RESEARCH HIGHLIGHTS

Perovskite crystallization

Lili Ke1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Lili Ke, lili.ke@xtu.edu.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Dunlap-Shohl W A, Zhou Y, Padture N P, et al. Synthetic approaches for halide perovskite thin films. Chem Rev, 2019, 119, 3193 doi: 10.1021/acs.chemrev.8b00318
[2]
Liu C, Cheng Y B, Ge Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem Soc Rev, 2020, 49, 1653 doi: 10.1039/C9CS00711C
[3]
Ke L, Luo S, Ren X, et al. Factors influencing the nucleation and crystal growth of solution processed organic lead halide perovskites: a review. J Phys D, 2021, 54, 163001 doi: 10.1088/1361-6463/abd728
[4]
Xiao M, Huang F, Huang W, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed, 2014, 126, 10056 doi: 10.1002/ange.201405334
[5]
Eperon G E, Leijtens T, Bush K A, et al. Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science, 2016, 354, 861 doi: 10.1126/science.aaf9717
[6]
Li X, Bi D, Yi C, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353, 58 doi: 10.1126/science.aaf8060
[7]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13, 897 doi: 10.1038/nmat4014
[8]
Deng Y, Van Brackle C H, Dai X, et al. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci Adv, 2019, 5, eaax7537 doi: 10.1126/sciadv.aax7537
[9]
Kim M, Kim G H, Oh K S, et al. High-temperature-short-time annealing process for high-performance large-area perovskite solar cells. ACS Nano, 2017, 11, 6057 doi: 10.1021/acsnano.7b02015
[10]
Li Y, Ding B, Chu Q Q, et al. Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Sci Rep, 2017, 7, 46141 doi: 10.1038/srep46141
[11]
Yang Y, Lu H, Feng S, et al. Modulating perovskite crystallization process towards highly efficient and stable perovskite solar cells via MXene quantum dots modified SnO2. Energy Environ Sci, 2021, 14, 3447 doi: 10.1039/D1EE00056J
[12]
Zuo L, Gu Z, Ye T, et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J Am Chem Soc, 2015, 137, 2674 doi: 10.1021/ja512518r
[13]
Bi C, Wang Q, Shao Y, et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat Commun, 2015, 6, 7747 doi: 10.1038/ncomms8747
[14]
Kelso M V, Mahenderkar N K, Chen Q, et al. Spin coating epitaxial films. Science, 2019, 364, 166 doi: 10.1126/science.aaw6184
[15]
Chen A Z, Shiu M, Ma J H, et al. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nat Commun, 2018, 9, 1336 doi: 10.1038/s41467-018-03757-0
[16]
Wang J, Luo S, Lin Y, et al. Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nat Commun, 2020, 11, 582 doi: 10.1038/s41467-019-13856-1
[17]
Zhao Y, Tan H, Yuan H, et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun, 2018, 9, 1607 doi: 10.1038/s41467-018-04029-7
[18]
Lee J W, Kim H S, Park N G. Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc Chem Res, 2016, 49, 311 doi: 10.1021/acs.accounts.5b00440
[19]
Ahn N, Son D Y, Jang I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J Am Chem Soc, 2015, 137, 8696 doi: 10.1021/jacs.5b04930
[20]
Lee J W, Bae S H, Hsieh Y T, et al. A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem, 2017, 3, 290 doi: 10.1016/j.chempr.2017.05.020
[21]
Cui S, Wang J, Xie H, et al. Rubidium ions enhanced crystallinity for ruddlesden-popper perovskites. Adv Sci, 2020, 7, 2002445 doi: 10.1002/advs.202002445
[22]
Liu Y, Zheng X, Fang Y, et al. Ligand assisted growth of perovskite single crystals with low defect density. Nat Commun, 2021, 12, 1 doi: 10.1038/s41467-020-20314-w
[23]
Xiao Z, Dong Q, Bi C, et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater, 2014, 26, 6503 doi: 10.1002/adma.201401685
[24]
Zhou Z, Wang Z, Zhou Y, et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew Chem Int Ed, 2015, 127, 9841 doi: 10.1002/ange.201504379
Fig. 1.  (Color online) (a) Nucleation rate vs supersaturation ratio curves for homogeneous and heterogeneous nucleation. Reproduced with permission[1], Copyright 2019, American Chemical Society. (b) Antisolvent engineering method. Reproduced with permission[4], Copyright 2014, Wiley-VCH. (c) Vacuum-flash assisted solution process. Reproduced with permission[6], Copyright 2016, Science (AAAS). (d) C3-SAM-induced permanent dipole formation and involvement of the C3-SAM in perovskite crystalline structure. Reproduced with permission[12], Copyright 2015, American Chemical Society. (e) The water contact angle (left) and SEM top-view images (right) of MAPbI3 grown on varied HTLs. Reproduced with permission[13], Copyright 2015, Springer Nature. (f) Possible crystallization from nucleation sites at liquid-air interface. Reproduced with permission[15], Copyright 2018, Springer Nature.

Fig. 2.  (Color online) (a) The fabrication process and SEM images for MAPbI3 films made by one-step spin-coating of DMF solution with and without DMSO. Reproduced with permission[19], Copyright 2015, American Chemical Society. (b) MAPbI3 crystallization without and with urea. Reproduced with permission[20], Copyright 2017, Elsevier. (c) Illustration of the retarded crystal growth by Rb+ binding on perovskite surface. Reproduced with permission[21], Copyright 2020, Wiley-VCH. (d) Crystal growth at the crystal surface where DPSI molecules modulate the diffusion of metal ions to reach perovskite surface. Reproduced with permission[22], Copyright 2021, Springer Nature. (e) Methylamine-induced defect-healing (MIDH) of MAPbI3 films. Reproduced with permission[24], Copyright 2015, Wiley-VCH.

[1]
Dunlap-Shohl W A, Zhou Y, Padture N P, et al. Synthetic approaches for halide perovskite thin films. Chem Rev, 2019, 119, 3193 doi: 10.1021/acs.chemrev.8b00318
[2]
Liu C, Cheng Y B, Ge Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem Soc Rev, 2020, 49, 1653 doi: 10.1039/C9CS00711C
[3]
Ke L, Luo S, Ren X, et al. Factors influencing the nucleation and crystal growth of solution processed organic lead halide perovskites: a review. J Phys D, 2021, 54, 163001 doi: 10.1088/1361-6463/abd728
[4]
Xiao M, Huang F, Huang W, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed, 2014, 126, 10056 doi: 10.1002/ange.201405334
[5]
Eperon G E, Leijtens T, Bush K A, et al. Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science, 2016, 354, 861 doi: 10.1126/science.aaf9717
[6]
Li X, Bi D, Yi C, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353, 58 doi: 10.1126/science.aaf8060
[7]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13, 897 doi: 10.1038/nmat4014
[8]
Deng Y, Van Brackle C H, Dai X, et al. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci Adv, 2019, 5, eaax7537 doi: 10.1126/sciadv.aax7537
[9]
Kim M, Kim G H, Oh K S, et al. High-temperature-short-time annealing process for high-performance large-area perovskite solar cells. ACS Nano, 2017, 11, 6057 doi: 10.1021/acsnano.7b02015
[10]
Li Y, Ding B, Chu Q Q, et al. Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Sci Rep, 2017, 7, 46141 doi: 10.1038/srep46141
[11]
Yang Y, Lu H, Feng S, et al. Modulating perovskite crystallization process towards highly efficient and stable perovskite solar cells via MXene quantum dots modified SnO2. Energy Environ Sci, 2021, 14, 3447 doi: 10.1039/D1EE00056J
[12]
Zuo L, Gu Z, Ye T, et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J Am Chem Soc, 2015, 137, 2674 doi: 10.1021/ja512518r
[13]
Bi C, Wang Q, Shao Y, et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat Commun, 2015, 6, 7747 doi: 10.1038/ncomms8747
[14]
Kelso M V, Mahenderkar N K, Chen Q, et al. Spin coating epitaxial films. Science, 2019, 364, 166 doi: 10.1126/science.aaw6184
[15]
Chen A Z, Shiu M, Ma J H, et al. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nat Commun, 2018, 9, 1336 doi: 10.1038/s41467-018-03757-0
[16]
Wang J, Luo S, Lin Y, et al. Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nat Commun, 2020, 11, 582 doi: 10.1038/s41467-019-13856-1
[17]
Zhao Y, Tan H, Yuan H, et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun, 2018, 9, 1607 doi: 10.1038/s41467-018-04029-7
[18]
Lee J W, Kim H S, Park N G. Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc Chem Res, 2016, 49, 311 doi: 10.1021/acs.accounts.5b00440
[19]
Ahn N, Son D Y, Jang I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J Am Chem Soc, 2015, 137, 8696 doi: 10.1021/jacs.5b04930
[20]
Lee J W, Bae S H, Hsieh Y T, et al. A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem, 2017, 3, 290 doi: 10.1016/j.chempr.2017.05.020
[21]
Cui S, Wang J, Xie H, et al. Rubidium ions enhanced crystallinity for ruddlesden-popper perovskites. Adv Sci, 2020, 7, 2002445 doi: 10.1002/advs.202002445
[22]
Liu Y, Zheng X, Fang Y, et al. Ligand assisted growth of perovskite single crystals with low defect density. Nat Commun, 2021, 12, 1 doi: 10.1038/s41467-020-20314-w
[23]
Xiao Z, Dong Q, Bi C, et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater, 2014, 26, 6503 doi: 10.1002/adma.201401685
[24]
Zhou Z, Wang Z, Zhou Y, et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew Chem Int Ed, 2015, 127, 9841 doi: 10.1002/ange.201504379
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2399 Times PDF downloads: 75 Times Cited by: 0 Times

    History

    Received: 05 May 2021 Revised: Online: Accepted Manuscript: 07 May 2021Uncorrected proof: 08 May 2021Published: 01 August 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lili Ke, Liming Ding. Perovskite crystallization[J]. Journal of Semiconductors, 2021, 42(8): 080203. doi: 10.1088/1674-4926/42/8/080203 L L Ke, L M Ding, Perovskite crystallization[J]. J. Semicond., 2021, 42(8): 080203. doi: 10.1088/1674-4926/42/8/080203.Export: BibTex EndNote
      Citation:
      Lili Ke, Liming Ding. Perovskite crystallization[J]. Journal of Semiconductors, 2021, 42(8): 080203. doi: 10.1088/1674-4926/42/8/080203

      L L Ke, L M Ding, Perovskite crystallization[J]. J. Semicond., 2021, 42(8): 080203. doi: 10.1088/1674-4926/42/8/080203.
      Export: BibTex EndNote

      Perovskite crystallization

      doi: 10.1088/1674-4926/42/8/080203
      More Information
      • Author Bio:

        Lili Ke got her PhD degree from University of Erlangen-Nuremberg under the supervision of Professor Christoph J. Brabec. In 2017, she continued her research in Yongbo Yuan Group at Central South University as a lecturer. In 2021, she joined Xiangtan University. Her research focuses on perovskite solar cells and organic solar cells

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editors for Science Bulletin and Journal of Semiconductors

      • Corresponding author: lili.ke@xtu.edu.cnding@nanoctr.cn
      • Received Date: 2021-05-05
      • Published Date: 2021-08-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return