RESEARCH HIGHLIGHTS

Polymer acceptors for all-polymer solar cells

Xiaofei Ji1, Zuo Xiao2, Huiliang Sun1, , Xugang Guo1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Huiliang Sun, sunhl@sustech.edu.cn; Xugang Guo, guoxg@sustech.edu.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Guo X, Facchetti A. The journey of conducting polymers from discovery to application. Nat Mater, 2020, 19, 922 doi: 10.1038/s41563-020-0778-5
[2]
Armin A, Li W, Oskar J S, et al. A history and perspective of non-fullerene electron acceptors for organic solar cells. Adv Energy Mater, 2021, 11, 20003570 doi: 10.1002/aenm.202003570
[3]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0
[4]
Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 2020, 65, 1231 doi: 10.1016/j.scib.2020.04.030
[5]
Duan C, Ding L. The new era for organic solar cells: polymer donors. Sci Bull, 2020, 65, 1422 doi: 10.1016/j.scib.2020.04.044
[6]
Duan C, Ding L. The new era for organic solar cells: polymer acceptors. Sci Bull, 2020, 65, 1508 doi: 10.1016/j.scib.2020.05.023
[7]
Duan C, Ding L. The new era for organic solar cells: small molecular donors. Sci Bull, 2020, 65, 1597 doi: 10.1016/j.scib.2020.05.019
[8]
Xiao Z, Yang S, Yang Z, et al. Carbon-oxygen-bridged ladder-type building blocks for highly efficient nonfullerene acceptors. Adv Mater, 2019, 31, 1804790 doi: 10.1002/adma.201804790
[9]
Tang A, Xiao Z, Ding L, et al. ~1.2 V open-circuit voltage from organic solar cells. J Semicond, 2021, 42, 070202 doi: 10.1088/1674-4926/42/7/070202
[10]
Guan W, Yuan D, Wu J, et al. Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. J Semicond, 2021, 42, 030502 doi: 10.1088/1674-4926/42/3/030502
[11]
Pan W, Han Y, Wang Z, et al. Over 1 cm2 flexible organic solar cells. J Semicond, 2021, 42, 050301 doi: 10.1088/1674-4926/42/5/050301
[12]
Li X, Xu J, Xiao Z, et al. Dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]oxadiazole-based polymer donors with deep HOMO levels. J Semicond, 2021, 42, 060501 doi: 10.1088/1674-4926/42/6/060501
[13]
Xiao Z, Liu F, Geng X, et al. A carbon-oxygen-bridged ladder-type building block for efficient donor and acceptor materials used in organic solar cells. Sci Bull, 2017, 62, 1331 doi: 10.1016/j.scib.2017.09.017
[14]
Xiao Z, Jia X, Ding L. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull, 2017, 62, 1562 doi: 10.1016/j.scib.2017.11.003
[15]
Wang T, Qin J, Xiao Z, et al. A 2.16 eV bandgap polymer donor gives 16% power conversion efficiency. Sci Bull, 2020, 65, 179 doi: 10.1016/j.scib.2019.11.030
[16]
Xiong J, Jin K, Jiang Y, et al. Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci Bull, 2019, 64, 1573 doi: 10.1016/j.scib.2019.10.002
[17]
Wang T, Qin J, Xiao Z, et al. Multiple conformation locks gift polymer donor high efficiency. Nano Energy, 2020, 77, 105161 doi: 10.1016/j.nanoen.2020.105161
[18]
Qin J, Zhang L, Xiao Z, et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 2020, 65, 1979 doi: 10.1016/j.scib.2020.08.027
[19]
Liu L, Liu Q, Xiao Z, et al. Induced J-aggregation in acceptor alloy enhances photocurrent. Sci Bull, 2019, 64, 1083 doi: 10.1016/j.scib.2019.06.005
[20]
Liu J, Liu L, Zuo C, et al. 5H-dithieno[3,2-b:2',3'-d]pyran-5-one unit yields efficient wide-bandgap polymer donors. Sci Bull, 2019, 64, 1655 doi: 10.1016/j.scib.2019.09.001
[21]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[22]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[23]
Cui Y, Yao H, Zhang J, et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater, 2020, 32, 1908205 doi: 10.1002/adma.201908205
[24]
Zhan L, Li S, Xia X, et al. Layer-by-layer processed ternary organic photovoltaics with efficiency over 18%. Adv Mater, 2021, 33, 2007231 doi: 10.1002/adma.202007231
[25]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[26]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[27]
Yu G, Heeger A J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J Appl Phys, 1995, 78, 4510 doi: 10.1063/1.359792
[28]
Zhan X, Tan Z, Domercq B, et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc, 2007, 129, 7246 doi: 10.1021/ja071760d
[29]
Yan H, Chen Z, Zheng Y, et al. A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457, 679 doi: 10.1038/nature07727
[30]
Guo X, Watson M D. Conjugated polymers from naphthalene bisimide. Org Lett, 2008, 10, 5333 doi: 10.1021/ol801918y
[31]
Zhu P, Fan B, Ying L, et al. Recent progress in all-polymer solar cells based on wide-bandgap p-type polymers. Chem Asian J, 2019, 14, 3109 doi: 10.1002/asia.201900827
[32]
Zhu L, Zhong W, Qiu C, et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication. Adv Mater, 2019, 31, 1902899 doi: 10.1002/adma.201902899
[33]
Sun H, Wang L, Wang Y, et al. Imide-functionalized polymer semiconductors. Chem Eur J, 2019, 25, 87 doi: 10.1002/chem.201803605
[34]
Sun H, Tang Y, Koh C W, et al. High-performance all-polymer solar cells enabled by an n-type polymer based on a fluorinated imide-functionalized arene. Adv Mater, 2019, 31, 1807220 doi: 10.1002/adma.201807220
[35]
Yang J, Xiao B, Tang A, et al. Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications. Adv Mater, 2019, 31, 1804699 doi: 10.1002/adma.201804699
[36]
Sun H, Liu B, Yu J, et al. Reducing energy loss via tuning energy levels of polymer acceptors for efficient all-polymer solar cells. Sci China Chem, 2020, 63, 1785 doi: 10.1007/s11426-020-9826-4
[37]
Zhao R, Wang N, Yu Y, et al. Organoboron polymer for 10% efficiency all-polymer solar cells. Chem Mater, 2020, 32, 1308 doi: 10.1021/acs.chemmater.9b04997
[38]
Feng K, Wu Z, Su M, et al. Highly efficient ternary all-polymer solar cells with enhanced stability. Adv Funct Mater, 2020, 31, 2008494 doi: 10.1002/adfm.202008494
[39]
Shi S, Chen P, Chen Y, et al. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells. Adv Mater, 2019, 31, 1905161 doi: 10.1002/adma.201905161
[40]
Zhang Z, Yang Y, Yao J, et al. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew Chem Int Ed, 2017, 56, 13503 doi: 10.1002/anie.201707678
[41]
Zhang Z, Li Y. Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew Chem Int Ed, 2021, 60, 4422 doi: 10.1002/anie.202009666
[42]
Liu W, Xu X, Yuan J, et al. Low-bandgap non-fullerene acceptors enabling high-performance organic solar cells. ACS Energy Lett, 2021, 6, 598 doi: 10.1021/acsenergylett.0c02384
[43]
Luo Z, Liu T, Ma R, et al. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15. Adv Mater, 2020, 32, 2005942 doi: 10.1002/adma.202005942
[44]
Fu H, Li Y, Yu J, et al. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. J Am Chem Soc, 2021, 143, 2665 doi: 10.1021/jacs.0c12527
[45]
Sun H, Yu H, Shi Y, et al. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells. Adv Mater, 2020, 32, 2004183 doi: 10.1002/adma.202004183
[46]
Liu T, Yang T, Ma R, et al. 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914 doi: 10.1016/j.joule.2021.02.002
[47]
Sun R, Wang W, Yu H, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5, 1548 doi: 10.1016/j.joule.2021.04.007
Fig. 1.  High-performance polymer acceptors. (Note: the names in the parentheses indicate the polymer donors.)

Table 1.   Performance data for the polymer acceptors.

AcceptorDonorVoc (V)Jsc (mA/cm2)FF (%)PCEmax (%)Ref.
PDI-DTTPTA0.634.239.01.5[28]
N2200PTzBI-Si0.8817.6275.7811.76[32]
SPA2PTB7-Th1.0215.1659.49.21[36]
PBN-12CD11.1713.3964.010.07[37]
DCNBT-TPCPTB7-Th:PBDB-T0.8121.968.312.1[38]
PZ1PBDB-T0.8316.0568.999.19[40]
L14PM60.9620.672.114.3[45]
PY-ITPM60.93322.3072.315.05[43]
PZT-γPBDB-T0.89624.771.315.8[44]
PYT:BN-TPM60.95522.6574.316.09[46]
PY2F-T:PYTPM60.9025.276.017.2[47]
DownLoad: CSV
[1]
Guo X, Facchetti A. The journey of conducting polymers from discovery to application. Nat Mater, 2020, 19, 922 doi: 10.1038/s41563-020-0778-5
[2]
Armin A, Li W, Oskar J S, et al. A history and perspective of non-fullerene electron acceptors for organic solar cells. Adv Energy Mater, 2021, 11, 20003570 doi: 10.1002/aenm.202003570
[3]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0
[4]
Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 2020, 65, 1231 doi: 10.1016/j.scib.2020.04.030
[5]
Duan C, Ding L. The new era for organic solar cells: polymer donors. Sci Bull, 2020, 65, 1422 doi: 10.1016/j.scib.2020.04.044
[6]
Duan C, Ding L. The new era for organic solar cells: polymer acceptors. Sci Bull, 2020, 65, 1508 doi: 10.1016/j.scib.2020.05.023
[7]
Duan C, Ding L. The new era for organic solar cells: small molecular donors. Sci Bull, 2020, 65, 1597 doi: 10.1016/j.scib.2020.05.019
[8]
Xiao Z, Yang S, Yang Z, et al. Carbon-oxygen-bridged ladder-type building blocks for highly efficient nonfullerene acceptors. Adv Mater, 2019, 31, 1804790 doi: 10.1002/adma.201804790
[9]
Tang A, Xiao Z, Ding L, et al. ~1.2 V open-circuit voltage from organic solar cells. J Semicond, 2021, 42, 070202 doi: 10.1088/1674-4926/42/7/070202
[10]
Guan W, Yuan D, Wu J, et al. Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. J Semicond, 2021, 42, 030502 doi: 10.1088/1674-4926/42/3/030502
[11]
Pan W, Han Y, Wang Z, et al. Over 1 cm2 flexible organic solar cells. J Semicond, 2021, 42, 050301 doi: 10.1088/1674-4926/42/5/050301
[12]
Li X, Xu J, Xiao Z, et al. Dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]oxadiazole-based polymer donors with deep HOMO levels. J Semicond, 2021, 42, 060501 doi: 10.1088/1674-4926/42/6/060501
[13]
Xiao Z, Liu F, Geng X, et al. A carbon-oxygen-bridged ladder-type building block for efficient donor and acceptor materials used in organic solar cells. Sci Bull, 2017, 62, 1331 doi: 10.1016/j.scib.2017.09.017
[14]
Xiao Z, Jia X, Ding L. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull, 2017, 62, 1562 doi: 10.1016/j.scib.2017.11.003
[15]
Wang T, Qin J, Xiao Z, et al. A 2.16 eV bandgap polymer donor gives 16% power conversion efficiency. Sci Bull, 2020, 65, 179 doi: 10.1016/j.scib.2019.11.030
[16]
Xiong J, Jin K, Jiang Y, et al. Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci Bull, 2019, 64, 1573 doi: 10.1016/j.scib.2019.10.002
[17]
Wang T, Qin J, Xiao Z, et al. Multiple conformation locks gift polymer donor high efficiency. Nano Energy, 2020, 77, 105161 doi: 10.1016/j.nanoen.2020.105161
[18]
Qin J, Zhang L, Xiao Z, et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 2020, 65, 1979 doi: 10.1016/j.scib.2020.08.027
[19]
Liu L, Liu Q, Xiao Z, et al. Induced J-aggregation in acceptor alloy enhances photocurrent. Sci Bull, 2019, 64, 1083 doi: 10.1016/j.scib.2019.06.005
[20]
Liu J, Liu L, Zuo C, et al. 5H-dithieno[3,2-b:2',3'-d]pyran-5-one unit yields efficient wide-bandgap polymer donors. Sci Bull, 2019, 64, 1655 doi: 10.1016/j.scib.2019.09.001
[21]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[22]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[23]
Cui Y, Yao H, Zhang J, et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater, 2020, 32, 1908205 doi: 10.1002/adma.201908205
[24]
Zhan L, Li S, Xia X, et al. Layer-by-layer processed ternary organic photovoltaics with efficiency over 18%. Adv Mater, 2021, 33, 2007231 doi: 10.1002/adma.202007231
[25]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[26]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[27]
Yu G, Heeger A J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J Appl Phys, 1995, 78, 4510 doi: 10.1063/1.359792
[28]
Zhan X, Tan Z, Domercq B, et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc, 2007, 129, 7246 doi: 10.1021/ja071760d
[29]
Yan H, Chen Z, Zheng Y, et al. A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457, 679 doi: 10.1038/nature07727
[30]
Guo X, Watson M D. Conjugated polymers from naphthalene bisimide. Org Lett, 2008, 10, 5333 doi: 10.1021/ol801918y
[31]
Zhu P, Fan B, Ying L, et al. Recent progress in all-polymer solar cells based on wide-bandgap p-type polymers. Chem Asian J, 2019, 14, 3109 doi: 10.1002/asia.201900827
[32]
Zhu L, Zhong W, Qiu C, et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication. Adv Mater, 2019, 31, 1902899 doi: 10.1002/adma.201902899
[33]
Sun H, Wang L, Wang Y, et al. Imide-functionalized polymer semiconductors. Chem Eur J, 2019, 25, 87 doi: 10.1002/chem.201803605
[34]
Sun H, Tang Y, Koh C W, et al. High-performance all-polymer solar cells enabled by an n-type polymer based on a fluorinated imide-functionalized arene. Adv Mater, 2019, 31, 1807220 doi: 10.1002/adma.201807220
[35]
Yang J, Xiao B, Tang A, et al. Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications. Adv Mater, 2019, 31, 1804699 doi: 10.1002/adma.201804699
[36]
Sun H, Liu B, Yu J, et al. Reducing energy loss via tuning energy levels of polymer acceptors for efficient all-polymer solar cells. Sci China Chem, 2020, 63, 1785 doi: 10.1007/s11426-020-9826-4
[37]
Zhao R, Wang N, Yu Y, et al. Organoboron polymer for 10% efficiency all-polymer solar cells. Chem Mater, 2020, 32, 1308 doi: 10.1021/acs.chemmater.9b04997
[38]
Feng K, Wu Z, Su M, et al. Highly efficient ternary all-polymer solar cells with enhanced stability. Adv Funct Mater, 2020, 31, 2008494 doi: 10.1002/adfm.202008494
[39]
Shi S, Chen P, Chen Y, et al. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells. Adv Mater, 2019, 31, 1905161 doi: 10.1002/adma.201905161
[40]
Zhang Z, Yang Y, Yao J, et al. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew Chem Int Ed, 2017, 56, 13503 doi: 10.1002/anie.201707678
[41]
Zhang Z, Li Y. Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew Chem Int Ed, 2021, 60, 4422 doi: 10.1002/anie.202009666
[42]
Liu W, Xu X, Yuan J, et al. Low-bandgap non-fullerene acceptors enabling high-performance organic solar cells. ACS Energy Lett, 2021, 6, 598 doi: 10.1021/acsenergylett.0c02384
[43]
Luo Z, Liu T, Ma R, et al. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15. Adv Mater, 2020, 32, 2005942 doi: 10.1002/adma.202005942
[44]
Fu H, Li Y, Yu J, et al. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. J Am Chem Soc, 2021, 143, 2665 doi: 10.1021/jacs.0c12527
[45]
Sun H, Yu H, Shi Y, et al. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells. Adv Mater, 2020, 32, 2004183 doi: 10.1002/adma.202004183
[46]
Liu T, Yang T, Ma R, et al. 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914 doi: 10.1016/j.joule.2021.02.002
[47]
Sun R, Wang W, Yu H, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5, 1548 doi: 10.1016/j.joule.2021.04.007
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2105 Times PDF downloads: 125 Times Cited by: 0 Times

    History

    Received: 03 May 2021 Revised: Online: Accepted Manuscript: 07 May 2021Uncorrected proof: 08 May 2021Published: 01 August 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaofei Ji, Zuo Xiao, Huiliang Sun, Xugang Guo, Liming Ding. Polymer acceptors for all-polymer solar cells[J]. Journal of Semiconductors, 2021, 42(8): 080202. doi: 10.1088/1674-4926/42/8/080202 X F Ji, Z Xiao, H L Sun, X G Guo, L M Ding, Polymer acceptors for all-polymer solar cells[J]. J. Semicond., 2021, 42(8): 080202. doi: 10.1088/1674-4926/42/8/080202.Export: BibTex EndNote
      Citation:
      Xiaofei Ji, Zuo Xiao, Huiliang Sun, Xugang Guo, Liming Ding. Polymer acceptors for all-polymer solar cells[J]. Journal of Semiconductors, 2021, 42(8): 080202. doi: 10.1088/1674-4926/42/8/080202

      X F Ji, Z Xiao, H L Sun, X G Guo, L M Ding, Polymer acceptors for all-polymer solar cells[J]. J. Semicond., 2021, 42(8): 080202. doi: 10.1088/1674-4926/42/8/080202.
      Export: BibTex EndNote

      Polymer acceptors for all-polymer solar cells

      doi: 10.1088/1674-4926/42/8/080202
      More Information
      • Author Bio:

        Xiaofei Ji got her PhD degree from Nankai University in 2020. She is now a postdoc in Xugang Guo Group at Southern University of Science and Technology (SUSTech). Her research focuses on the design and synthesis of interfacial materials for organic/perovskite solar cells

        Zuo Xiao got his BS and PhD degrees from Peking University under the supervision of Prof. Liangbing Gan. He did postdoctoral research in Eiichi Nakamura Lab at the University of Tokyo. In March 2011, he joined Liming Ding Group at National Center for Nanoscience and Technology as an associate professor. In April 2020, he was promoted to be a full professor. His current research focuses on organic solar cells

        Huiliang Sun received his PhD from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences in 2017. He was a joint postdoc with Prof. Xugang Guo at SUSTech and Prof. Junwu Chen at South China University of Technology from 2017 to 2019 and a visiting postdoc in Henry Yan Group at Hong Kong University of Science and Technology from 2019 to 2020. Currently, he is a research assistant professor at SUSTech. His research focuses on the design and synthesis of polymer semiconductors and their application in solar cells

        Xugang Guo joined Mark D. Watson Group at the University of Kentucky in 2006 and obtained his PhD in Chemistry in 2009. From 2009 to 2012, he carried out his postdoctoral training with Profs. Tobin J. Marks and Antonio Facchetti at Northwestern University. Currently, he is a full professor in Department of Materials Science and Engineering at SUSTech. His research interests include synthesis and application of organic and polymeric semiconductors

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editors for Science Bulletin and Journal of Semiconductors

      • Corresponding author: sunhl@sustech.edu.cnguoxg@sustech.edu.cnding@nanoctr.cn
      • Received Date: 2021-05-03
      • Published Date: 2021-08-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return