SHORT COMMUNICATION

Stabilizing black-phase CsPbI3 under over 70% humidity

Tian Tian1, §, , Meifang Yang1, §, Jianyu Yang1, Wuqiang Wu1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Tian Tian, tiant59@mail.sysu.edu.cn; Wuqiang Wu, wuwq36@mail.sysu.edu.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 2016, 6(8), 1502458 doi: 10.1002/aenm.201502458
[2]
Lin L, Jiang L, Li P, et al. Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells. Solar Energy, 2020, 198(1), 454 doi: 10.1016/j.solener.2020.01.081
[3]
Yu B, Zuo C, Shi J, et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 2021, 42(5), 050203 doi: 10.1088/1674-4926/42/5/050203
[4]
Tang Y, Lesage A, Schall P. CsPbI3 nanocrystal films: towards higher stability and efficiency. J Mater Chem C, 2020, 8(48), 17139 doi: 10.1039/D0TC04475J
[5]
Swarnkar A, Marshall A R, Sanehira E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308), 92 doi: 10.1126/science.aag2700
[6]
Sutton R J, Filip M R, Haghighirad A A, et al. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett, 2018, 3(8), 1787 doi: 10.1021/acsenergylett.8b00672
[7]
Straus D B, Guo S, Abeykoon A M, et al. Understanding the instability of the halide perovskite CsPbI3 through temperature-dependent structural analysis. Adv Mater, 2020, 32(32), 2001069 doi: 10.1002/adma.202001069
[8]
Li B, Zhang Y, Fu L, et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat Commun, 2018, 9(1076), 1076 doi: 10.1038/s41467-018-03169-0
[9]
Ke F, Wang C, Jia C, et al. Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt. Nat Commun, 2021, 12(461), 461 doi: 10.1038/s41467-020-20745-5
[10]
Huang Q, Li F, Wang M, et al. Vapor-deposited CsPbI3 solar cells demonstrate an efficiency of 16%. Sci Bull, 2021, 66(8), 757 doi: 10.1016/j.scib.2020.12.024
[11]
Wang Q, Zheng X, Deng Y, et al. Stabilizing the α-Phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule, 2017, 1(2), 371 doi: 10.1016/j.joule.2017.07.017
[12]
Wang K, Jin Z, Liang L, et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat Commun, 2018, 9, 4544 doi: 10.1038/s41467-018-06915-6
[13]
Zhang T, Wang F, Chen H, et al. Mediator-antisolvent strategy to stabilize all-inorganic CsPbI3 for perovskite solar cells with efficiency exceeding 16%. ACS Energy Lett, 2020, 5(5), 1619 doi: 10.1021/acsenergylett.0c00497
[14]
Hu Y, Bai F, Liu X, et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett, 2017, 2(10), 2219 doi: 10.1021/acsenergylett.7b00508
[15]
McMeekin D P, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351(6269), 151 doi: 10.1126/science.aad5845
[16]
Beal R E, Slotcavage D J, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 2016, 7(5), 746 doi: 10.1021/acs.jpclett.6b00002
[17]
Eperon G E, Paternò G M, Sutton R J, et al. Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A, 2015, 3(39), 19688 doi: 10.1039/C5TA06398A
[18]
Hutter E M, Sutton R J, Chandrashekar S, et al. Vapour-deposited cesium lead iodide perovskites: microsecond charge carrier lifetimes and enhanced photovoltaic performance. ACS Energy Lett, 2017, 2(8), 1901 doi: 10.1021/acsenergylett.7b00591
[19]
Wang Y, Zhang T, Kan M, et al. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations. Joule, 2018, 2(10), 2065 doi: 10.1016/j.joule.2018.06.013
[20]
Xu X, Zhang H, Li E, et al. Electron-enriched thione enables strong Pb-S interaction for stabilizing high quality CsPbI3 perovskite films with low-temperature processing. Chem Sci, 2020, 11(12), 3132 doi: 10.1039/C9SC06574A
[21]
Yoon S M, Min H, Kim J B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule, 2021, 5(1), 183 doi: 10.1016/j.joule.2020.11.020
[22]
Zhang T, Dar M I, Li G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci Adv, 2017, 3(9), e1700841 doi: 10.1126/sciadv.1700841
[23]
Zhang J, Liu J, Tan A, et al. Improved stability of β-CsPbI3 inorganic perovskite using π-conjugated bifunctional surface capped organic cations for high performance photovoltaics. Chem Commun, 2020, 56(89), 13816 doi: 10.1039/D0CC05386D
[24]
Ye T, Pan L, Yang Y, et al. Synthesis of highly-oriented black CsPbI3 microstructures for high-performance solar cells. Chem Mater, 2020, 32(7), 3235 doi: 10.1021/acs.chemmater.0c00427
[25]
Wang Y, Yuan J, Zhang X, et al. Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance. Adv Mater, 2020, 32(32), 2000449 doi: 10.1002/adma.202000449
[26]
Wang C, Chesman A S R, Jasieniak J J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem Commun, 2017, 53(1), 232 doi: 10.1039/C6CC08282C
[27]
Shi J, Wang Y, Zhao Y. Inorganic CsPbI3 perovskites toward high-efficiency photovoltaics. Energy Environ Mater, 2019, 2(2), 73 doi: 10.1002/eem2.12039
[28]
Zhang Z, Li J, Fang Z, et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 2021, 42(3), 030501 doi: 10.1088/1674-4926/42/3/030501
Fig. 1.  (Color online) (a) The ambient air-processed black-phase CsPbI3 film via CR strategy. The XRD patterns of the control (b) and CR-derived CsPbI3 film (c). Note: the hash key represents the signal from δ-CsPbI3; the square symbol represents the signal from PbI2; the diamond symbol represents the signal from β-CsPbI3; the circular pattern represents the signal from CsI and the asterisk represents the signal from FTO glass substrate. (d) The structure of DAST. (e) Schematic for the molecular interaction and CsPbI3 film formation. (f) The XRD pattern for DAST-modified CsPbI3 film after being stored in air for one month.

[1]
Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 2016, 6(8), 1502458 doi: 10.1002/aenm.201502458
[2]
Lin L, Jiang L, Li P, et al. Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells. Solar Energy, 2020, 198(1), 454 doi: 10.1016/j.solener.2020.01.081
[3]
Yu B, Zuo C, Shi J, et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 2021, 42(5), 050203 doi: 10.1088/1674-4926/42/5/050203
[4]
Tang Y, Lesage A, Schall P. CsPbI3 nanocrystal films: towards higher stability and efficiency. J Mater Chem C, 2020, 8(48), 17139 doi: 10.1039/D0TC04475J
[5]
Swarnkar A, Marshall A R, Sanehira E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308), 92 doi: 10.1126/science.aag2700
[6]
Sutton R J, Filip M R, Haghighirad A A, et al. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett, 2018, 3(8), 1787 doi: 10.1021/acsenergylett.8b00672
[7]
Straus D B, Guo S, Abeykoon A M, et al. Understanding the instability of the halide perovskite CsPbI3 through temperature-dependent structural analysis. Adv Mater, 2020, 32(32), 2001069 doi: 10.1002/adma.202001069
[8]
Li B, Zhang Y, Fu L, et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat Commun, 2018, 9(1076), 1076 doi: 10.1038/s41467-018-03169-0
[9]
Ke F, Wang C, Jia C, et al. Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt. Nat Commun, 2021, 12(461), 461 doi: 10.1038/s41467-020-20745-5
[10]
Huang Q, Li F, Wang M, et al. Vapor-deposited CsPbI3 solar cells demonstrate an efficiency of 16%. Sci Bull, 2021, 66(8), 757 doi: 10.1016/j.scib.2020.12.024
[11]
Wang Q, Zheng X, Deng Y, et al. Stabilizing the α-Phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule, 2017, 1(2), 371 doi: 10.1016/j.joule.2017.07.017
[12]
Wang K, Jin Z, Liang L, et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat Commun, 2018, 9, 4544 doi: 10.1038/s41467-018-06915-6
[13]
Zhang T, Wang F, Chen H, et al. Mediator-antisolvent strategy to stabilize all-inorganic CsPbI3 for perovskite solar cells with efficiency exceeding 16%. ACS Energy Lett, 2020, 5(5), 1619 doi: 10.1021/acsenergylett.0c00497
[14]
Hu Y, Bai F, Liu X, et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett, 2017, 2(10), 2219 doi: 10.1021/acsenergylett.7b00508
[15]
McMeekin D P, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351(6269), 151 doi: 10.1126/science.aad5845
[16]
Beal R E, Slotcavage D J, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 2016, 7(5), 746 doi: 10.1021/acs.jpclett.6b00002
[17]
Eperon G E, Paternò G M, Sutton R J, et al. Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A, 2015, 3(39), 19688 doi: 10.1039/C5TA06398A
[18]
Hutter E M, Sutton R J, Chandrashekar S, et al. Vapour-deposited cesium lead iodide perovskites: microsecond charge carrier lifetimes and enhanced photovoltaic performance. ACS Energy Lett, 2017, 2(8), 1901 doi: 10.1021/acsenergylett.7b00591
[19]
Wang Y, Zhang T, Kan M, et al. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations. Joule, 2018, 2(10), 2065 doi: 10.1016/j.joule.2018.06.013
[20]
Xu X, Zhang H, Li E, et al. Electron-enriched thione enables strong Pb-S interaction for stabilizing high quality CsPbI3 perovskite films with low-temperature processing. Chem Sci, 2020, 11(12), 3132 doi: 10.1039/C9SC06574A
[21]
Yoon S M, Min H, Kim J B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule, 2021, 5(1), 183 doi: 10.1016/j.joule.2020.11.020
[22]
Zhang T, Dar M I, Li G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci Adv, 2017, 3(9), e1700841 doi: 10.1126/sciadv.1700841
[23]
Zhang J, Liu J, Tan A, et al. Improved stability of β-CsPbI3 inorganic perovskite using π-conjugated bifunctional surface capped organic cations for high performance photovoltaics. Chem Commun, 2020, 56(89), 13816 doi: 10.1039/D0CC05386D
[24]
Ye T, Pan L, Yang Y, et al. Synthesis of highly-oriented black CsPbI3 microstructures for high-performance solar cells. Chem Mater, 2020, 32(7), 3235 doi: 10.1021/acs.chemmater.0c00427
[25]
Wang Y, Yuan J, Zhang X, et al. Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance. Adv Mater, 2020, 32(32), 2000449 doi: 10.1002/adma.202000449
[26]
Wang C, Chesman A S R, Jasieniak J J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem Commun, 2017, 53(1), 232 doi: 10.1039/C6CC08282C
[27]
Shi J, Wang Y, Zhao Y. Inorganic CsPbI3 perovskites toward high-efficiency photovoltaics. Energy Environ Mater, 2019, 2(2), 73 doi: 10.1002/eem2.12039
[28]
Zhang Z, Li J, Fang Z, et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 2021, 42(3), 030501 doi: 10.1088/1674-4926/42/3/030501

短通讯22010037suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1330 Times PDF downloads: 70 Times Cited by: 0 Times

    History

    Received: 31 January 2020 Revised: Online: Accepted Manuscript: 08 February 2022Uncorrected proof: 08 February 2022Published: 10 March 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tian Tian, Meifang Yang, Jianyu Yang, Wuqiang Wu, Liming Ding. Stabilizing black-phase CsPbI3 under over 70% humidity[J]. Journal of Semiconductors, 2022, 43(3): 030501. doi: 10.1088/1674-4926/43/3/030501 T Tian, M F Yang, J Y Yang, W Q Wu, L M Ding. Stabilizing black-phase CsPbI3 under over 70% humidity[J]. J. Semicond, 2022, 43(3): 030501. doi: 10.1088/1674-4926/43/3/030501Export: BibTex EndNote
      Citation:
      Tian Tian, Meifang Yang, Jianyu Yang, Wuqiang Wu, Liming Ding. Stabilizing black-phase CsPbI3 under over 70% humidity[J]. Journal of Semiconductors, 2022, 43(3): 030501. doi: 10.1088/1674-4926/43/3/030501

      T Tian, M F Yang, J Y Yang, W Q Wu, L M Ding. Stabilizing black-phase CsPbI3 under over 70% humidity[J]. J. Semicond, 2022, 43(3): 030501. doi: 10.1088/1674-4926/43/3/030501
      Export: BibTex EndNote

      Stabilizing black-phase CsPbI3 under over 70% humidity

      doi: 10.1088/1674-4926/43/3/030501
      More Information
      • Author Bio:

        Tian Tian received her PhD from University of Shanghai for Science and Technology in 2020. She received her Bachelor degree from Northwest Minzu University and her Master degree from University of Shanghai for Science and Technology in 2017. Her research focuses on semiconducting crystals and optoelectronic devices

        Meifang Yang is a PhD candidate in Sun Yat-sen University. She received her Master degree from Jilin Normal University in 2020. Her research focuses on perovskite solar cells

        Wuqiang Wu received his PhD from the University of Melbourne in 2017. He received his Bachelor and Master degrees from Sun Yat-sen University in 2011 and 2013, respectively. His research focuses on semiconducting materials and optoelectronic devices

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editor for Journal of Semiconductors

      • Corresponding author: tiant59@mail.sysu.edu.cnwuwq36@mail.sysu.edu.cnding@nanoctr.cn
      • Received Date: 2020-01-31
        Available Online: 2023-11-22

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return