NEWS AND VIEWS

Efficient p-type doping in ultra-wide band-gap nitrides using non-equilibrium doping method

Jianbai Xia

+ Author Affiliations

 Corresponding author: Jianbai Xia, xiajb@semi.ac.cn

PDF

Turn off MathJax



[1]
Tsao J Y, Han J, Haitz R H, et al. The blue LED Nobel Prize: Historical context, current scientific understanding, human benefit. Ann Phys, 2015, 527, A53 doi: 10.1002/andp.201570058
[2]
Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv Electron Mater, 2018, 4, 1600501 doi: 10.1002/aelm.201600501
[3]
Taniyasu Y, Kasu M, Makimoto T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 2006, 441, 325 doi: 10.1038/nature04760
[4]
Simon J, Protasenko V, Lian C, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science, 2010, 327, 60 doi: 10.1126/science.1183226
[5]
Li D B, Jiang K, Sun X J, et al. AlGaN photonics: Recent advances in materials and ultraviolet devices. Adv Opt Photonics, 2018, 10, 43 doi: 10.1364/AOP.10.000043
[6]
Zhang S B, Wei S H, Zunger A. Overcoming doping bottlenecks in semiconductors and wide-gap materials. Physica B, 1999, 273/274, 976 doi: 10.1016/S0921-4526(99)00605-5
[7]
Wei S H. Overcoming the doping bottleneck in semiconductors. Comput Mater Sci, 2004, 30, 337 doi: 10.1016/j.commatsci.2004.02.024
[8]
Lyons J L. A survey of acceptor dopants for β-Ga2O3. Semicond Sci Technol, 2018, 33, 05LT02 doi: 10.1088/1361-6641/aaba98
[9]
Kyrtsos A, Matsubara M, Bellotti E. On the feasibility of p-type Ga2O3. Appl Phys Lett, 2018, 112, 032108 doi: 10.1063/1.5009423
[10]
Wong M H, Lin C H, Kuramata A, et al. Acceptor doping of β-Ga2O3 by Mg and N ion implantations. Appl Phys Lett, 2018, 113, 102103 doi: 10.1063/1.5050040
[11]
Nakarmi M L, Kim K H, Li J, et al. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl Phys Lett, 2003, 82, 3041 doi: 10.1063/1.1559444
[12]
Nishimatsu T, Katayama-Yoshida H, Orita N. Ab initio study of donor–hydrogen complexes for low-resistivity n-type diamond semiconductor. Jpn J Appl Phys, 2002, 41, 1952 doi: 10.1143/JJAP.41.1952
[13]
Yan Y, Li J, Wei S H, et al. Possible approach to overcome the doping asymmetry in wideband gap semiconductors. Phys Rev Lett, 2007, 98, 135506 doi: 10.1103/PhysRevLett.98.135506
[14]
Persson C, Platzer-Björkman C, Malmström J, et al. Strong valence-band offset bowing of ZnO1–xSx enhances p-type nitrogen doping of ZnO-like alloys. Phys Rev Lett, 2006, 97, 146403 doi: 10.1103/PhysRevLett.97.146403
[15]
Jiang K, Sun X J, Shi Z M, et al. Quantum engineering of non-equilibrium efficient p-doping in ultra-wide band-gap nitrides. Light: Sci Appl, 2021, 10, 1 doi: 10.1038/s41377-020-00435-z
Fig. 1.  (Color online) Non-equilibrium doping method to lower the acceptor Ea in UWBG nitride semiconductors and its application in DUV-LED. Acceptors are randomly doped in (a) AlN and (c) GaN. Both have high Ea in this condition. (b) GaN-QDs are embedded in AlN host and acceptors are doped in AlN host and concentrate near the interface. (d) Current–voltage curves of the devices. Device A uses the non-equilibrium doping method and Device B uses the uniform doping method. The insets are the device structure diagram and the cross-sectional scanning transmission electronic microscopy for the active region of the devices. Cited from Ref. [15].

[1]
Tsao J Y, Han J, Haitz R H, et al. The blue LED Nobel Prize: Historical context, current scientific understanding, human benefit. Ann Phys, 2015, 527, A53 doi: 10.1002/andp.201570058
[2]
Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv Electron Mater, 2018, 4, 1600501 doi: 10.1002/aelm.201600501
[3]
Taniyasu Y, Kasu M, Makimoto T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 2006, 441, 325 doi: 10.1038/nature04760
[4]
Simon J, Protasenko V, Lian C, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science, 2010, 327, 60 doi: 10.1126/science.1183226
[5]
Li D B, Jiang K, Sun X J, et al. AlGaN photonics: Recent advances in materials and ultraviolet devices. Adv Opt Photonics, 2018, 10, 43 doi: 10.1364/AOP.10.000043
[6]
Zhang S B, Wei S H, Zunger A. Overcoming doping bottlenecks in semiconductors and wide-gap materials. Physica B, 1999, 273/274, 976 doi: 10.1016/S0921-4526(99)00605-5
[7]
Wei S H. Overcoming the doping bottleneck in semiconductors. Comput Mater Sci, 2004, 30, 337 doi: 10.1016/j.commatsci.2004.02.024
[8]
Lyons J L. A survey of acceptor dopants for β-Ga2O3. Semicond Sci Technol, 2018, 33, 05LT02 doi: 10.1088/1361-6641/aaba98
[9]
Kyrtsos A, Matsubara M, Bellotti E. On the feasibility of p-type Ga2O3. Appl Phys Lett, 2018, 112, 032108 doi: 10.1063/1.5009423
[10]
Wong M H, Lin C H, Kuramata A, et al. Acceptor doping of β-Ga2O3 by Mg and N ion implantations. Appl Phys Lett, 2018, 113, 102103 doi: 10.1063/1.5050040
[11]
Nakarmi M L, Kim K H, Li J, et al. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl Phys Lett, 2003, 82, 3041 doi: 10.1063/1.1559444
[12]
Nishimatsu T, Katayama-Yoshida H, Orita N. Ab initio study of donor–hydrogen complexes for low-resistivity n-type diamond semiconductor. Jpn J Appl Phys, 2002, 41, 1952 doi: 10.1143/JJAP.41.1952
[13]
Yan Y, Li J, Wei S H, et al. Possible approach to overcome the doping asymmetry in wideband gap semiconductors. Phys Rev Lett, 2007, 98, 135506 doi: 10.1103/PhysRevLett.98.135506
[14]
Persson C, Platzer-Björkman C, Malmström J, et al. Strong valence-band offset bowing of ZnO1–xSx enhances p-type nitrogen doping of ZnO-like alloys. Phys Rev Lett, 2006, 97, 146403 doi: 10.1103/PhysRevLett.97.146403
[15]
Jiang K, Sun X J, Shi Z M, et al. Quantum engineering of non-equilibrium efficient p-doping in ultra-wide band-gap nitrides. Light: Sci Appl, 2021, 10, 1 doi: 10.1038/s41377-020-00435-z
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2951 Times PDF downloads: 115 Times Cited by: 0 Times

    History

    Received: 30 April 2021 Revised: Online: Accepted Manuscript: 30 April 2021Uncorrected proof: 30 April 2021Published: 01 June 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jianbai Xia. Efficient p-type doping in ultra-wide band-gap nitrides using non-equilibrium doping method[J]. Journal of Semiconductors, 2021, 42(6): 060402. doi: 10.1088/1674-4926/42/6/060402 J B Xia, Efficient p-type doping in ultra-wide band-gap nitrides using non-equilibrium doping method[J]. J. Semicond., 2021, 42(6): 060402. doi: 10.1088/1674-4926/42/6/060402.Export: BibTex EndNote
      Citation:
      Jianbai Xia. Efficient p-type doping in ultra-wide band-gap nitrides using non-equilibrium doping method[J]. Journal of Semiconductors, 2021, 42(6): 060402. doi: 10.1088/1674-4926/42/6/060402

      J B Xia, Efficient p-type doping in ultra-wide band-gap nitrides using non-equilibrium doping method[J]. J. Semicond., 2021, 42(6): 060402. doi: 10.1088/1674-4926/42/6/060402.
      Export: BibTex EndNote

      Efficient p-type doping in ultra-wide band-gap nitrides using non-equilibrium doping method

      doi: 10.1088/1674-4926/42/6/060402
      More Information
      • Author Bio:

        Jianbai Xia graduated from the Department of Physics of Peking University and then stayed in the university as a teacher, and has worked at the Southwest Institute of Physics and the Institute of Semiconductors, Chinese Academy of Sciences since 1970. Now he is a member of the Chinese Academy of Sciences and a Professor at the Institute of Semiconductors, Chinese Academy of Sciences. His research interests are mainly in the areas of semiconductors and condensed matter physics

      • Corresponding author: xiajb@semi.ac.cn
      • Received Date: 2021-04-30
      • Published Date: 2021-06-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return