RESEARCH HIGHLIGHTS

Single crystals of perovskites

Haiyue Dong1, H, Lixiu Zhang2, , Wenhua Zhang3, Jilin Wang1, , Xiaoliang Zhang4, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Jilin Wang, jilinwang@glut.edu.cn; Xiaoliang Zhang, xiaoliang.zhang@buaa.edu.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Li L, Chen H Y, Fang Z M, et al. An electrically modulated single-color/dual-color imaging photodetector. Adv Mater, 2020, 32, 1907257 doi: 10.1002/adma.201907257
[2]
Zhao D W, Ding L M. All-perovskite tandem structures shed light on thin-film photovoltaics. Sci Bull, 2020, 65, 1144 doi: 10.1016/j.scib.2020.04.013
[3]
Zuo C T, Ding L M. Drop-casting to make efficient perovskite solar cells under high humidity. Angew Chem Int Ed, 2021, 60, 11242 doi: 10.1002/anie.202101868
[4]
Cheng Y H, Ding L M. Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energy Environ Sci, 2021, 14, 3233 doi: 10.1039/D1EE00493J
[5]
Xiang H Y, Zuo C T, Zeng H B, et al. White light-emitting diodes from perovskites. J Semicond, 2021, 42, 030202 doi: 10.1088/1674-4926/42/3/030202
[6]
Wang S R, Wang A L, Hao F, et al. Renaissance of tin halide perovskite solar cells. J Semicond, 2021, 42, 030201 doi: 10.1088/1674-4926/42/3/030201
[7]
Liu L, Xiao Z, Zuo C T, et al. Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J Semicond, 2021, 42, 020501 doi: 10.1088/1674-4926/42/2/020501
[8]
Zhang M Q, Zuo C T, Tian J J, et al. Blue perovskite LEDs. J Semicond, 2021, 42, 070201 doi: 10.1088/1674-4926/42/7/070201
[9]
Ma Z W, Xiao G J, Ding L M. Pressure-induced emission from low-dimensional perovskites. J Semicond, 2021, 42, 100203 doi: 10.1088/1674-4926/42/10/100203
[10]
Zhou H, Wang H, Ding L M. Perovskite nanowire networks for photodetectors. J Semicond, 2021, 42, 110202 doi: 10.1088/1674-4926/42/11/110202
[11]
Li M B, Zhou J J, Tan H, et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. The Innovation, 2022, 3, 100310 doi: 10.1016/j.xinn.2022.100310
[12]
Mei L Y, Mu H R, Zhu L, et al. Frontier applications of perovskites beyond photovoltaics. J Semicond, 2022, 43, 040203 doi: 10.1088/1674-4926/43/4/040203
[13]
Pan X Y, Ding L M. Application of metal halide perovskite photodetectors. J Semicond, 2022, 43, 020203 doi: 10.1088/1674-4926/43/2/020203
[14]
Zhang L X, Pan X Y, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203
[15]
Wang S Y, Tan L G, Zhou J J, et al. Over 24% efficient MA-free Cs xFA1– xPbX3 perovskite solar cells. Joule, 2022, 6, 1344 doi: 10.1016/j.joule.2022.05.002
[16]
Weber D. CH3NH3SnBr xI3– x (x = 0–3), a Sn(II)-system with cubic perovskite structure. Z Naturforsch B, 1978, 33, 862 doi: 10.1515/znb-1978-0809
[17]
Ke L L, Ding L M. Perovskite crystallization. J Semicond, 2021, 42, 080203 doi: 10.1088/1674-4926/42/8/080203
[18]
Li Y L, Ding L M. Single-crystal perovskite devices. Sci Bull, 2021, 66, 214 doi: 10.1016/j.scib.2020.09.026
[19]
Saidaminov M I, Abdelhady A L, Murali B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun, 2015, 6, 7586 doi: 10.1038/ncomms8586
[20]
Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347, 967 doi: 10.1126/science.aaa5760
[21]
Dang Y Y, Liu Y, Sun Y X, et al. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. CrystEngComm, 2015, 17, 665 doi: 10.1039/C4CE02106A
[22]
Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519 doi: 10.1126/science.aaa2725
[23]
Zuo C T, Ding L M. Lead-free perovskite materials (NH4)3Sb2- I xBr9– x. Angew Chem Int Ed, 2017, 56, 6528 doi: 10.1002/anie.201702265
[24]
Chen Z L, Turedi B, Alsalloum A Y, et al. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett, 2019, 4, 1258 doi: 10.1021/acsenergylett.9b00847
[25]
Alsalloum A Y, Turedi B, Zheng X P, et al. Low-temperature crystallization enables 21.9% efficient single-crystal MAPbI3 inverted perovskite solar cells. ACS Energy Lett, 2020, 5, 657 doi: 10.1021/acsenergylett.9b02787
[26]
Alsalloum A Y, Turedi B, Almasabi K, et al. 22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap. Energy Environ Sci, 2021, 14, 2263 doi: 10.1039/D0EE03839C
[27]
Lian Z P, Yan Q F, Lv Q R, et al. High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal. Sci Rep, 2015, 5, 16563 doi: 10.1038/srep16563
[28]
Bao C X, Chen Z L, Fang Y J, et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv Mater, 2017, 29, 1703209 doi: 10.1002/adma.201703209
[29]
Wei H T, Fang Y J, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics, 2016, 10, 333 doi: 10.1038/nphoton.2016.41
[30]
Pan W C, Wu H D, Luo J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photonics, 2017, 11, 726 doi: 10.1038/s41566-017-0012-4
[31]
Zhuang R Z, Wang X J, Ma W B, et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat Photonics, 2019, 13, 602 doi: 10.1038/s41566-019-0466-7
[32]
Zhang Y X, Liu Y C, Xu Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat Commun, 2020, 11, 2304 doi: 10.1038/s41467-020-16034-w
[33]
Chen M M, Shan X, Geske T, et al. Manipulating ion migration for highly stable light-emitting diodes with single-crystalline organometal halide perovskite microplatelets. ACS Nano, 2017, 11, 6312 doi: 10.1021/acsnano.7b02629
[34]
Nguyen V C, Katsuki H, Sasaki F, et al. Single-crystal perovskite CH3NH3PbBr3 prepared by cast capping method for light-emitting diodes. Jpn J Appl Phys, 2018, 57, 04FL10 doi: 10.7567/JJAP.57.04FL10
[35]
Chen H, Lin J, Kang J, et al. Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. Sci Adv, 2020, 6, eaay4045 doi: 10.1126/sciadv.aay4045
Fig. 1.  (Color online) Common solution growth methods for perovskite single crystals. (a) Inverse temperature crystallization method. Reproduced with permission[19], Copyright 2015, Springer Nature. (b) Solution temperature-lowering method. Reproduced with permission[20], Copyright 2015, Science (AAAS). (c) Antisolvent vapor-assisted crystallization. Reproduced with permission[22], Copyright 2015, Science (AAAS).

Fig. 2.  (Color online) (a) MAI escape from MAPbI3 films in high-temperature and low-temperature crystallization. (b) Cross-sectional SEM images and device structure for MAPbI3 single-crystal PSC. Reproduced with permission[25], Copyright 2020, American Chemical Society. (c) The planar-type photodetector fabricated on (100) facet of a MAPbI3 single crystal. Reproduced with permission[27], Copyright 2015, Springer Nature. (d) The X-ray image for a key by Cs3Bi2I9 single-crystal detector (1 × 1 mm2). Reproduced with permission[32], Copyright 2020, Springer Nature. (e) Emission intensity vs time plot for an LED operated at 1 mA current. Inset: SEM image for MAPbBr3 micro-platelet and the image of LED at t = 12 h. Reproduced with permission[33], Copyright 2017, American Chemical Society. (f) Normalized PL spectra for (BA)2Csn−1PbnBr3n+1 single crystals. Reproduced with permission[35], Copyright 2020, Science (AAAS).

[1]
Li L, Chen H Y, Fang Z M, et al. An electrically modulated single-color/dual-color imaging photodetector. Adv Mater, 2020, 32, 1907257 doi: 10.1002/adma.201907257
[2]
Zhao D W, Ding L M. All-perovskite tandem structures shed light on thin-film photovoltaics. Sci Bull, 2020, 65, 1144 doi: 10.1016/j.scib.2020.04.013
[3]
Zuo C T, Ding L M. Drop-casting to make efficient perovskite solar cells under high humidity. Angew Chem Int Ed, 2021, 60, 11242 doi: 10.1002/anie.202101868
[4]
Cheng Y H, Ding L M. Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energy Environ Sci, 2021, 14, 3233 doi: 10.1039/D1EE00493J
[5]
Xiang H Y, Zuo C T, Zeng H B, et al. White light-emitting diodes from perovskites. J Semicond, 2021, 42, 030202 doi: 10.1088/1674-4926/42/3/030202
[6]
Wang S R, Wang A L, Hao F, et al. Renaissance of tin halide perovskite solar cells. J Semicond, 2021, 42, 030201 doi: 10.1088/1674-4926/42/3/030201
[7]
Liu L, Xiao Z, Zuo C T, et al. Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J Semicond, 2021, 42, 020501 doi: 10.1088/1674-4926/42/2/020501
[8]
Zhang M Q, Zuo C T, Tian J J, et al. Blue perovskite LEDs. J Semicond, 2021, 42, 070201 doi: 10.1088/1674-4926/42/7/070201
[9]
Ma Z W, Xiao G J, Ding L M. Pressure-induced emission from low-dimensional perovskites. J Semicond, 2021, 42, 100203 doi: 10.1088/1674-4926/42/10/100203
[10]
Zhou H, Wang H, Ding L M. Perovskite nanowire networks for photodetectors. J Semicond, 2021, 42, 110202 doi: 10.1088/1674-4926/42/11/110202
[11]
Li M B, Zhou J J, Tan H, et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. The Innovation, 2022, 3, 100310 doi: 10.1016/j.xinn.2022.100310
[12]
Mei L Y, Mu H R, Zhu L, et al. Frontier applications of perovskites beyond photovoltaics. J Semicond, 2022, 43, 040203 doi: 10.1088/1674-4926/43/4/040203
[13]
Pan X Y, Ding L M. Application of metal halide perovskite photodetectors. J Semicond, 2022, 43, 020203 doi: 10.1088/1674-4926/43/2/020203
[14]
Zhang L X, Pan X Y, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203
[15]
Wang S Y, Tan L G, Zhou J J, et al. Over 24% efficient MA-free Cs xFA1– xPbX3 perovskite solar cells. Joule, 2022, 6, 1344 doi: 10.1016/j.joule.2022.05.002
[16]
Weber D. CH3NH3SnBr xI3– x (x = 0–3), a Sn(II)-system with cubic perovskite structure. Z Naturforsch B, 1978, 33, 862 doi: 10.1515/znb-1978-0809
[17]
Ke L L, Ding L M. Perovskite crystallization. J Semicond, 2021, 42, 080203 doi: 10.1088/1674-4926/42/8/080203
[18]
Li Y L, Ding L M. Single-crystal perovskite devices. Sci Bull, 2021, 66, 214 doi: 10.1016/j.scib.2020.09.026
[19]
Saidaminov M I, Abdelhady A L, Murali B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun, 2015, 6, 7586 doi: 10.1038/ncomms8586
[20]
Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347, 967 doi: 10.1126/science.aaa5760
[21]
Dang Y Y, Liu Y, Sun Y X, et al. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. CrystEngComm, 2015, 17, 665 doi: 10.1039/C4CE02106A
[22]
Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519 doi: 10.1126/science.aaa2725
[23]
Zuo C T, Ding L M. Lead-free perovskite materials (NH4)3Sb2- I xBr9– x. Angew Chem Int Ed, 2017, 56, 6528 doi: 10.1002/anie.201702265
[24]
Chen Z L, Turedi B, Alsalloum A Y, et al. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett, 2019, 4, 1258 doi: 10.1021/acsenergylett.9b00847
[25]
Alsalloum A Y, Turedi B, Zheng X P, et al. Low-temperature crystallization enables 21.9% efficient single-crystal MAPbI3 inverted perovskite solar cells. ACS Energy Lett, 2020, 5, 657 doi: 10.1021/acsenergylett.9b02787
[26]
Alsalloum A Y, Turedi B, Almasabi K, et al. 22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap. Energy Environ Sci, 2021, 14, 2263 doi: 10.1039/D0EE03839C
[27]
Lian Z P, Yan Q F, Lv Q R, et al. High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal. Sci Rep, 2015, 5, 16563 doi: 10.1038/srep16563
[28]
Bao C X, Chen Z L, Fang Y J, et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv Mater, 2017, 29, 1703209 doi: 10.1002/adma.201703209
[29]
Wei H T, Fang Y J, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics, 2016, 10, 333 doi: 10.1038/nphoton.2016.41
[30]
Pan W C, Wu H D, Luo J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photonics, 2017, 11, 726 doi: 10.1038/s41566-017-0012-4
[31]
Zhuang R Z, Wang X J, Ma W B, et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat Photonics, 2019, 13, 602 doi: 10.1038/s41566-019-0466-7
[32]
Zhang Y X, Liu Y C, Xu Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat Commun, 2020, 11, 2304 doi: 10.1038/s41467-020-16034-w
[33]
Chen M M, Shan X, Geske T, et al. Manipulating ion migration for highly stable light-emitting diodes with single-crystalline organometal halide perovskite microplatelets. ACS Nano, 2017, 11, 6312 doi: 10.1021/acsnano.7b02629
[34]
Nguyen V C, Katsuki H, Sasaki F, et al. Single-crystal perovskite CH3NH3PbBr3 prepared by cast capping method for light-emitting diodes. Jpn J Appl Phys, 2018, 57, 04FL10 doi: 10.7567/JJAP.57.04FL10
[35]
Chen H, Lin J, Kang J, et al. Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. Sci Adv, 2020, 6, eaay4045 doi: 10.1126/sciadv.aay4045
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 855 Times PDF downloads: 106 Times Cited by: 0 Times

    History

    Received: 30 September 2022 Revised: Online: Accepted Manuscript: 30 September 2022Uncorrected proof: 30 September 2022Published: 02 December 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Haiyue Dong, Lixiu Zhang, Wenhua Zhang, Jilin Wang, Xiaoliang Zhang, Liming Ding. Single crystals of perovskites[J]. Journal of Semiconductors, 2022, 43(12): 120201. doi: 10.1088/1674-4926/43/12/120201 H Y Dong, L X Zhang, W H Zhang, J L Wang, X L Zhang, L M Ding. Single crystals of perovskites[J]. J. Semicond, 2022, 43(12): 120201. doi: 10.1088/1674-4926/43/12/120201Export: BibTex EndNote
      Citation:
      Haiyue Dong, Lixiu Zhang, Wenhua Zhang, Jilin Wang, Xiaoliang Zhang, Liming Ding. Single crystals of perovskites[J]. Journal of Semiconductors, 2022, 43(12): 120201. doi: 10.1088/1674-4926/43/12/120201

      H Y Dong, L X Zhang, W H Zhang, J L Wang, X L Zhang, L M Ding. Single crystals of perovskites[J]. J. Semicond, 2022, 43(12): 120201. doi: 10.1088/1674-4926/43/12/120201
      Export: BibTex EndNote

      Single crystals of perovskites

      doi: 10.1088/1674-4926/43/12/120201
      More Information
      • Author Bio:

        Haiyue Dong got his BS from Dalian Minzu University in 2020. Now he is a MS student at Guilin University of technology under the supervision of Professor Fei Long and Professor Jilin Wang. His research focuses on perovskite solar cells

        Lixiu Zhang got her BS degree from Soochow University in 2019. Now she is a PhD student at University of Chinese Academy of Sciences under the supervision of Prof. Liming Ding. Her research focuses on perovskite solar cells

        Jilin Wang received his PhD in 2014 form Wuhan University of Technology under the supervision of Professor Weimin Wang. He joined Guilin University of Technology in 2015. Currently, he is an associate professor in Fei Long Group. His research focuses on optoelectronic materials and devices

        Xiaoliang Zhang is a professor at Beihang University. He received his PhD in Materials Physics and Chemistry from Beihang University in 2013. Then, he joined Uppsala University as a postdoc and subsequently was promoted as a Senior Researcher there. He joined Beihang University as a full professor in 2018. His research focuses on semiconducting quantum dots and their application in optoelectronic devices

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, and the Associate Editor for Journal of Semiconductors

      • Corresponding author: jilinwang@glut.edu.cnxiaoliang.zhang@buaa.edu.cnding@nanoctr.cn
      • Received Date: 2022-09-30
        Available Online: 2022-09-30

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return