ARTICLES

Controlled growth of Mo2C pyramids on liquid Cu surface

Yixuan Fan1, Le Huang2, Dechao Geng1, and Wenping Hu1

+ Author Affiliations

 Corresponding author: Dechao Geng, Email: gengdechao_1987@tju.edu.cn

PDF

Turn off MathJax

Abstract: Precise spatial control of 2D materials is the key capability of engineering their optical, electronic, and mechanical properties. However, growth of novel 2D Mo2C on Cu surface by chemical vapor deposition method was revealed to be seed-induced 2D growth, limiting further synthesis of complex Mo2C spatial structures. In this research, we demonstrate the controlled growth of Mo2C pyramids with numerous morphologies, which are characterized with clear terraces within the structures. The whole evolution for Mo2C pyramids in the coursed of CVD process has been detected, posing significant potential in probing growth mechanism. The formation of the Mo2C pyramids arises from the supersaturation-induced nucleation and concentration-gradient driven diffused growth of a new Mo2C layer on the edged areas of intrinsic ones, as supported by STEM imaging. This work provides a novel Mo2C-based pyramid structure and further reveals a sliding growth mechanism, which could offer impetus for the design of new 3D spatial structures of Mo2C and other 2D materials.

Key words: Mo2C pyramidsliquid Cuchemical vapor deposition



[1]
Zhang J C, Lin L, Jia K C, et al. Controlled growth of single-crystal graphene films. Adv Mater, 2020, 32, 1903266 doi: 10.1002/adma.201903266
[2]
Liu C, Wang L, Qi J J, et al. Designed growth of large-size 2D single crystals. Adv Mater, 2020, 32, 2000046 doi: 10.1002/adma.202000046
[3]
Cui Y, Li B, Li J B, et al. Chemical vapor deposition growth of two-dimensional heterojunctions. Sci China Phys Mech Astron, 2018, 61, 016801 doi: 10.1007/s11433-017-9105-x
[4]
Kwak W J, Lau K C, Shin C D, et al. A Mo2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life. ACS Nano, 2015, 9, 4129 doi: 10.1021/acsnano.5b00267
[5]
Çakır D, Sevik C, Gülseren O, et al. Mo2C as a high capacity anode material: A first-principles study. J Mater Chem A, 2016, 4, 6029 doi: 10.1039/C6TA01918H
[6]
Liu Y P, Yu G T, Li G D, et al. Frontispiece: coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem Int Ed, 2015, 54, 10752 doi: 10.1002/anie.201583761
[7]
Halim J, Kota S, Lukatskaya M R, et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv Funct Mater, 2016, 26, 3118 doi: 10.1002/adfm.201505328
[8]
Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2017, 2, 16098 doi: 10.1038/natrevmats.2016.98
[9]
Xu C, Wang L B, Liu Z B, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater, 2015, 14, 1135 doi: 10.1038/nmat4374
[10]
Wang L B, Xu C, Liu Z B, et al. Magnetotransport properties in high-quality ultrathin two-dimensional superconducting Mo2C crystals. ACS Nano, 2016, 10, 4504 doi: 10.1021/acsnano.6b00270
[11]
Geng D C, Zhao X X, Li L J, et al. Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface. 2D Mater, 2016, 4, 011012 doi: 10.1088/2053-1583/aa51b7
[12]
Geng D C, Zhao X X, Chen Z X, et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv Mater, 2017, 29, 1700072 doi: 10.1002/adma.201700072
[13]
Deng R X, Zhang H R, Zhang Y H, et al. Graphene/Mo2C heterostructure directly grown by chemical vapor deposition. Chin Phys B, 2017, 26, 067901 doi: 10.1088/1674-1056/26/6/067901
[14]
Qiao J B, Gong Y, Zuo W J, et al. One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting α-Mo2C. Phys Rev B, 2017, 95, 201403 doi: 10.1103/PhysRevB.95.201403
[15]
Geng D, Wu B, Guo Y, et al. Uniform hexagonal graphene flakes and films grown on liquid copper surface. PNAS, 2012, 109, 7992 doi: 10.1073/pnas.1200339109
[16]
Wu Y A, Fan Y, Speller S, et al. Large single crystals of graphene on melted copper using chemical vapor deposition. ACS Nano, 2012, 6, 5010 doi: 10.1021/nn3016629
[17]
Zeng M Q, Tan L F, Wang J, et al. Liquid metal: An innovative solution to uniform graphene films. Chem Mater, 2014, 26, 3637 doi: 10.1021/cm501571h
[18]
Wu B, Geng D C, Xu Z P, et al. Self-organized graphene crystal patterns. NPG Asia Mater, 2013, 5, e36 doi: 10.1038/am.2012.68
[19]
Wang Y, Zheng Y, Xu X F, et al. Electrochemical delamination of CVD-grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano, 2011, 5, 9927 doi: 10.1021/nn203700w
[20]
Hÿtch M J, Snoeck E, Kilaas R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy, 1998, 74, 131 doi: 10.1016/S0304-3991(98)00035-7
Fig. 1.  (Color online) Schematic showing the growth of Mo2C pyramids on liquid Cu substrate.

Fig. 2.  (Color online) Growth and characterization of Mo2C pyramids. (a) Crystal and (b, c) electronic structure of Mo2C from first-principles calculations. (d) Optical images of grown Mo2C pyramids structures on liquid Cu surface. (e, f) XPS spectra of Mo2C flake, indicating existence of Mo and C, respectively. (g–i), AFM images of three typical layered pyramids structures.

Fig. 3.  (Color online) Further characterization and proposed model of Mo2C pyramid structures. (a) Optical images of grown layered Mo2C structures on liquid Cu surface and SiO2/Si substrate. (b) Raman spectrum of Mo2C flake, having characterized peak at around 650 cm–1. (c, d) Optical image of broken layered Mo2C structure, with bare hexagonal profile of Cu left.

Fig. 4.  (Color online) Growth of novel Mo2C pyramid structures. (a) Optical images of the large-area as-grown Mo2C structures on liquid Cu surface and transferred onto SiO2/Si substrate, respectively. (b) AFM image of the single structure, displaying clear layered feature. The inset shows height profile of the structure, showing step feature across the whole flake reflected in thickness. (c–f) Optical images of the growth process of Mo2C structures, showing the time-dependent feature. (g) Schematic diagram illustrates the growth of novel layered Mo2C structures, corresponding to the observations in (c–f).

Fig. 5.  (Color online) STEM characterization of Mo2C pyramid. (a) STEM-ADF image of a typical edge region in the Mo2C pyramids structures. (b) Strain field mapping based on the image shown in (a).

[1]
Zhang J C, Lin L, Jia K C, et al. Controlled growth of single-crystal graphene films. Adv Mater, 2020, 32, 1903266 doi: 10.1002/adma.201903266
[2]
Liu C, Wang L, Qi J J, et al. Designed growth of large-size 2D single crystals. Adv Mater, 2020, 32, 2000046 doi: 10.1002/adma.202000046
[3]
Cui Y, Li B, Li J B, et al. Chemical vapor deposition growth of two-dimensional heterojunctions. Sci China Phys Mech Astron, 2018, 61, 016801 doi: 10.1007/s11433-017-9105-x
[4]
Kwak W J, Lau K C, Shin C D, et al. A Mo2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life. ACS Nano, 2015, 9, 4129 doi: 10.1021/acsnano.5b00267
[5]
Çakır D, Sevik C, Gülseren O, et al. Mo2C as a high capacity anode material: A first-principles study. J Mater Chem A, 2016, 4, 6029 doi: 10.1039/C6TA01918H
[6]
Liu Y P, Yu G T, Li G D, et al. Frontispiece: coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem Int Ed, 2015, 54, 10752 doi: 10.1002/anie.201583761
[7]
Halim J, Kota S, Lukatskaya M R, et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv Funct Mater, 2016, 26, 3118 doi: 10.1002/adfm.201505328
[8]
Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2017, 2, 16098 doi: 10.1038/natrevmats.2016.98
[9]
Xu C, Wang L B, Liu Z B, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater, 2015, 14, 1135 doi: 10.1038/nmat4374
[10]
Wang L B, Xu C, Liu Z B, et al. Magnetotransport properties in high-quality ultrathin two-dimensional superconducting Mo2C crystals. ACS Nano, 2016, 10, 4504 doi: 10.1021/acsnano.6b00270
[11]
Geng D C, Zhao X X, Li L J, et al. Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface. 2D Mater, 2016, 4, 011012 doi: 10.1088/2053-1583/aa51b7
[12]
Geng D C, Zhao X X, Chen Z X, et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv Mater, 2017, 29, 1700072 doi: 10.1002/adma.201700072
[13]
Deng R X, Zhang H R, Zhang Y H, et al. Graphene/Mo2C heterostructure directly grown by chemical vapor deposition. Chin Phys B, 2017, 26, 067901 doi: 10.1088/1674-1056/26/6/067901
[14]
Qiao J B, Gong Y, Zuo W J, et al. One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting α-Mo2C. Phys Rev B, 2017, 95, 201403 doi: 10.1103/PhysRevB.95.201403
[15]
Geng D, Wu B, Guo Y, et al. Uniform hexagonal graphene flakes and films grown on liquid copper surface. PNAS, 2012, 109, 7992 doi: 10.1073/pnas.1200339109
[16]
Wu Y A, Fan Y, Speller S, et al. Large single crystals of graphene on melted copper using chemical vapor deposition. ACS Nano, 2012, 6, 5010 doi: 10.1021/nn3016629
[17]
Zeng M Q, Tan L F, Wang J, et al. Liquid metal: An innovative solution to uniform graphene films. Chem Mater, 2014, 26, 3637 doi: 10.1021/cm501571h
[18]
Wu B, Geng D C, Xu Z P, et al. Self-organized graphene crystal patterns. NPG Asia Mater, 2013, 5, e36 doi: 10.1038/am.2012.68
[19]
Wang Y, Zheng Y, Xu X F, et al. Electrochemical delamination of CVD-grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano, 2011, 5, 9927 doi: 10.1021/nn203700w
[20]
Hÿtch M J, Snoeck E, Kilaas R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy, 1998, 74, 131 doi: 10.1016/S0304-3991(98)00035-7

20050022suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3098 Times PDF downloads: 59 Times Cited by: 0 Times

    History

    Received: 20 May 2020 Revised: 26 May 2020 Online: Accepted Manuscript: 22 June 2020Uncorrected proof: 28 June 2020Published: 04 August 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yixuan Fan, Le Huang, Dechao Geng, Wenping Hu. Controlled growth of Mo2C pyramids on liquid Cu surface[J]. Journal of Semiconductors, 2020, 41(8): 082001. doi: 10.1088/1674-4926/41/8/082001 Y X Fan, L Huang, D C Geng, W P Hu, Controlled growth of Mo2C pyramids on liquid Cu surface[J]. J. Semicond., 2020, 41(8): 082001. doi: 10.1088/1674-4926/41/8/082001.Export: BibTex EndNote
      Citation:
      Yixuan Fan, Le Huang, Dechao Geng, Wenping Hu. Controlled growth of Mo2C pyramids on liquid Cu surface[J]. Journal of Semiconductors, 2020, 41(8): 082001. doi: 10.1088/1674-4926/41/8/082001

      Y X Fan, L Huang, D C Geng, W P Hu, Controlled growth of Mo2C pyramids on liquid Cu surface[J]. J. Semicond., 2020, 41(8): 082001. doi: 10.1088/1674-4926/41/8/082001.
      Export: BibTex EndNote

      Controlled growth of Mo2C pyramids on liquid Cu surface

      doi: 10.1088/1674-4926/41/8/082001
      More Information
      • Corresponding author: Email: gengdechao_1987@tju.edu.cn
      • Received Date: 2020-05-20
      • Revised Date: 2020-05-26
      • Published Date: 2020-08-09

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return