REVIEWS

Recent progress of efficient flexible solar cells based on nanostructures

Yiyi Zhu1, 2, Qianpeng Zhang1, 2, Lei Shu1, 2, Daquan Zhang1, 2 and Zhiyong Fan1, 2, 3,

+ Author Affiliations

 Corresponding author: Zhiyong Fan, eezfan@ust.hk

PDF

Turn off MathJax

Abstract: Flexible solar cells are important photovoltaics (PV) technologies due to the reduced processing temperature, less material consumption and mechanical flexibility, thus they have promising applications for portable devices and building-integrated applications. However, the efficient harvesting of photons is the core hindrance towards efficient, flexible PV. Light management by nanostructures and nanomaterials has opened new pathways for sufficient solar energy harvesting. Nanostructures on top surfaces provide an efficient pathway for the propagation of light. Aside from suppressing incident light reflection, micro-structured back-reflectors reduce transmission via multiple reflections. Nanostructures themselves can be the absorber layer. Photovoltaics based on high-crystallinity nanostructured light absorbers demonstrate enhanced power conversion efficiency (PCE) and excellent mechanical flexibility. To acquire a deep understanding of the impacts of nanostructures, herein, a concise overview of the recent development in the design and application of nanostructures and nanomaterials for photovoltaics is summarized.

Key words: solar cellsnanotechnologyantireflectionbendabilityPCE



[1]
Shah A V, Platz R, Keppner H. Thin-film silicon solar cells: A review and selected trends. Sol Energy Mater Sol Cells, 1995, 38, 501 doi: 10.1016/0927-0248(94)00241-X
[2]
Lin Q F, Huang H T, Jing Y, et al. Flexible photovoltaic technologies. J Mater Chem C, 2014, 2, 1233 doi: 10.1039/c3tc32197e
[3]
Schubert M B, Werner J H. Flexible solar cells for clothing. Mater Today, 2006, 9, 42 doi: 10.1016/S1369-7021(06)71542-5
[4]
Brongersma M L, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures. Nat Mater, 2014, 13, 451 doi: 10.1038/nmat3921
[5]
Hua B, Lin Q F, Zhang Q P, et al. Efficient photon management with nanostructures for photovoltaics. Nanoscale, 2013, 5, 6627 doi: 10.1039/c3nr01152f
[6]
Nelson J. The physics of solar cells. World Scientific Publishing CO., 2003
[7]
Zhang Q, Zhang D, Gu L, et al. Three-dimensional perovskite nanophotonic wire array-based light-emitting diodes with significantly improved efficiency and stability. ACS Nano, 2020, 14, 1577 doi: 10.1021/acsnano.9b06663
[8]
Ramanathan K, Contreras M A, Perkins C L, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog Photovolt: Res Appl, 2003, 11, 225 doi: 10.1002/pip.494
[9]
Richards B S. Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: A review. Prog Photovolt: Res Appl, 2004, 12, 253 doi: 10.1002/pip.529
[10]
Garnett E, Yang P D. Light trapping in silicon nanowire solar cells. Nano Lett, 2010, 10, 1082 doi: 10.1021/nl100161z
[11]
Müller J, Rech B, Springer J, et al. TCO and light trapping in silicon thin film solar cells. Sol Energy, 2004, 77, 917 doi: 10.1016/j.solener.2004.03.015
[12]
Hu L, Chen G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett, 2007, 7, 3249 doi: 10.1021/nl071018b
[13]
Kelzenberg M D, Boettcher S W, Petykiewicz J A, et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater, 2010, 9, 239 doi: 10.1038/nmat2635
[14]
Chang H C, Lai K Y, Dai Y A, et al. Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency. Energy Environ Sci, 2011, 4, 2863 doi: 10.1039/c0ee00595a
[15]
Leung S F, Yu M, Lin Q, et al. Efficient photon capturing with ordered three-dimensional nanowell arrays. Nano Lett, 2012, 12, 3682 doi: 10.1021/nl3014567
[16]
Fan Z Y, Ruebusch D J, Rathore A A, et al. Challenges and prospects of nanopillar-based solar cells. Nano Res, 2009, 2, 829 doi: 10.1007/s12274-009-9091-y
[17]
Battaglia C, Hsu C M, Söderström K, et al. Light trapping in solar cells: Can periodic beat random. ACS Nano, 2012, 6, 2790 doi: 10.1021/nn300287j
[18]
Zhu J, Hsu C M, Yu Z F, et al. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett, 2010, 10, 1979 doi: 10.1021/nl9034237
[19]
Grandidier J, Callahan D M, Munday J N, et al. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Adv Mater, 2011, 23, 1272 doi: 10.1002/adma.201004393
[20]
Yao Y, Yao J, Narasimhan V K, et al. Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nat Commun, 2012, 3, 664 doi: 10.1038/ncomms1664
[21]
Zheng X, Wei Z, Chen H, et al. Designing nanobowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells. Nanoscale, 2016, 8, 6393 doi: 10.1039/C5NR06715D
[22]
Zhu Y Y, Zhang Q P, Kam M, et al. Vapor phase fabrication of three-dimensional arrayed BiI3 nanosheets for cost-effective solar cells. InfoMat, 2020, 2, 975 doi: 10.1002/inf2.12070
[23]
Li Y, Qian F, Xiang J, et al. Nanowire electronic and optoelectronic devices. Mater Today, 2006, 9, 18 doi: 10.1016/S1369-7021(06)71650-9
[24]
Guo X, Liu Q L, Tian H J, et al. Optimization of broadband omnidirectional antireflection coatings for solar cells. J Semicond, 2019, 40, 032702 doi: 10.1088/1674-4926/40/3/032702
[25]
Tsui K H, Lin Q F, Chou H, et al. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics. Adv Mater, 2014, 26, 2805 doi: 10.1002/adma.201304938
[26]
Tang L, Tsui K H, Leung S F, et al. Large-scale, adhesive-free and omnidirectional 3D nanocone anti-reflection films for high performance photovoltaics. J Semicond, 2019, 40, 042601 doi: 10.1088/1674-4926/40/4/042601
[27]
Tavakoli M M, Simchi A, Tavakoli R, et al. Organic halides and nanocone plastic structures enhance the energy conversion efficiency and self-cleaning ability of colloidal quantum dot photovoltaic devices. J Phys Chem C, 2017, 121, 9757 doi: 10.1021/acs.jpcc.7b02394
[28]
Fan Z Y, Razavi H, Do J W, et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater, 2009, 8, 648 doi: 10.1038/nmat2493
[29]
Yu K H, Chen J H. Enhancing solar cell efficiencies through 1-D nanostructures. Nanoscale Res Lett, 2008, 4, 1 doi: 10.1007/s11671-008-9200-y
[30]
You P, Tang G Q, Cao J P, et al. 2D materials for conducting holes from grain boundaries in perovskite solar cells. Light: Sci Appl, 2021, 10, 68 doi: 10.1038/s41377-021-00515-8
[31]
Wang K X, Yu Z, Liu V, et al. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett, 2012, 12, 1616 doi: 10.1021/nl204550q
[32]
Maier S A. Plasmonics: fundamentals and applications. New York: Springer, 2007
[33]
Schaadt D M, Feng B, Yu E T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett, 2005, 86, 063106 doi: 10.1063/1.1855423
[34]
Pillai S, Catchpole K R, Trupke T, et al. Surface plasmon enhanced silicon solar cells. J Appl Phys, 2007, 101, 093105 doi: 10.1063/1.2734885
[35]
Haug F J, Söderström T, Cubero O, et al. Plasmonic absorption in textured silver back reflectors of thin film solar cells. J Appl Phys, 2008, 104, 064509 doi: 10.1063/1.2981194
[36]
Paetzold U W, Moulin E, Pieters B E, et al. Design of nanostructured plasmonic back contacts for thin-film silicon solar cells. Opt Express, 2011, 19, 1219 doi: 10.1364/OE.19.0A1219
[37]
Tavakoli M M, Simchi A, Mo X L, et al. High-quality organohalide lead perovskite films fabricated by layer-by-layer alternating vacuum deposition for high efficiency photovoltaics. Mater Chem Front, 2017, 1, 1520 doi: 10.1039/C6QM00379F
[38]
Tavakoli M M, Tsui K H, Zhang Q, et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano, 2015, 9, 10287 doi: 10.1021/acsnano.5b04284
[39]
Zhang C, Song Y, Wang M, et al. Efficient and flexible thin film amorphous silicon solar cells on nanotextured polymer substrate using Sol-gel based nanoimprinting method. Adv Funct Mater, 2017, 27, 1604720 doi: 10.1002/adfm.201604720
[40]
Xiao H P, Wang J, Huang H T, et al. Performance optimization of flexible a-Si:H solar cells with nanotextured plasmonic substrate by tuning the thickness of oxide spacer layer. Nano Energy, 2015, 11, 78 doi: 10.1016/j.nanoen.2014.10.006
[41]
You P, Liu Z K, Tai Q D, et al. Efficient semitransparent perovskite solar cells with graphene electrodes. Adv Mater, 2015, 27, 3632 doi: 10.1002/adma.201501145
[42]
Ono L K, Wang S H, Kato Y, et al. Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy Environ Sci, 2014, 7, 3989 doi: 10.1039/C4EE02539C
[43]
Jung J W, Chueh C C, Jen A K Y. High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material. Adv Energy Mater, 2015, 5, 1500486 doi: 10.1002/aenm.201500486
[44]
Guo F, Azimi H, Hou Y, et al. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale, 2015, 7, 1642 doi: 10.1039/C4NR06033D
[45]
Heo J H, Han H J, Lee M, et al. Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells. Energy Environ Sci, 2015, 8, 2922 doi: 10.1039/C5EE01050K
[46]
Ramírez Quiroz C O, Levchuk I, Bronnbauer C, et al. Pushing efficiency limits for semitransparent perovskite solar cells. J Mater Chem A, 2015, 3, 24071 doi: 10.1039/C5TA08450D
[47]
Zhang H K, Zhang Y K, Yang G, et al. Vacuum-free fabrication of high-performance semitransparent perovskite solar cells via e-glue assisted lamination process. Sci China Chem, 2019, 62, 875 doi: 10.1007/s11426-019-9481-3
[48]
Zhang Y K, Wu Z W, Li P, et al. Fully solution-processed TCO-free semitransparent perovskite solar cells for tandem and flexible applications. Adv Energy Mater, 2018, 8, 1701569 doi: 10.1002/aenm.201701569
[49]
National Renewable Energy Laboratory, best research cell efficiencies chart. https://www.nrel.gov/pv/cell-efficiency.html
[50]
Zhu Y Y, Shu L, Zhang Q P, et al. Moth eye-inspired highly efficient, robust, and neutral-colored semitransparent perovskite solar cells for building-integrated photovoltaics. EcoMat, 2021, 3, e12117 doi: 10.1002/eom2.12117
[51]
Leung S F, Gu L L, Zhang Q P, et al. Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics. Sci Rep, 2014, 4, 4243 doi: 10.1038/srep04243
[52]
Leung S F, Tsui K H, Lin Q F, et al. Large scale, flexible and three-dimensional quasi-ordered aluminum nanospikes for thin film photovoltaics with omnidirectional light trapping and optimized electrical design. Energy Environ Sci, 2014, 7, 3611 doi: 10.1039/C4EE01850H
[53]
Garnett E C, Brongersma M L, Cui Y, et al. Nanowire solar cells. Annu Rev Mater Res, 2011, 41, 269 doi: 10.1146/annurev-matsci-062910-100434
[54]
Yu Z F, Raman A, Fan S H. Fundamental limit of nanophotonic light trapping in solar cells. PNAS, 2010, 107, 17491 doi: 10.1073/pnas.1008296107
[55]
Kayes B M, Atwater H A, Lewis N S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J Appl Phys, 2005, 97, 114302 doi: 10.1063/1.1901835
[56]
Li D P, Lan C Y, Manikandan A, et al. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat Commun, 2019, 10, 1664 doi: 10.1038/s41467-019-09606-y
[57]
Conesa-Boj S, Li A, Koelling S, et al. Boosting hole mobility in coherently strained [110]-oriented Ge–Si core–shell nanowires. Nano Lett, 2017, 17, 2259 doi: 10.1021/acs.nanolett.6b04891
[58]
Badawy G, Gazibegovic S, Borsoi F, et al. High mobility stemless InSb nanowires. Nano Lett, 2019, 19, 3575 doi: 10.1021/acs.nanolett.9b00545
[59]
Wangperawong A, Bent S F. Three-dimensional nanojunction device models for photovoltaics. Appl Phys Lett, 2011, 98, 233106 doi: 10.1063/1.3595411
[60]
Deceglie M G, Ferry V E, Alivisatos A P, et al. Design of nanostructured solar cells using coupled optical and electrical modeling. Nano Lett, 2012, 12, 2894 doi: 10.1021/nl300483y
[61]
Tsai H, Nie W Y, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016, 536, 312 doi: 10.1038/nature18306
[62]
Xiao Z W, Meng W W, Wang J B, et al. Searching for promising new perovskite-based photovoltaic absorbers: The importance of electronic dimensionality. Mater Horiz, 2017, 4, 206 doi: 10.1039/C6MH00519E
[63]
Zhou Y, Yang S S, Yin X W, et al. Enhancing electron transport via graphene quantum dot/SnO2 composites for efficient and durable flexible perovskite photovoltaics. J Mater Chem A, 2019, 7, 1878 doi: 10.1039/C8TA10168J
[64]
Zhou Y, Li X, Lin H. To be higher and stronger—metal oxide electron transport materials for perovskite solar cells. Small, 2020, 16, 1902579 doi: 10.1002/smll.201902579
[65]
Yang B, Xiong Y, Ma K, et al. Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion. EcoMat, 2020, 2, e12054 doi: 10.1002/eom2.12054
[66]
Blakers A W, Armour T. Flexible silicon solar cells. Sol Energy Mater Sol Cells, 2009, 93, 1440 doi: 10.1016/j.solmat.2009.03.016
[67]
Pagliaro M, Palmisano G, Ciriminna R. Flexible solar cells. Wiley, 2008
[68]
Fukuda K, Yu K, Someya T. The future of flexible organic solar cells. Adv Energy Mater, 2020, 10, 2000765 doi: 10.1002/aenm.202000765
[69]
Zhou Y, Zhong H, Han J H, et al. Synergistic effect of charge separation and defect passivation using zinc porphyrin dye incorporation for efficient and stable perovskite solar cells. J Mater Chem A, 2019, 7, 26334 doi: 10.1039/C9TA09369A
[70]
Lan W X, Gu J L, Wu S W, et al. Toward improved stability of nonfullerene organic solar cells: Impact of interlayer and built-in potential. EcoMat, 2021, in press doi: 10.1002/eom2.12134
[71]
Rance W L, Burst J M, Meysing D M, et al. 14%-efficient flexible CdTe solar cells on ultra-thin glass substrates. Appl Phys Lett, 2014, 104, 143903 doi: 10.1063/1.4870834
[72]
Tavakoli M M, Lin Q F, Leung S F, et al. Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates. Nanoscale, 2016, 8, 4276 doi: 10.1039/C5NR08836D
[73]
Lin Q F, Lu L F, Tavakoli M M, et al. High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility. Nano Energy, 2016, 22, 539 doi: 10.1016/j.nanoen.2016.02.042
[74]
Lin Y Y, Xu Z, Yu D L, et al. Dual-layer nanostructured flexible thin-film amorphous silicon solar cells with enhanced light harvesting and photoelectric conversion efficiency. ACS Appl Mater Interfaces, 2016, 8, 10929 doi: 10.1021/acsami.6b02194
[75]
Li J, Guan X, Wang C, et al. Synthesis of 2D layered BiI3 nanoplates, BiI3/WSe2 van der waals heterostructures and their electronic, optoelectronic properties. Small, 2017, 13, 1701034 doi: 10.1002/smll.201701034
Fig. 1.  (Color online) Three-dimensional (3D) nanostructured silicon solar cells and their corresponding absorption spectra. (a1, a2) Double-sided nanostructure. (b1, b2) Top-only nanostructure. (c1, c2) Bottom-only nanostructure. (d1, d2) Flat film. Red curves stand for the Yablonovitch limit, green curves are the single-pass absorption spectra, and black curves represent spectra for corresponding structures. Reproduced with permission[31]. Copyright 2014, Wiley-VCH.

Fig. 2.  The scanning electron microscope (SEM) of inverse nanocone (NC) template (a) and NC arrays (b). (c) The external quantum efficiency (EQE) spectra of CdTe solar cells with and without NC film. The inset of (c) is the schematic structure of the device. (a–c) Reproduced with permission [25]. Copyright 2014, Wiley-VCH. (d) SEM of NC arrays. The inset is a drop of water on NC arrays, illustrating a contact angle of 155°. (e) The current density–voltage (J–V) characteristics of perovskite solar cells with and without NC arrays (inset is a photo of the flexible device). (f) Under different incident angles, the short-circuit current density (Jsc) and the power conversion efficiency (PCE) with and without NC arrays. (d–f) Reproduced with permission[38]. Copyright 2015, American Chemical Society. (g) Schematic procedure of 3D nanostructured a-Si:H solar cells. (1) Spin coating ZnO film on polyimide film. (2) Patterned ZnO film. (3) A a-Si:H solar cell constructed on the as-fabricated substrate. (4) Fabrication of nanoindentation on aluminum foils. (5) The anodic aluminum oxide (AAO) template with inverse NC arrays. (6) The NC arrays film peeled off from the template. (7) The a-Si:H solar cell with nanostructured back-reflector and top anti-reflection NC arrays. (h) Normalized PCE under different bending angles. (i) Normalized PCE as a function of bending cycles. The insets (h) and (i) demonstrate bending angles and a bent solar cell mounted on the set-up. Reproduced with permission[39]. Copyright 2017, Wiley-VCH.

Fig. 3.  (Color online) (a) Complete compound moth eyes and a moth-eye-inspired structure (MEIS) device structure diagram. (b) Reflectance spectra of MEIS and human luminosity curve, inset is the photo of MEIS (scale bars, 3 cm). (c) J–V curves of the MEIS ST-PSCs and a planar reference under simulated AM1.5G illumination, the inset is the photographs of (c) (scale bars, 2 cm). Reproduced with permission[50]. Copyright 2021, Wiley-VCH. (d) SEM images of TiO2 nanobowl with a diameter of 180 nm (NB-180). (e) J–V curves of the device based on different diameters. (f) Simulated cross-sectional |E| distribution of the electromagnetic (EM) waves at 600 nm wavelength in the perovskite deposited on (f1) TiO2 NB-180, (f2) TiO2 NB-220, (f3) TiO2 NB-500, and (f4) planar TiO2, Reproduced with permission[21]. Copyright 2021, Wiley-VCH. (g) Schematic view of nanostructured a-Si:H thin-film. (h) SEM image of the 100 nm Ag-coated substrates deposited with 100 nm conductive Al-doped ZnO (AZO). (i) The calculated Jsc of the device based on different diameters TiO2. (j) Normalized PCE under different bending angles. The inset (j1) represents a photo of the measurement set-up and (j2) a schematic of bending angles. Reproduced with permission[40]. Copyright 2021, Wiley-VCH.

Fig. 4.  (Color online) (a) Cross-sectional schematic diagram of a 3D solar nanopillar cell, demonstrating improved carrier separation and collection. (b) SEM images of d a CdS nanopillar array. The experimental (c) and simulated (d) absorption spectra of the nanowire (NW) plotted as a function of diameter and pitch. (c, d) Reproduced with permission[15]. Copyright 2012, American Chemical Society. (e) SEM images of InSb NW. (f) The electron mobility of InSb NW. (e, f) Reproduced with permission[58]. Copyright 2019, American Chemical Society. (g) Visualization of the Shockley–Read–Hall (SRH) recombination in the 3D nanopillar cells plotted with a function of heigh (H): H = 0 nm (g1) and H = 900 nm (g2). (a, b, g) Reproduced with permission[28]. Copyright 2009, Nature Research. (h) Schematic representation of BiI3 structure. (h) Reproduced with permission[75]. Copyright 2017, Wiley-VCH. (i) Cross-sectional schematic diagram of 3D BiI3 nanosheets (NSs) cell. (j) SEM of BiI3 NSs. (k) J–V curves of BiI3 NSs solar cells from different precursor Bi thicknesses. (i–k) Reproduced with permission [22]. Copyright 2020, Wiley-VCH.

Fig. 5.  (Color online) (a) Schematic diagram of the 3D nanospike. (b) Angular and wavelength-dependent absorption of a nanospike solar cell and a planar reference. (c) Normalized PCE of the nanospike device under different bending angles, inset is the schematic of a flexible nanospike solar cell. (a–c) Reproduced with permission[52]. Copyright 2014, The Royal Society of Chemistry. (d) SEM image of a-Si:H solar cells on 0.5 aspect ratio nanocone. The aspect ratio is the ratio between height and pitch. Simulated cross-sectional stress distribution of flat (e) and nanocone devices (f), with their photos after bending with a radius of 4 mm shown. (d–f) Reproduced with permission[73]. Copyright 2016, The Royal Society of Chemistry.

[1]
Shah A V, Platz R, Keppner H. Thin-film silicon solar cells: A review and selected trends. Sol Energy Mater Sol Cells, 1995, 38, 501 doi: 10.1016/0927-0248(94)00241-X
[2]
Lin Q F, Huang H T, Jing Y, et al. Flexible photovoltaic technologies. J Mater Chem C, 2014, 2, 1233 doi: 10.1039/c3tc32197e
[3]
Schubert M B, Werner J H. Flexible solar cells for clothing. Mater Today, 2006, 9, 42 doi: 10.1016/S1369-7021(06)71542-5
[4]
Brongersma M L, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures. Nat Mater, 2014, 13, 451 doi: 10.1038/nmat3921
[5]
Hua B, Lin Q F, Zhang Q P, et al. Efficient photon management with nanostructures for photovoltaics. Nanoscale, 2013, 5, 6627 doi: 10.1039/c3nr01152f
[6]
Nelson J. The physics of solar cells. World Scientific Publishing CO., 2003
[7]
Zhang Q, Zhang D, Gu L, et al. Three-dimensional perovskite nanophotonic wire array-based light-emitting diodes with significantly improved efficiency and stability. ACS Nano, 2020, 14, 1577 doi: 10.1021/acsnano.9b06663
[8]
Ramanathan K, Contreras M A, Perkins C L, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog Photovolt: Res Appl, 2003, 11, 225 doi: 10.1002/pip.494
[9]
Richards B S. Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: A review. Prog Photovolt: Res Appl, 2004, 12, 253 doi: 10.1002/pip.529
[10]
Garnett E, Yang P D. Light trapping in silicon nanowire solar cells. Nano Lett, 2010, 10, 1082 doi: 10.1021/nl100161z
[11]
Müller J, Rech B, Springer J, et al. TCO and light trapping in silicon thin film solar cells. Sol Energy, 2004, 77, 917 doi: 10.1016/j.solener.2004.03.015
[12]
Hu L, Chen G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett, 2007, 7, 3249 doi: 10.1021/nl071018b
[13]
Kelzenberg M D, Boettcher S W, Petykiewicz J A, et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater, 2010, 9, 239 doi: 10.1038/nmat2635
[14]
Chang H C, Lai K Y, Dai Y A, et al. Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency. Energy Environ Sci, 2011, 4, 2863 doi: 10.1039/c0ee00595a
[15]
Leung S F, Yu M, Lin Q, et al. Efficient photon capturing with ordered three-dimensional nanowell arrays. Nano Lett, 2012, 12, 3682 doi: 10.1021/nl3014567
[16]
Fan Z Y, Ruebusch D J, Rathore A A, et al. Challenges and prospects of nanopillar-based solar cells. Nano Res, 2009, 2, 829 doi: 10.1007/s12274-009-9091-y
[17]
Battaglia C, Hsu C M, Söderström K, et al. Light trapping in solar cells: Can periodic beat random. ACS Nano, 2012, 6, 2790 doi: 10.1021/nn300287j
[18]
Zhu J, Hsu C M, Yu Z F, et al. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett, 2010, 10, 1979 doi: 10.1021/nl9034237
[19]
Grandidier J, Callahan D M, Munday J N, et al. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Adv Mater, 2011, 23, 1272 doi: 10.1002/adma.201004393
[20]
Yao Y, Yao J, Narasimhan V K, et al. Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nat Commun, 2012, 3, 664 doi: 10.1038/ncomms1664
[21]
Zheng X, Wei Z, Chen H, et al. Designing nanobowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells. Nanoscale, 2016, 8, 6393 doi: 10.1039/C5NR06715D
[22]
Zhu Y Y, Zhang Q P, Kam M, et al. Vapor phase fabrication of three-dimensional arrayed BiI3 nanosheets for cost-effective solar cells. InfoMat, 2020, 2, 975 doi: 10.1002/inf2.12070
[23]
Li Y, Qian F, Xiang J, et al. Nanowire electronic and optoelectronic devices. Mater Today, 2006, 9, 18 doi: 10.1016/S1369-7021(06)71650-9
[24]
Guo X, Liu Q L, Tian H J, et al. Optimization of broadband omnidirectional antireflection coatings for solar cells. J Semicond, 2019, 40, 032702 doi: 10.1088/1674-4926/40/3/032702
[25]
Tsui K H, Lin Q F, Chou H, et al. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics. Adv Mater, 2014, 26, 2805 doi: 10.1002/adma.201304938
[26]
Tang L, Tsui K H, Leung S F, et al. Large-scale, adhesive-free and omnidirectional 3D nanocone anti-reflection films for high performance photovoltaics. J Semicond, 2019, 40, 042601 doi: 10.1088/1674-4926/40/4/042601
[27]
Tavakoli M M, Simchi A, Tavakoli R, et al. Organic halides and nanocone plastic structures enhance the energy conversion efficiency and self-cleaning ability of colloidal quantum dot photovoltaic devices. J Phys Chem C, 2017, 121, 9757 doi: 10.1021/acs.jpcc.7b02394
[28]
Fan Z Y, Razavi H, Do J W, et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater, 2009, 8, 648 doi: 10.1038/nmat2493
[29]
Yu K H, Chen J H. Enhancing solar cell efficiencies through 1-D nanostructures. Nanoscale Res Lett, 2008, 4, 1 doi: 10.1007/s11671-008-9200-y
[30]
You P, Tang G Q, Cao J P, et al. 2D materials for conducting holes from grain boundaries in perovskite solar cells. Light: Sci Appl, 2021, 10, 68 doi: 10.1038/s41377-021-00515-8
[31]
Wang K X, Yu Z, Liu V, et al. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett, 2012, 12, 1616 doi: 10.1021/nl204550q
[32]
Maier S A. Plasmonics: fundamentals and applications. New York: Springer, 2007
[33]
Schaadt D M, Feng B, Yu E T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett, 2005, 86, 063106 doi: 10.1063/1.1855423
[34]
Pillai S, Catchpole K R, Trupke T, et al. Surface plasmon enhanced silicon solar cells. J Appl Phys, 2007, 101, 093105 doi: 10.1063/1.2734885
[35]
Haug F J, Söderström T, Cubero O, et al. Plasmonic absorption in textured silver back reflectors of thin film solar cells. J Appl Phys, 2008, 104, 064509 doi: 10.1063/1.2981194
[36]
Paetzold U W, Moulin E, Pieters B E, et al. Design of nanostructured plasmonic back contacts for thin-film silicon solar cells. Opt Express, 2011, 19, 1219 doi: 10.1364/OE.19.0A1219
[37]
Tavakoli M M, Simchi A, Mo X L, et al. High-quality organohalide lead perovskite films fabricated by layer-by-layer alternating vacuum deposition for high efficiency photovoltaics. Mater Chem Front, 2017, 1, 1520 doi: 10.1039/C6QM00379F
[38]
Tavakoli M M, Tsui K H, Zhang Q, et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano, 2015, 9, 10287 doi: 10.1021/acsnano.5b04284
[39]
Zhang C, Song Y, Wang M, et al. Efficient and flexible thin film amorphous silicon solar cells on nanotextured polymer substrate using Sol-gel based nanoimprinting method. Adv Funct Mater, 2017, 27, 1604720 doi: 10.1002/adfm.201604720
[40]
Xiao H P, Wang J, Huang H T, et al. Performance optimization of flexible a-Si:H solar cells with nanotextured plasmonic substrate by tuning the thickness of oxide spacer layer. Nano Energy, 2015, 11, 78 doi: 10.1016/j.nanoen.2014.10.006
[41]
You P, Liu Z K, Tai Q D, et al. Efficient semitransparent perovskite solar cells with graphene electrodes. Adv Mater, 2015, 27, 3632 doi: 10.1002/adma.201501145
[42]
Ono L K, Wang S H, Kato Y, et al. Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy Environ Sci, 2014, 7, 3989 doi: 10.1039/C4EE02539C
[43]
Jung J W, Chueh C C, Jen A K Y. High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material. Adv Energy Mater, 2015, 5, 1500486 doi: 10.1002/aenm.201500486
[44]
Guo F, Azimi H, Hou Y, et al. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale, 2015, 7, 1642 doi: 10.1039/C4NR06033D
[45]
Heo J H, Han H J, Lee M, et al. Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells. Energy Environ Sci, 2015, 8, 2922 doi: 10.1039/C5EE01050K
[46]
Ramírez Quiroz C O, Levchuk I, Bronnbauer C, et al. Pushing efficiency limits for semitransparent perovskite solar cells. J Mater Chem A, 2015, 3, 24071 doi: 10.1039/C5TA08450D
[47]
Zhang H K, Zhang Y K, Yang G, et al. Vacuum-free fabrication of high-performance semitransparent perovskite solar cells via e-glue assisted lamination process. Sci China Chem, 2019, 62, 875 doi: 10.1007/s11426-019-9481-3
[48]
Zhang Y K, Wu Z W, Li P, et al. Fully solution-processed TCO-free semitransparent perovskite solar cells for tandem and flexible applications. Adv Energy Mater, 2018, 8, 1701569 doi: 10.1002/aenm.201701569
[49]
National Renewable Energy Laboratory, best research cell efficiencies chart. https://www.nrel.gov/pv/cell-efficiency.html
[50]
Zhu Y Y, Shu L, Zhang Q P, et al. Moth eye-inspired highly efficient, robust, and neutral-colored semitransparent perovskite solar cells for building-integrated photovoltaics. EcoMat, 2021, 3, e12117 doi: 10.1002/eom2.12117
[51]
Leung S F, Gu L L, Zhang Q P, et al. Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics. Sci Rep, 2014, 4, 4243 doi: 10.1038/srep04243
[52]
Leung S F, Tsui K H, Lin Q F, et al. Large scale, flexible and three-dimensional quasi-ordered aluminum nanospikes for thin film photovoltaics with omnidirectional light trapping and optimized electrical design. Energy Environ Sci, 2014, 7, 3611 doi: 10.1039/C4EE01850H
[53]
Garnett E C, Brongersma M L, Cui Y, et al. Nanowire solar cells. Annu Rev Mater Res, 2011, 41, 269 doi: 10.1146/annurev-matsci-062910-100434
[54]
Yu Z F, Raman A, Fan S H. Fundamental limit of nanophotonic light trapping in solar cells. PNAS, 2010, 107, 17491 doi: 10.1073/pnas.1008296107
[55]
Kayes B M, Atwater H A, Lewis N S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J Appl Phys, 2005, 97, 114302 doi: 10.1063/1.1901835
[56]
Li D P, Lan C Y, Manikandan A, et al. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat Commun, 2019, 10, 1664 doi: 10.1038/s41467-019-09606-y
[57]
Conesa-Boj S, Li A, Koelling S, et al. Boosting hole mobility in coherently strained [110]-oriented Ge–Si core–shell nanowires. Nano Lett, 2017, 17, 2259 doi: 10.1021/acs.nanolett.6b04891
[58]
Badawy G, Gazibegovic S, Borsoi F, et al. High mobility stemless InSb nanowires. Nano Lett, 2019, 19, 3575 doi: 10.1021/acs.nanolett.9b00545
[59]
Wangperawong A, Bent S F. Three-dimensional nanojunction device models for photovoltaics. Appl Phys Lett, 2011, 98, 233106 doi: 10.1063/1.3595411
[60]
Deceglie M G, Ferry V E, Alivisatos A P, et al. Design of nanostructured solar cells using coupled optical and electrical modeling. Nano Lett, 2012, 12, 2894 doi: 10.1021/nl300483y
[61]
Tsai H, Nie W Y, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016, 536, 312 doi: 10.1038/nature18306
[62]
Xiao Z W, Meng W W, Wang J B, et al. Searching for promising new perovskite-based photovoltaic absorbers: The importance of electronic dimensionality. Mater Horiz, 2017, 4, 206 doi: 10.1039/C6MH00519E
[63]
Zhou Y, Yang S S, Yin X W, et al. Enhancing electron transport via graphene quantum dot/SnO2 composites for efficient and durable flexible perovskite photovoltaics. J Mater Chem A, 2019, 7, 1878 doi: 10.1039/C8TA10168J
[64]
Zhou Y, Li X, Lin H. To be higher and stronger—metal oxide electron transport materials for perovskite solar cells. Small, 2020, 16, 1902579 doi: 10.1002/smll.201902579
[65]
Yang B, Xiong Y, Ma K, et al. Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion. EcoMat, 2020, 2, e12054 doi: 10.1002/eom2.12054
[66]
Blakers A W, Armour T. Flexible silicon solar cells. Sol Energy Mater Sol Cells, 2009, 93, 1440 doi: 10.1016/j.solmat.2009.03.016
[67]
Pagliaro M, Palmisano G, Ciriminna R. Flexible solar cells. Wiley, 2008
[68]
Fukuda K, Yu K, Someya T. The future of flexible organic solar cells. Adv Energy Mater, 2020, 10, 2000765 doi: 10.1002/aenm.202000765
[69]
Zhou Y, Zhong H, Han J H, et al. Synergistic effect of charge separation and defect passivation using zinc porphyrin dye incorporation for efficient and stable perovskite solar cells. J Mater Chem A, 2019, 7, 26334 doi: 10.1039/C9TA09369A
[70]
Lan W X, Gu J L, Wu S W, et al. Toward improved stability of nonfullerene organic solar cells: Impact of interlayer and built-in potential. EcoMat, 2021, in press doi: 10.1002/eom2.12134
[71]
Rance W L, Burst J M, Meysing D M, et al. 14%-efficient flexible CdTe solar cells on ultra-thin glass substrates. Appl Phys Lett, 2014, 104, 143903 doi: 10.1063/1.4870834
[72]
Tavakoli M M, Lin Q F, Leung S F, et al. Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates. Nanoscale, 2016, 8, 4276 doi: 10.1039/C5NR08836D
[73]
Lin Q F, Lu L F, Tavakoli M M, et al. High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility. Nano Energy, 2016, 22, 539 doi: 10.1016/j.nanoen.2016.02.042
[74]
Lin Y Y, Xu Z, Yu D L, et al. Dual-layer nanostructured flexible thin-film amorphous silicon solar cells with enhanced light harvesting and photoelectric conversion efficiency. ACS Appl Mater Interfaces, 2016, 8, 10929 doi: 10.1021/acsami.6b02194
[75]
Li J, Guan X, Wang C, et al. Synthesis of 2D layered BiI3 nanoplates, BiI3/WSe2 van der waals heterostructures and their electronic, optoelectronic properties. Small, 2017, 13, 1701034 doi: 10.1002/smll.201701034
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2631 Times PDF downloads: 101 Times Cited by: 0 Times

    History

    Received: 10 September 2021 Revised: 19 September 2021 Online: Accepted Manuscript: 24 September 2021Uncorrected proof: 26 September 2021Published: 15 October 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yiyi Zhu, Qianpeng Zhang, Lei Shu, Daquan Zhang, Zhiyong Fan. Recent progress of efficient flexible solar cells based on nanostructures[J]. Journal of Semiconductors, 2021, 42(10): 101604. doi: 10.1088/1674-4926/42/10/101604 Y Y Zhu, Q P Zhang, L Shu, D Q Zhang, Z Y Fan, Recent progress of efficient flexible solar cells based on nanostructures[J]. J. Semicond., 2021, 42(10): 101604. doi: 10.1088/1674-4926/42/10/101604.Export: BibTex EndNote
      Citation:
      Yiyi Zhu, Qianpeng Zhang, Lei Shu, Daquan Zhang, Zhiyong Fan. Recent progress of efficient flexible solar cells based on nanostructures[J]. Journal of Semiconductors, 2021, 42(10): 101604. doi: 10.1088/1674-4926/42/10/101604

      Y Y Zhu, Q P Zhang, L Shu, D Q Zhang, Z Y Fan, Recent progress of efficient flexible solar cells based on nanostructures[J]. J. Semicond., 2021, 42(10): 101604. doi: 10.1088/1674-4926/42/10/101604.
      Export: BibTex EndNote

      Recent progress of efficient flexible solar cells based on nanostructures

      doi: 10.1088/1674-4926/42/10/101604
      More Information
      • Author Bio:

        Yiyi Zhu received her bachelor degree and master degree in Materials Science and Engineering from Central South University, China. She is currently a Ph.D. student in the Department of Electrical Engineering and Computer Sciences at Hong Kong University of Science and Technology under the supervision of Prof. Zhiyong Fan. Her research focuses on developing highly efficient and stable photovoltaics

        Zhiyong Fan is currently a Professor of the Department of Electronic & Computer Engineering, HKUST, Hong Kong SAR, China. His current research interests include the design and fabrication of novel nanostructures and nanomaterials for high-performance optoelectronics, energy harvesting devices, and sensors. He has published about 200 papers in Nature, Nature Materials, Nature Communications, Science Advances, and Journal of Semiconductors with a total citation of more than 21 000 times. Prof. Fan is a Fellow of the Royal Society of Chemistry, a Senior Member of IEEE, and the founding member of The Hong Kong Young Academy of Sciences

      • Corresponding author: eezfan@ust.hk
      • Received Date: 2021-09-10
      • Revised Date: 2021-09-19
      • Published Date: 2021-10-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return