ARTICLES

Humidity sensing properties of spray deposited Fe doped TiO2 thin film

Dipak L Gapale1, , Pranav P. Bardapurkar1, Sandeep A. Arote1, Sanjaykumar Dalvi1, Prashant Baviskar1 and Ratan Y Borse2

+ Author Affiliations

 Corresponding author: Dipak L Gapale, gapaledeepak@gmail.com

PDF

Turn off MathJax

Abstract: In the present work, ferrite (Fe) doped TiO2 thin films with different volume percentage (vol%) were synthesized using a spray pyrolysis technique. The effect of Fe doping on structural properties such as crystallite size, texture coefficient, microstrain, dislocation densities etc. were evaluated from the X ray diffratometry (XRD) data. XRD data revealed a polycrystalline anatase TiO2 phase for sample synthesized up to 2 vol% and mixed anatase and rutile crystalline phase for sample synthesized at 4 vol% Fe doped TiO2. The crystalline size was observed to decrease with increase in Fe dopant vol% and also other structural parameters changes with Fe dopant percentage. In the present work, electrical resistance was observed to decrease with a rise in Fe dopant vol% and temperature of the sample. Thermal properties like temperature coefficient of resistance and activation energy also showed strong correlation with Fe dopant vol%. Humidity sensing properties of the synthesized sample altered with a change in Fe dopant vol%. In the present paper, maximum sensitivity of about 88.7% for the sample synthesized with 2 vol% Fe doped TiO2 and also the lowest response and recovery time of about 52 and 3 s were reported for the same sample.

Key words: Fe doped TiO2thin filmsspray pyrolysishumidity sensing



[1]
Kim C E, Yun I. Effects of the interfacial layer on electrical properties of TiO2-based high-k dielectric composite films. ECS Trans, 2012, 45(3), 89 doi: 10.1149/1.3700875
[2]
Taherniya A, Raoufi D. The annealing temperature dependence of anatase TiO2 thin films prepared by the electron-beam evaporation method. Semicond Sci Technol, 2016, 31, 125012 doi: 10.1088/0268-1242/31/12/125012
[3]
Khaleel R S, Hashim M S. Fabrication of TiO2 sensor using rapid breakdown anodization method to measure pressure, humidity and sense gases at room temperature. Iraqi J Sci, 2019, 60, 1694 doi: 10.24996/ijs.2019.60.8.6
[4]
Vanmathi M, Kumar M S, Ismail M M. Optimization of process parameters for al-doping back ground on CO gas sensing characteristics of magnetron-sputtered TiO2 sensors. Mater Res Express, 2019, 6, 106423 doi: 10.1088/2053-1591/ab3a02
[5]
Ashok C H, Rao K V, Chakra C H S. Comparison of metal oxide nanomaterials: Humidity sensor applications. Mater Energy Environ Eng, 2017, 267 doi: 10.1007/978-981-10-2675-1_32
[6]
Khan M M, Adil S F, Al-Mayouf A. Metal oxides as photocatalysts. J Saudi Chem Soc, 2015, 19, 462 doi: 10.1016/j.jscs.2015.04.003
[7]
Kaviyarasu K, Geetha N, Kanimozhi K. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: Investigation of bio-medical application by chemical method. Mater Sci Eng C, 2017, 74, 325 doi: 10.1016/j.msec.2016.12.024
[8]
Gapale D L, Arote S A, Borse R Y. Mathematical modeling of droplet formation, evaporation, and film growth to study crystallite size and film thickness of spray pyrolysis deposited TiO2 thin films. e-J Surf Sci Nanotechnol, 2018, 16(0), 419 doi: 10.1380/ejssnt.2018.419
[9]
Hassanien A S, Akl A A. Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl Phys A, 2018, 124(11), 752 doi: 10.1007/s00339-018-2180-6
[10]
Ranjit K T, Cohen H, Willner I. Lanthanide oxide-doped titanium dioxide: Effective photocatalysts for the degradation of organic pollutants. J Mater Sci, 1999, 34, 5273 doi: 10.1023/A:1004780401030
[11]
Nowotny J, Sorrell C C, Sheppard L R. Solar-hydrogen: environmentally safe fuel for the future. Int J Hydrogen Energy, 2005, 30, 521 doi: 10.1016/j.ijhydene.2004.06.012
[12]
Hanaor D A H, Sorrell C C. Review of the anatase to rutile phase transformation. J Mater Sci, 2011, 46, 855 doi: 10.1007/s10853-010-5113-0
[13]
Reidy D J, Holmes J D, Morris M A. The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. J Eur Ceram Soc, 2006, 26, 1527 doi: 10.1016/j.jeurceramsoc.2005.03.246
[14]
Serpone N. Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts. J Phys Chem B, 2006, 110, 24287 doi: 10.1021/jp065659r
[15]
Nguyen V N, Nguyen N K T, Nguyen P H. Hydrothermal synthesis of Fe-doped TiO2 nanostructure photocatalyst. Adv Nat Sci Nanosci Nanotechnol, 2011, 2, 035014 doi: 10.1088/2043-6262/2/3/035014
[16]
Eadi S B, Kim S, Jeong S W. Novel preparation of Fe doped TiO2 nanoparticles and their application for gas sensor and photocatalytic degradation. Adv Mater Sci Eng, 2017, 2017, 2191659 doi: 10.1155/2017/2191659
[17]
Dholam R, Patel N, Adami M. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy, 2009, 34, 5337 doi: 10.1016/j.ijhydene.2009.05.011
[18]
Hernández-Rivera D, Rodríguez-Roldán G, Mora-Martínez R, et al. A capacitive humidity sensor based on an electrospun PVDF/graphene membrane. Sensors, 2017, 17, 1009 doi: 10.3390/s17051009
[19]
Shukla G, Walia S, Kundu S, et al. Humidity sensing and breath analyzing applications of TiO2 slanted nanorod arrays. Sens Actuators A, 2019, 301, 111758 doi: 10.1016/j.sna.2019.111758
[20]
Li Z, Haidry A A, Gao B, et al. The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2. Appl Surf Sci, 2017, 412, 638 doi: 10.1016/j.apsusc.2017.03.156
[21]
Zhang M, Wei S, Ren W, et al. Development of high sensitivity humidity sensor based on Gray TiO2/SrTiO3 composite. Sensors, 2017, 17, 1310 doi: 10.3390/s17061310
[22]
Ali T, Tripathi P, Azam A. Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Mater Res Express, 2017, 4, 015022 doi: 10.1088/2053-1591/aa576d
[23]
Hou X, Huang M, Wu X. First-principles calculations on implanted TiO2 by 3d transition metal ions. Sci China Ser G, 2009, 52(6), 838 doi: 10.1007/s11433-009-0108-z
[24]
Essalhi Z, Hartiti B, Lfakir A. Optical properties of TiO2 Thin films prepared by Sol Gel method. J Mater Environ Sci, 2016, 7, 1328
[25]
Gapale D L, Arote S A, Palve B M. Effect of film thickness on humidity sensing of spray deposited TiO2 thin films. Mater Res Express, 2018, 6, 026402 doi: 10.1088/2053-1591/aae970
[26]
Nair P B, Maneeshya L V, Justinvictor V B. Evolution of structural and optical properties of photocatalytic Fe doped TiO2 thin films prepared by RF magnetron sputtering. AIP Conf Proc, 2014, 1576, 79 doi: 10.1063/1.4861987
[27]
Sebnem C S, Corekci S, Cakmak M. Structural investigation and electronic band transitions of nanostructured TiO2 thin films. Cryst Res Technol, 2011, 46, 1207 doi: 10.1002/crat.201100195
[28]
Xu Y, Wu S, Wan P. Introducing Ti3+ defects based on lattice distortion for enhanced visible light photoreactivity in TiO2 microspheres. RSC Adv, 2017, 7, 32461 doi: 10.1039/C7RA04885H
[29]
Li D, Song H, Meng X, et al. Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials, 2020, 10(3), 546 doi: 10.3390/nano10030546
[30]
Reetu, Agarwal A, Sanghi S, et al. Improved dielectric and magnetic properties of Ti modified BiCaFeO3 multiferroic ceramics. J Appl Phy, 2013, 113(2), 023908 doi: 10.1063/1.4774283
[31]
Patil L, Suryawanshi D, Pathan I. Effect of variation of precursor concentration on structural, microstructural, optical and gas sensing properties of nanocrystalline TiO2 thin films prepared by spray pyrolysis techniques. Bull Mater Sci, 2013, 36, 1153 doi: 10.1007/s12034-013-0597-2
[32]
Hiromi Y, Masaru H, Junko M. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal Today, 2003, 84, 191 doi: 10.1016/S0920-5861(03)00273-6
[33]
Bally A R, Korobeinikova E N, Schmid P E, et al. Structural and electrical properties of Fe-doped thin films. J Phys D, 1998, 31(10), 1149 doi: 10.1088/0022-3727/31/10/004
[34]
Traiwatcharanon P, Timsorn K, Wongchoosuk C. Flexible room-temperature resistive humidity sensor based on silver nanoparticles. Mater Res Express, 2017, 4, 085038 doi: 10.1088/2053-1591/aa85b6
[35]
Farahani H, Wagiran R, Hamidon M N. Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors, 2014, 14, 7881 doi: 10.3390/s140507881
[36]
Sasikumar M, Subiramaniyam N P. Microstructure, electrical and humidity sensing properties of TiO2/polyaniline nanocomposite films prepared by sol–gel spin coating technique. J Mater Sci - Mater Electron, 2018, 29, 7099 doi: 10.1007/s10854-018-8697-9
[37]
Gapale D L, Arote S A, Palve B M. Influence of precursor solution concentration on structural, optical and humidity sensing properties of spray deposited TiO2 thin films. J Semicond, 2018, 39, 122003 doi: 10.1088/1674-4926/39/12/122003
[38]
Rathi K, Pal K. Impact of doping on GO: Fast response–recovery humidity sensor. ACS Omega, 2017, 2, 842 doi: 10.1021/acsomega.6b00399
[39]
Keren R. Water vapor isotherms and heat of immersion of Na/Ca-montmorillonite systems—I: Homoionic. Clays Clay Miner, 1975, 23, 193 doi: 10.1346/CCMN.1975.0230305
[40]
Ren Y, Yang J, Ma Y. Increasing sensing sensitivity of the Fe-α-Fe2O3 (104) surface by hydrogenation and the sensing reaction molecule mechanism. Sens Actuators B, 2019, 281, 366 doi: 10.1016/j.snb.2018.10.088
[41]
Morimoto T, Nagao M, Tokuda F. Relation between the amounts of chemisorbed and physisorbed water on metal oxides. J Phys Chem, 1969, 73, 243 doi: 10.1021/j100721a039
[42]
Traversa E, Gnappi G, Montenero A. Ceramic thin films by sol-gel processing as novel materials for integrated humidity sensors. Sens Actuators B, 1996, 31, 59 doi: 10.1016/0925-4005(96)80017-7
[43]
Camaioni N, Casalboremiceli G, Li Y. Water activated ionic conduction in cross-linked polyelectrolytes. Sens Actuators B, 2008, 134, 230 doi: 10.1016/j.snb.2008.04.035
Fig. 1.  XRD patterns for pristine and Fe-doped TiO2 thin films annealed at 500 °C (# rutile).

Fig. 2.  SEM image for (a) pristine TiO2, (b) 1 vol% Fe:TiO2, (c) 2 vol% Fe:TiO2 and (d) 4 vol% Fe:TiO2 samples.

Fig. 3.  EDX spectrum of (a) pristine TiO2, (b) 1 vol% Fe:TiO2, (c) 2 vol% Fe:TiO2 and (d) 4 vol% Fe:TiO2 samples.

Fig. 4.  (Color online) Variation of resistance with temperature for (a) pristine TiO2, (b) 1 vol% Fe:TiO2, (c) 2 vol% Fe:TiO2 and (d) 4 vol% Fe:TiO2 samples.

Fig. 5.  (Color online) Variation of log(Ra) with temperature to calculated TCR for (a) pristine TiO2, (b) 1 vol% Fe:TiO2, (c) 2 vol% Fe:TiO2 and (d) 4 vol% Fe:TiO2 samples.

Fig. 6.  (Color online) Variation of log(Ra) with 1000/T to calculate activation energy for (a) pristine TiO2, (b) 1 vol% Fe:TiO2, (c) 2 vol% Fe:TiO2 and (d) 4 vol% Fe:TiO2 samples.

Fig. 7.  (Color online) Variation of resistance with percentage of relative humidity for (a) pristine TiO2, (b) 1 vol% Fe:TiO2, (c) 2 vol% Fe:TiO2 and (d) 4 vol% Fe:TiO2 samples.

Fig. 8.  (Color online) Variation of sensitivity with percentage of relative humidity for (a) pristine TiO2, (b) 1 vol% Fe:TiO2, (c) 2 vol% Fe:TiO2 and (d) 4 vol% Fe:TiO2 samples.

Fig. 9.  (Color online) Variation of sensitivity with percentage of relative humidity for different time interval for 2 vol% Fe :TiO2 sample.

Fig. 10.  (Color online) Hysteresis loops for for (a) pristine TiO2, (b) 1 vol% Fe:TiO2, (c) 2 vol% Fe:TiO2 and (d) 4 vol% Fe:TiO2 samples.

Fig. 11.  (Color online) Variation of resistance with time to calculate response and recovery time for pristine TiO2, 1 vol% Fe:TiO2, 2 vol% Fe:TiO2 and 4 vol% Fe:TiO2 samples.

Fig. 12.  (Color online) Variation sensitivity and response time with different Fe vol% for Fe doped TiO2 thin films.

Table 1.   Structural properties of pristine and Fe-doped TiO2 thin films.

Sample Fe
(vol%)
Crystallite
size (nm)
Interplaner
distance (Å)
Crystal
phase
Texture
coefficient
Microstain (10–3) Dislocation
(1014 cm–2)
Specific surface
area (m2/g)
Pristine 31.21260 3.513233 A 1.5622 1.764 10.2646 49.416
1 vol% Fe:TiO2 1 28.25648 3.514076 A 1.4996 1.87 12.5246 54.586
2 vol% Fe:TiO2 2 25.07873 3.511046 A 1.0788 1.90 15.8997 61.502
4 vol% Fe:TiO2 4 24.69604 3.510535 A - 90.77 %
R - 9.23 %
0.4755 2.48 16.3963 62.456
DownLoad: CSV

Table 2.   EDX spectrum for pristine and Fe-doped TiO2 thin films.

Sample Fe (vol%) Oxygen (at%) Titanium (at%) Fe (at%)
Pristine 81.08 18.92
1 vol% Fe:TiO2 1 84.61 14.23 1.16
2 vol% Fe:TiO2 2 86.14 12.29 1.57
4 vol% Fe:TiO2 4 87.28 11.12 1.80
DownLoad: CSV

Table 3.   Electrical resistance, TCR and activation energy for pristine and Fe-doped TiO2 thin films.

Sample Fe (vol%) Room temp. resistance (MΩ) TCR (°C–1) Activation energy (eV)
Heating Cooling Heating Cooling
Pristine 382.4800 –0.00140 –0.007393 0.3395 0.3537
1 vol% Fe:TiO2 1 384.7108 –0.00124 –0.005736 0.4499 0.4673
2 vol% Fe:TiO2 2 258.5140 –0.00081 –0.001172 0.4947 0.5137
4 vol% Fe:TiO2 4 212.2913 –0.00034 –0.000738 0.5201 0.5348
DownLoad: CSV

Table 4.   Sensitivity, response, recovery time and % of hysteresis loss for pristine and Fe-doped TiO2 thin films.

Sample Fe (vol%) Sensitivity Response time (s) Recovery time (s) % of hysteresis loss
Pristine 83.72 77.5 3 1.19
1 vol% Fe:TiO2 1 86.71 62.5 3 3.11
2 vol% Fe:TiO2 2 88.68 52 3 3.66
4 vol% Fe:TiO2 4 80.47 82.5 4 5.34
DownLoad: CSV
[1]
Kim C E, Yun I. Effects of the interfacial layer on electrical properties of TiO2-based high-k dielectric composite films. ECS Trans, 2012, 45(3), 89 doi: 10.1149/1.3700875
[2]
Taherniya A, Raoufi D. The annealing temperature dependence of anatase TiO2 thin films prepared by the electron-beam evaporation method. Semicond Sci Technol, 2016, 31, 125012 doi: 10.1088/0268-1242/31/12/125012
[3]
Khaleel R S, Hashim M S. Fabrication of TiO2 sensor using rapid breakdown anodization method to measure pressure, humidity and sense gases at room temperature. Iraqi J Sci, 2019, 60, 1694 doi: 10.24996/ijs.2019.60.8.6
[4]
Vanmathi M, Kumar M S, Ismail M M. Optimization of process parameters for al-doping back ground on CO gas sensing characteristics of magnetron-sputtered TiO2 sensors. Mater Res Express, 2019, 6, 106423 doi: 10.1088/2053-1591/ab3a02
[5]
Ashok C H, Rao K V, Chakra C H S. Comparison of metal oxide nanomaterials: Humidity sensor applications. Mater Energy Environ Eng, 2017, 267 doi: 10.1007/978-981-10-2675-1_32
[6]
Khan M M, Adil S F, Al-Mayouf A. Metal oxides as photocatalysts. J Saudi Chem Soc, 2015, 19, 462 doi: 10.1016/j.jscs.2015.04.003
[7]
Kaviyarasu K, Geetha N, Kanimozhi K. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: Investigation of bio-medical application by chemical method. Mater Sci Eng C, 2017, 74, 325 doi: 10.1016/j.msec.2016.12.024
[8]
Gapale D L, Arote S A, Borse R Y. Mathematical modeling of droplet formation, evaporation, and film growth to study crystallite size and film thickness of spray pyrolysis deposited TiO2 thin films. e-J Surf Sci Nanotechnol, 2018, 16(0), 419 doi: 10.1380/ejssnt.2018.419
[9]
Hassanien A S, Akl A A. Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl Phys A, 2018, 124(11), 752 doi: 10.1007/s00339-018-2180-6
[10]
Ranjit K T, Cohen H, Willner I. Lanthanide oxide-doped titanium dioxide: Effective photocatalysts for the degradation of organic pollutants. J Mater Sci, 1999, 34, 5273 doi: 10.1023/A:1004780401030
[11]
Nowotny J, Sorrell C C, Sheppard L R. Solar-hydrogen: environmentally safe fuel for the future. Int J Hydrogen Energy, 2005, 30, 521 doi: 10.1016/j.ijhydene.2004.06.012
[12]
Hanaor D A H, Sorrell C C. Review of the anatase to rutile phase transformation. J Mater Sci, 2011, 46, 855 doi: 10.1007/s10853-010-5113-0
[13]
Reidy D J, Holmes J D, Morris M A. The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. J Eur Ceram Soc, 2006, 26, 1527 doi: 10.1016/j.jeurceramsoc.2005.03.246
[14]
Serpone N. Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts. J Phys Chem B, 2006, 110, 24287 doi: 10.1021/jp065659r
[15]
Nguyen V N, Nguyen N K T, Nguyen P H. Hydrothermal synthesis of Fe-doped TiO2 nanostructure photocatalyst. Adv Nat Sci Nanosci Nanotechnol, 2011, 2, 035014 doi: 10.1088/2043-6262/2/3/035014
[16]
Eadi S B, Kim S, Jeong S W. Novel preparation of Fe doped TiO2 nanoparticles and their application for gas sensor and photocatalytic degradation. Adv Mater Sci Eng, 2017, 2017, 2191659 doi: 10.1155/2017/2191659
[17]
Dholam R, Patel N, Adami M. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy, 2009, 34, 5337 doi: 10.1016/j.ijhydene.2009.05.011
[18]
Hernández-Rivera D, Rodríguez-Roldán G, Mora-Martínez R, et al. A capacitive humidity sensor based on an electrospun PVDF/graphene membrane. Sensors, 2017, 17, 1009 doi: 10.3390/s17051009
[19]
Shukla G, Walia S, Kundu S, et al. Humidity sensing and breath analyzing applications of TiO2 slanted nanorod arrays. Sens Actuators A, 2019, 301, 111758 doi: 10.1016/j.sna.2019.111758
[20]
Li Z, Haidry A A, Gao B, et al. The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2. Appl Surf Sci, 2017, 412, 638 doi: 10.1016/j.apsusc.2017.03.156
[21]
Zhang M, Wei S, Ren W, et al. Development of high sensitivity humidity sensor based on Gray TiO2/SrTiO3 composite. Sensors, 2017, 17, 1310 doi: 10.3390/s17061310
[22]
Ali T, Tripathi P, Azam A. Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Mater Res Express, 2017, 4, 015022 doi: 10.1088/2053-1591/aa576d
[23]
Hou X, Huang M, Wu X. First-principles calculations on implanted TiO2 by 3d transition metal ions. Sci China Ser G, 2009, 52(6), 838 doi: 10.1007/s11433-009-0108-z
[24]
Essalhi Z, Hartiti B, Lfakir A. Optical properties of TiO2 Thin films prepared by Sol Gel method. J Mater Environ Sci, 2016, 7, 1328
[25]
Gapale D L, Arote S A, Palve B M. Effect of film thickness on humidity sensing of spray deposited TiO2 thin films. Mater Res Express, 2018, 6, 026402 doi: 10.1088/2053-1591/aae970
[26]
Nair P B, Maneeshya L V, Justinvictor V B. Evolution of structural and optical properties of photocatalytic Fe doped TiO2 thin films prepared by RF magnetron sputtering. AIP Conf Proc, 2014, 1576, 79 doi: 10.1063/1.4861987
[27]
Sebnem C S, Corekci S, Cakmak M. Structural investigation and electronic band transitions of nanostructured TiO2 thin films. Cryst Res Technol, 2011, 46, 1207 doi: 10.1002/crat.201100195
[28]
Xu Y, Wu S, Wan P. Introducing Ti3+ defects based on lattice distortion for enhanced visible light photoreactivity in TiO2 microspheres. RSC Adv, 2017, 7, 32461 doi: 10.1039/C7RA04885H
[29]
Li D, Song H, Meng X, et al. Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials, 2020, 10(3), 546 doi: 10.3390/nano10030546
[30]
Reetu, Agarwal A, Sanghi S, et al. Improved dielectric and magnetic properties of Ti modified BiCaFeO3 multiferroic ceramics. J Appl Phy, 2013, 113(2), 023908 doi: 10.1063/1.4774283
[31]
Patil L, Suryawanshi D, Pathan I. Effect of variation of precursor concentration on structural, microstructural, optical and gas sensing properties of nanocrystalline TiO2 thin films prepared by spray pyrolysis techniques. Bull Mater Sci, 2013, 36, 1153 doi: 10.1007/s12034-013-0597-2
[32]
Hiromi Y, Masaru H, Junko M. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal Today, 2003, 84, 191 doi: 10.1016/S0920-5861(03)00273-6
[33]
Bally A R, Korobeinikova E N, Schmid P E, et al. Structural and electrical properties of Fe-doped thin films. J Phys D, 1998, 31(10), 1149 doi: 10.1088/0022-3727/31/10/004
[34]
Traiwatcharanon P, Timsorn K, Wongchoosuk C. Flexible room-temperature resistive humidity sensor based on silver nanoparticles. Mater Res Express, 2017, 4, 085038 doi: 10.1088/2053-1591/aa85b6
[35]
Farahani H, Wagiran R, Hamidon M N. Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors, 2014, 14, 7881 doi: 10.3390/s140507881
[36]
Sasikumar M, Subiramaniyam N P. Microstructure, electrical and humidity sensing properties of TiO2/polyaniline nanocomposite films prepared by sol–gel spin coating technique. J Mater Sci - Mater Electron, 2018, 29, 7099 doi: 10.1007/s10854-018-8697-9
[37]
Gapale D L, Arote S A, Palve B M. Influence of precursor solution concentration on structural, optical and humidity sensing properties of spray deposited TiO2 thin films. J Semicond, 2018, 39, 122003 doi: 10.1088/1674-4926/39/12/122003
[38]
Rathi K, Pal K. Impact of doping on GO: Fast response–recovery humidity sensor. ACS Omega, 2017, 2, 842 doi: 10.1021/acsomega.6b00399
[39]
Keren R. Water vapor isotherms and heat of immersion of Na/Ca-montmorillonite systems—I: Homoionic. Clays Clay Miner, 1975, 23, 193 doi: 10.1346/CCMN.1975.0230305
[40]
Ren Y, Yang J, Ma Y. Increasing sensing sensitivity of the Fe-α-Fe2O3 (104) surface by hydrogenation and the sensing reaction molecule mechanism. Sens Actuators B, 2019, 281, 366 doi: 10.1016/j.snb.2018.10.088
[41]
Morimoto T, Nagao M, Tokuda F. Relation between the amounts of chemisorbed and physisorbed water on metal oxides. J Phys Chem, 1969, 73, 243 doi: 10.1021/j100721a039
[42]
Traversa E, Gnappi G, Montenero A. Ceramic thin films by sol-gel processing as novel materials for integrated humidity sensors. Sens Actuators B, 1996, 31, 59 doi: 10.1016/0925-4005(96)80017-7
[43]
Camaioni N, Casalboremiceli G, Li Y. Water activated ionic conduction in cross-linked polyelectrolytes. Sens Actuators B, 2008, 134, 230 doi: 10.1016/j.snb.2008.04.035
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1451 Times PDF downloads: 38 Times Cited by: 0 Times

    History

    Received: 13 March 2021 Revised: 18 July 2021 Online: Accepted Manuscript: 30 August 2021Uncorrected proof: 30 August 2021Published: 03 December 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dipak L Gapale, Pranav P. Bardapurkar, Sandeep A. Arote, Sanjaykumar Dalvi, Prashant Baviskar, Ratan Y Borse. Humidity sensing properties of spray deposited Fe doped TiO2 thin film[J]. Journal of Semiconductors, 2021, 42(12): 122805. doi: 10.1088/1674-4926/42/12/122805 D L Gapale, P P Bardapurkar, S A Arote, S Dalvi, P Baviskar, R Y Borse, Humidity sensing properties of spray deposited Fe doped TiO2 thin film[J]. J. Semicond., 2021, 42(12): 122805. doi: 10.1088/1674-4926/42/12/122805.Export: BibTex EndNote
      Citation:
      Dipak L Gapale, Pranav P. Bardapurkar, Sandeep A. Arote, Sanjaykumar Dalvi, Prashant Baviskar, Ratan Y Borse. Humidity sensing properties of spray deposited Fe doped TiO2 thin film[J]. Journal of Semiconductors, 2021, 42(12): 122805. doi: 10.1088/1674-4926/42/12/122805

      D L Gapale, P P Bardapurkar, S A Arote, S Dalvi, P Baviskar, R Y Borse, Humidity sensing properties of spray deposited Fe doped TiO2 thin film[J]. J. Semicond., 2021, 42(12): 122805. doi: 10.1088/1674-4926/42/12/122805.
      Export: BibTex EndNote

      Humidity sensing properties of spray deposited Fe doped TiO2 thin film

      doi: 10.1088/1674-4926/42/12/122805
      More Information
      • Author Bio:

        Dipak L Gapale Ph.D. Assistant Professor, Department of Physics, S. N. Arts, D. J. Malpani Commerce & B. N. Sarda Science College, Sangamner, Affiliated to Savitribai Phule Pune University, MS, India. He has 15 year teaching and 9 year research experience. He has published over 7 research articles in peer reviewed journals and also presented his research work in several national/international conferences. His research areas include: thin film technology, nanomaterials and their applications in gas, humidity and thermal sensors

      • Corresponding author: gapaledeepak@gmail.com
      • Received Date: 2021-03-13
      • Revised Date: 2021-07-18
      • Published Date: 2021-12-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return