1109/TCSI.2019.2926326
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 9098 Times PDF downloads: 960 Times Cited by: 0 Times

    History

    Received: 02 July 2020 Revised: 20 September 2020 Online: Accepted Manuscript: 30 September 2020Uncorrected proof: 10 October 2020Published: 03 November 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhao Zhang. CMOS analog and mixed-signal phase-locked loops: An overview[J]. Journal of Semiconductors, 2020, 41(11): 111402. doi: 10.1088/1674-4926/41/11/111402 Z Zhang, CMOS analog and mixed-signal phase-locked loops: An overview[J]. J. Semicond., 2020, 41(11): 111402. doi: 10.1088/1674-4926/41/11/111402.Export: BibTex EndNote
      Citation:
      Zhao Zhang. CMOS analog and mixed-signal phase-locked loops: An overview[J]. Journal of Semiconductors, 2020, 41(11): 111402. doi: 10.1088/1674-4926/41/11/111402

      Z Zhang, CMOS analog and mixed-signal phase-locked loops: An overview[J]. J. Semicond., 2020, 41(11): 111402. doi: 10.1088/1674-4926/41/11/111402.
      Export: BibTex EndNote

      CMOS analog and mixed-signal phase-locked loops: An overview

      doi: 10.1088/1674-4926/41/11/111402
      More Information
      • Corresponding author: Email: zhangzhao11@semi.ac.cn
      • Received Date: 2020-07-02
      • Revised Date: 2020-09-20
      • Published Date: 2020-11-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return